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Abstract

The main goal of this paper is to show that the concept of generalized differentiability
introduced by the authors in [2] allows to obtain new solutions to the fuzzy differen-
tial equations. A very general existence and uniqueness result of two solutions for
the fuzzy differential equations with modified argument and based on generalized dif-
ferentiability is obtained together with a characterization of these solutions by ODEs.
Real-world applications consisting in applications to fuzzy pantograph equation that
models the cell growth and to fuzzy logistic equation that models the population dy-
namics under uncertainty are presented. In particular, as collateral consequences we
correct some results on generalized differentiability recently obtained by Y. Chalco-
Cano and H. Román-Flores in [7] and propagated in a characterization result obtained
by J.J. Nieto, A. Khastan and K. Ivaz in [21].
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Introduction

The main goal of the present paper is to obtain improved existence and uniqueness results
(uniqueness is understood as uniqueness of two solutions) for fuzzy differential equations
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under the strongly generalized differentiability concept introduced in [2], studied also in
[7], [4], [30]. Real-world applications consisting in applications to fuzzy pantograph equa-
tion that models the cell growth and to fuzzy logistic equation that models the population
dynamics under uncertainty also are presented.

There are, at least, two ways of approaching the phenomenons in the real world : by
using models governed by fuzzy differential equations or, by using models governed by
stochastic differential equation. Let us observe that the fuzzy differential equations the-
ory rather complete than compete with the stochastic differential equations theory, simply
because they deal with complementary phenomenons. Indeed, the probabilistic (stochas-
tic/random) phenomenons and the possibilistic (fuzzy) phenomenons are complementary
[34]. A simple example is the famous experience with a coin in probability. When both
faces of the coin are clearly distinguishable, the phenomenon is stochastic, while if the
both faces of the coin are just partially distinguishable (or even undistinguishable), then the
phenomenon is fuzzy. Thus, while the stochastic differential equations model the real-life
phenomenons when the conditions/hypothesis under which the phenomenons take place are
clear, but the occurrence of the phenomenon is not known, the fuzzy differential equations
model the real-life phenomenons when the conditions under which the phenomenons take
place are uncertain/fuzzy [35].

Fuzzy differential equations appear to be a natural way to model Epistemic Uncertain-
ties. These are usually due to a lack of knowledge, and they appear naturally in different
areas in Science and Engineering [12].

There are several different approaches to fuzzy differential equations. The first ap-
proach dates back to [25] and it is based on the Hukuhara derivative. This approach has the
drawback that the solution of a fuzzy differential equation needs to have increasing length
of its support, so the qualitative theory is in this case very poor compared to ODEs [8]. This
shortcoming was overcame in [13], by interpreting a fuzzy differential equation as a system
of differential inclusions. The main shortcoming of the method based on differential in-
clusions is that the concept of the derivative of a fuzzy-number-valued function is missing.
Another approach can be found in [5], [6] and it is based on Zadeh’s extension principle in
order to extend crisp differential equations to the fuzzy case. This approach suffers from
the same disadvantage as the approach based on differential inclusions, that is the concept
of derivative does not exist.

The strongly generalized differentiability concept introduced in [2] allows us to obtain
new solutions of fuzzy differential equations as it was shown in [2] and [7], solutions which
may have decreasing length of their support. So, we do not have the well-known drawback
of the Hukuhara concept of fuzzy differentiability, i.e., that of ”possibilistic irreversibility”
(see [9]). Also, this concept shows to be very promising both in practical applications and
in theoretical investigations of qualitative type [1].

The existence and uniqueness theorems for fuzzy differential equations can be traced
back to [15], [26], [32], [27], [19], [18] and in all the cases, there was a boundedness-type
or local compactness assumption in the statements of these theorems. As it was recently
shown in [17], this condition can be eliminated. This helps us to eliminate the boundedness
condition in [2] under the strongly generalized differentiability concept too. Also, we show
in the present paper a sufficient condition for the existence of some Hukuhara differences
for large classes of fuzzy-number-valued functions, bringing improvement over a condition
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in the corresponding results in [2]. Combining all these ideas, we present a very general
new result on the local existence and uniqueness of two solutions for fuzzy differential
equations with modified argument, under the generalized differentiability concept. How-
ever in the classical setting, Differential Equations with modified argument are well studied
(see e.g., [22], [11], [14]) there is not much work done in the fuzzy case. In [17] fuzzy delay
differential equations are investigated. Here we consider equations with modified argument
under uncertainty.

Recently, characterization of solutions of fuzzy differential equations by ODEs were
obtained in [3], see also [24], under the Hukuhara concept of differentiability. In [30],
characterization results in the interval-valued setting were studied.

The present paper intends to extend these results to the concept of generalized differen-
tiability.

The plan of the paper goes as follows : Section 1 presents the main concept of gener-
alized differentiability, Section 2 contains some auxiliary results and the main theoretical
result on fuzzy differential equations with modified argument, in Section 3 we present char-
acterization results of fuzzy differential equations by classical ODE’s equations, Section
4 contains real-world applications consisting in applications to fuzzy pantograph equation
that models the cell growth and to fuzzy logistic equation that models the population dy-
namics under uncertainty, while in Section 5 we present a few corrections to some recent
results in [7], propagated also to other papers, as e.g. [21]. The paper ends with Section 6
that presents the conclusions.

1 Preliminaries

Let us recall some known useful concepts. Let RF denote the space of fuzzy reals, i.e.
the set of normal, fuzzy convex, upper semicontinuous, compactly supported fuzzy sets
x : R → [0,1]. Then, for x ∈ RF , α ∈ [0,1], the α−level set [x]α = [x−α ,x+

α ] is an interval.
The arithmetic operations over the set of fuzzy numbers are induced by Zadeh’s extension
principle. For u ∈RF , we denote by len(u) = u+

0 −u−0 , the length of the closure of [u]0-the
support of u. The topological structure on RF is induced by the Hausdorff distance between
fuzzy numbers (see e.g. [9]). In this note we use the Aumann integral ([26]), although the
usage of Henstock integral ([33]) would lead to the same outcomes. Let x,y ∈ RF . If there
exists z∈RF such that x = y+z, then z is called the H-difference of x and y and it is denoted
by x	y. We use notation −u for the fuzzy number (−1) ·u. Let us remark that x−y means
in the notations of the present paper x +(−1)y 6= x	 y. For the H-difference, everywhere
we will use the symbol ”	 ”.

The basic concept used in this paper is the generalized fuzzy differentiability introduced
by the authors in [2].

Definition 1.1. ([2]) Let f : (a,b)→RF and x0 ∈ (a,b). We say that f is strongly general-
ized differentiable on x0, if there exists an element f ′(x0) ∈ RF , such that

(i) for all h > 0 sufficiently small, ∃ f (x0 +h)	 f (x0), f (x0)	 f (x0−h) and the limits
(in the metric D)

lim
h↘0

f (x0 +h)	 f (x0)
h

= lim
h↘0

f (x0)	 f (x0−h)
h

= f ′(x0),
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or
(ii) for all h > 0 sufficiently small, ∃ f (x0)	 f (x0 +h), f (x0−h)	 f (x0) and the limits

lim
h↘0

f (x0)	 f (x0 +h)
(−h)

= lim
h↘0

f (x0−h)	 f (x0)
(−h)

= f ′(x0),

or
(iii) for all h > 0 sufficiently small, ∃ f (x0 +h)	 f (x0), f (x0−h)	 f (x0) and the limits

lim
h↘0

f (x0 +h)	 f (x0)
h

= lim
h↘0

f (x0−h)	 f (x0)
(−h)

= f ′(x0),

or
(iv) for all h > 0 sufficiently small, ∃ f (x0)	 f (x0 +h), f (x0)	 f (x0−h) and the limits

lim
h↘0

f (x0)	 f (x0 +h)
(−h)

= lim
h↘0

f (x0)	 f (x0−h)
h

= f ′(x0).

Remarks. 1) Note that the concept of generalized differentiability in Definition 1.1 is
more general than the concept of one-sided differentiability introduced and used in [7] by
Y. Chalco-Cano and H. Román-Flores. Indeed, the one-sided type differentiability in [7]
coincides in fact with the cases (i) and (ii) of the above generalized differentiability but
does not cover the cases (iii) and (iv). Although in Definition 1.1 the cases (iii) and (iv) are
not so important as the cases (i) and (ii) since occur only on a discrete set of points, they
can be very useful. As a first argument supporting that, let us consider c ∈ RF \R be any
fuzzy (non real) constant and the very simple fuzzy-number-valued function f : R → RF ,
f (t) = c · cos t. It is natural to expect that f is differentiable everywhere in his domain.
Let us remark that f is differentiable according to Definition 1.1, (ii), on each subinterval
(2kπ,(2k + 1)π) and differentiable according to Definition 1.1, (i), on each interval of the
form ((2k+1)π,2kπ), k ∈ Z. But, at the points {kπ}, k ∈ Z, none of the cases (i) and (ii) in
Definition 1 are fulfilled. Namely, at these points the H-differences f (kπ+h)	 f (kπ) and
f (kπ)	 f (kπ−h) may not exist simultaneously. Also, the H-differences f (kπ)	 f (kπ+h)
and f (kπ−h)	 f (kπ) cannot exist simultaneously, so f is not differentiable at kπ in none
of the cases (i) and (ii) of differentiability in Definition 1.1. Instead, it will be differentiable
as in the cases (iii) and (iv) in Definition 1.1.

2) Another argument for the importance of the cases (iii) and (iv) in Definition 1.1 is
pointed out in the Remark after the Theorem 5.1.

2 Improved Existence Result

For the proof of the existence and uniqueness result of two solutions for fuzzy differential
equations, we need first to prove an auxiliary lemma. In this sense, we will make use of the
well-known L-U representation of a fuzzy number valued function.

Theorem 2.1. ([10], [29]) A fuzzy number is completely determined by any pair u =
(u−,u+) of functions u−,u+ : [0,1] → R, defining the endpoints of the α−level sets, sat-
isfying the following conditions:
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(i) u−(α) = u−α ∈R is a bounded nondecreasing left-continuous function in (0,1] and it
is right-continuous at 0.

(ii) u+(α) = u+
α ∈ R is a bounded nonincreasing left-continuous function in (0,1] and

it is right-continuous at 0.
(iii) u−(α)≤ u+(α), ∀α ∈ [0,1].

We have :

Lemma 2.2. Let x ∈ RF be such that the functions x± defined as in Theorem 2.1 are dif-
ferentiable, with x− strictly increasing and x+ strictly decreasing on [0,1], such that there
exist the constants c1 > 0, c2 < 0 satisfying (x−α )′ ≥ c1 and (x+

α )′ ≤ c2 for all α ∈ [0,1]. Let
f : [a,b]→ RF be continuous with respect to t, having the level sets f−α (t) and f +

α (t) with
bounded partial derivatives ∂ f−α (t)

∂α
and ∂ f +

α (t)
∂α

, with respect to α ∈ [0,1], t ∈ [a,b].
If
a) x−(1) < x+(1)
or if
b) x−(1) = x+(1) and the core [ f (s)]1 consists of exactly one element for any s ∈ T =

[a,b], then there exists h > a such that the H-difference

x	
Z t

a
f (s)ds

exists for any t ∈ [a,h].

Proof. We observe that the H-difference of two fuzzy numbers u	 v exists if and only if
the functions (u−−v−,u+−v+) define a fuzzy number. Indeed, let us suppose that u	v =
z, this is equivalent to z + v = u and taking the α-levels we have equivalently [z−α ,z+

α ] +
[v−α ,v+

α ] = [u−α ,u+
α ], i.e., z−α = u−α − v−α , z+

α = u+
α − v+

α , α ∈ [0,1]. By the above Theorem
2.1, the assumption that u	 v exists is equivalent with the fact that (u−− v−,u+ − v+)
define a fuzzy number. Moreover, since left and right continuity requirements of Theorem
2.1 obviously hold true whenever u,v are fuzzy numbers, the existence of u	 v becomes
equivalent to v+(1)− v−(1) ≤ u+(1)−u−(1), i.e., len([v]1) ≤ len([u]1), (here len denotes
the length of the corresponding interval) and that u−− v− is nondecreasing and u+− v+ is
nonincreasing.

Therefore, in order to prove the existence of x	
R t

a f (s)ds in the statement, we have to
check that [Z t

a
f (s)ds

]+

(1)−
[Z t

a
f (s)ds

]−
(1)≤ x+(1)− x−(1) = len([x]1),

x−(α)−
[Z t

a
f (s)ds

]−
(α) is nondecreasing w.r.t. α,

x+(α)−
[Z t

a
f (s)ds

]+

(α) is nonincreasing w.r.t. α.

But [Z t

a
f (s)ds

]±
(α) =

Z t

a
[ f (s)]±(α)ds,
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which implies that the above conditions are equivalent toZ t

a
len([ f (s)]1)ds ≤ len([x]1),

(x−α )′−
Z t

a

∂ f−α (s)
∂α

ds ≥ 0, for all α ∈ [0,1],

(x+
α )′−

Z t

a

∂ f +
α (s)
∂α

ds ≤ 0, for all α ∈ [0,1].

Since f is continuous, it is bounded and the function len[ f (t)]1 is bounded as well. Let
M be such that len[ f (t)]1 ≤ M, t ∈ [a,b]. Also, note that we always have

R t
a len[ f (s)]1ds ≤

M(t−a).
Suppose we are under assumption a) in statement. Then, since for all t ∈ [a,a +

len([x]1)/M], we get M(t − a) ≤ len([x]1), by the above inequality it easily follows thatR t
a len([ f (s)]1)ds ≤ len([x]1).

Let M1,M2 > 0 be such that
∣∣∣ ∂ f−α (s)

∂α

∣∣∣ ≤ M1 and
∣∣∣ ∂ f−α (s)

∂α

∣∣∣ ≤ M2, for all s ∈ [a,b] and

α ∈ [0,1]. Since (x−α )′ ≥ c1 for all α ∈ [0,1], we haveZ t

a

∂ f−α (s)
∂α

ds ≤ (t−a)M1 ≤ c1 ≤
(
x−α

)′
for any t ∈

[
a,a+ c1

M1

]
and for all α ∈ [0,1], which implies that x−α −

R t
a f−α (s)ds is nonde-

creasing with respect to α for t ∈
[
a,a+ c1

M1

]
. Similarly, since (x+

α )′ ≤ c2 for all α ∈ [0,1]
we have have

−
Z t

a

∂ f +
α (s)
∂α

ds ≤ (t−a)M2 ≤ |c2| ≤ −
(
x+

α

)′
and for any t ∈

[
a,a+ |c2|

M2

]
and for all α ∈ [0,1], i.e. x+

α −
R t

a f +
α (s)ds is nonincreasing with

respect to. α. By the above reasonings it follows that x	
R t

a f (s)ds exists, for all t ∈ [a,h],

where h = min
{

c1
M1

, |c2|
M2

, len([x]1)
M

}
> 0.

If we are under the assumption b), then it follows that len([ f (s)]1) = 0, for all s ∈
[a,b] and

R t
a len([ f (s)]1)ds = len([x]1) = 0, for all t ∈ [a,b]. The other two required in-

equalities can be obtained by similar reasonings as above, for all t ∈ [a,a + h], where
h = min

{
c1
M1

, |c2|
M2

}
> 0, which proves the lemma.

The following result is useful in obtaining characterization results for the solutions of
fuzzy differential equations by ODEs and it was obtained in [7], Theorem 5, see also, [2],
Theorem 8.

Theorem 2.3. Let f : (a,b)→ RF and x0 ∈ (a,b).
(i) If f is strongly generalized differentiable on x0 as in (i) of Definition 1.1 (i-differentiable)

then [ f ′(x0)]α =
[
( f−α )′ (x0),( f +

α )′ (x0)
]
,∀α ∈ [0,1]

(ii) If f is strongly generalized differentiable on x0 as in (ii) of Definition 1.1 (ii-
differentiable) then [

f ′(x0)
]

α
=

[(
f +
α

)′ (x0),
(

f−α
)′ (x0)

]
,∀α ∈ [0,1],
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where [ f (x0)]α = [ f−α (x0), f +
α (x0)] are the α−level intervals of f (x0), α ∈ [0,1].

Now, let us denote by B(x0,q) = {x ∈ RF : D(x,x0) ≤ q}, a closed ball in RF , where
x0 ∈ RF and D(x,x0) represents the Hausdorff distance between the fuzzy numbers x and
x0 (see e.g. [9]). Let us remark here that it is not compact (since RF is not locally compact)
and so, the continuity of a function f : B(x0,q) → RF does not imply that it is bounded.
But as it was recently shown by V. Lupulescu in [17], continuity, together with a local
Lipschitz condition are sufficient to ensure boundedness. This also allows us to eliminate
some boundedness conditions from the existence results in [27], [32] or locally compactness
type conditions in [15] (see [17] for details). The same result will also allow us to eliminate
the boundedness conditions in [2].

Lemma 2.4. ([17]) Assume that F : [t0, t0 + p]×B(x0,q)×B(x0,q) → RF is continuous
and fulfils the Lipschitz condition

D(F(t,x,u),F(t,y,v))≤ L[D(x,y)+D(u,v)],∀(t,x,u),(t,y,v) ∈ R0.

Then F is bounded, and there exists M > 0 such that D(F(t,x,u),0)≤ M, where 0 denotes
the singleton fuzzy number {0}.

Proof. The proof is given in [17]. We give it for our special case. We observe that

D(F(t,x,u),0)≤ D(F(t,x,u),F(t,x0,x0))+D(F(t,x0,x0),0)
≤ L[D(x,x0)+D(u,x0)]+D(F(t,x0,x0),0)
≤ 2qL+ max

t∈[t0,t0+p]
D(F(t,x0,x0),0) = M.

The main result of our paper is the following.

Theorem 2.5. Let R0 = [t0, t0 + p]×B(x0,q)×B(x0,q), p,q > 0, x0 ∈RF and F : R0 →RF
be continuous such that the following assumptions hold:

(i) There exist a constant L > 0 such that

D(F(t,x,u),F(t,y,v))≤ L[D(x,y)+D(u,v)],∀(t,x,u),(t,y,v) ∈ R0.

(ii) Let [F(t,x,u)]α = [F−
α (t,x,u),F+

α (t,x,u)] be the representation of F as in Theorem
2.1, then F−

α , F+
α : R0 → R have bounded partial derivatives with respect to α ∈ [0,1], the

bounds being independent of (t,x,u) ∈ R0 and α ∈ [0,1].
(iii) The functions x−0 and x+

0 are differentiable, existing c1 > 0 with x−0 (α) ≥ c1, and
c2 < 0 with x+

0 (α)≤ c2, for all α ∈ [0,1] (x±0 being defined as in Theorem 2.1) and we have
the possibilities

a) x−0 (1) < x+
0 (1)

or
b) if x−0 (1) = x+

0 (1) then the core [F(t,x,u)]1 consists in exactly one element for any
(t,x,u) ∈ R0, whenever [x]1 and [u]1 consist in exactly one element.

If h : [t0, t0 + p]→ [t0, t0 + p] is continuous, then the fuzzy initial value problem

x′(t) = F(t,x(t),x(h(t))), x(t0) = x0,

has exactly two solutions defined in an interval [t0, t0 + k] for some k > 0.
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Proof. For the proof one can use the lines in the statements and proofs of Theorems 22 and
25 in [2] (which are generalizations of the existence result in [27], [32]) combined with the
previous Lemma 2.4. We will give in the present paper a different proof.

First, let us observe that assumptions (ii) and (iii), by Lemma 2.2 ensure the existence
of the H-difference x0	

(
−

R t
t0 F(t,x(t),x(h(t)))dt

)
for t ∈ [t0, t0 + c] for some 0 < c ≤ p.

Now we consider R1 = [t0, t0 + c]× B(x0,q)× B(x0,q), K0 = C([t0, t0 + c],RF ) and two
operators P,Q : K0 → K0 (C([a,b],RF ) being the space of continuous functions x : [a,b]→
RF ) defined as follows:

P(x0)(t) = Q(x0)(t) = x0

P(x)(t) = x0 +
Z t

t0
F(t,x(t),x(h(t)))dt

Q(x)(t) = x0	
(
−

Z t

t0
F(t,x(t),x(h(t)))dt

)
We observe that P is always well defined, while Q is well defined on [t0, t0 +c] by the choice
of c. By Lemma 2.4, and the Lipschitz condition (i) of the present Theorem, F is bounded
and so are both P and Q. Moreover,

D(P(x)(t),x0)≤
Z t

t0
D(F(t,x(t),x(h(t)),0)dt ≤M(t− t0)

and
D(Q(x)(t),x0)≤

Z t

t0
D(F(t,x(t),x(h(t)),0)dt ≤M(t− t0),

where M = sup(t,x,u)∈R1
D(F(t,x,u),0) is provided by Lemma 2.4. Let d = min

{
c, q

M

}
and

K1 =C([t0, t0 +d],B(x0,q)). Then for the restrictions P,Q : K1 →C([t0, t0 +d],RF ), we have
D(P(x)(t),x0) ≤ q and also D(Q(x)(t),x0) ≤ q, i.e., x ∈ K1 gives P(x) ∈ K1 and Q(x) ∈
K1, and K1 is a complete metric space considered with the uniform distance, as a closed
subspace of a complete metric space. Now we will show that P and Q are contractions.
Indeed,

D(P(x)(t),P(y)(t))≤
Z t

t0
D(F(t,x(t),x(h(t)),F(t,y(t),y(h(t)))dt

≤ 2L(t− t0)D(x,y)

and

D(Q(x)(t),Q(y)(t))≤
Z t

t0
D(F(t,x(t),x(h(t)),F(t,y(t),y(h(t)))dt

≤ 2L(t− t0)D(x,y).

Now choosing k < min{d, 1
2L} both P and Q become contractions. Banach’s fixed point

theorem implies the existence of xi fixed point of P and xii fixed point of Q. To conclude,
we observe that xi is strongly generalized differentiable as in case (i) of Definition 1.1,
while xii is strongly generalized differentiable as in case (ii) of Definition 1.1 and both are
solutions of the fuzzy initial value problem

x′(t) = F(t,x(t),x(h(t))), x(t0) = x0,
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for any t ∈ [t0, t0 + k]. The uniqueness of the two solutions locally on [t0, t0 + k] follows by
the uniqueness of the fixed points for P and Q.

3 Characterization Results

Recently, in [3] a characterization result was presented for the solution of a fuzzy differen-
tial equation under Hukuhara differentiability. Also, this result was used in [24] to solve
Hybrid fuzzy differential equations. For the strongly generalized differentiability in the in-
terval setting, characterization results were obtained in [30]. Let us observe that these char-
acterization results are highly dependent on existence and uniqueness theorems of Peano
type. So, the better the existence theorem, the better the characterization result. This shows
us, that it is possible to extend the result in [3] to the strongly generalized differentiability
setting and simultaneously to improve the results. Also, the result in [3] had a boundedness
condition, which was eliminated in a Corollary presented in [24] and it can be eliminated
here too, based on the results in [17].

Theorem 3.1. Let R0 = [t0, t0 + p]×B(x0,q)×B(x0,q), p,q > 0, x0 ∈RF and F : R0 →RF
be such that

[F(t,x,u)]α = [F−
α (t,x−α ,x+

α ,u−α ,u+
α ),F+

α (t,x−α ,x+
α ,u−α ,u+

α )],∀α ∈ [0,1]

and the following assumptions hold:
(i) F±

α (t,x−α ,x+
α ,u−α ,u+

α ) are equicontinuous, uniformly Lipschitz in their second through
fifth arguments (i.e., there exist a constant L > 0 such that

|F±
α (t,x−α ,x+

α ,u−α ,u+
α )−F±

α (t,y−α ,y+
α ,v−α ,v+

α )|
≤ L(|x−α − y−α |+ |x+

α − y+
α |+ |u−α − v−α |+ |u+

α − v+
α |),

∀(t,x,u),(t,y,v) ∈ R0,α ∈ [0,1]).
(ii) F−

α , F+
α : R0 → R have bounded partial derivatives with respect to α ∈ [0,1], the

bounds being independent of (t,x,u) ∈ R0 and α ∈ [0,1].
(iii) The functions x−0 and x+

0 are differentiable, existing c1 > 0 with x−0 (α) ≥ c1, and
c2 < 0 with x+

0 (α)≤ c2, for all α ∈ [0,1] (x±0 being defined as in Theorem 2.1) and we have
the possibilities

a) x−0 (1) < x+
0 (1)

or
b) if x−0 (1) = x+

0 (1) then the core [F(t,x,u)]1 consists in exactly one element for any
(t,x,u) ∈ R0, whenever [x]1 and [u]1 consist in exactly one element.

If h : [t0, t0 + p]→ [t0, t0 + p] is continuous, then the fuzzy initial value problem

x′(t) = F(t,x(t),x(h(t))), x(t0) = x0, (3.1)

is equivalent on some interval [t0, t0 + k] with the union of the following two ODEs:
(x−α )′ (t) = F−

α (t,x−α (t),x+
α (t),x−α (h(t)),x+

α (h(t)))
(x+

α )′ (t) = F+
α (t,x−α (t),x+

α (t),x−α (h(t)),x+
α (h(t)))

x−α (t0) = (x0)
−
α

,x+
α (t0) = (x0)

+
α

,α ∈ [0,1] (3.2)
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(x−α )′ (t) = F+

α (t,x−α (t),x+
α (t),x−α (h(t)),x+

α (h(t)))
(x+

α )′ (t) = F−
α (t,x−α (t),x+

α (t),x−α (h(t)),x+
α (h(t)))

x−α (t0) = (x0)
−
α

,x+
α (t0) = (x0)

+
α

,α ∈ [0,1] (3.3)

Proof. Condition (i) of the theorem ensures the existence of a unique solution for each
of the equations (3.2) and (3.3) for any fixed α ∈ [0,1]. Let us denote these solutions by
(x−α )i

,(x+
α )i and (x−α )ii

,(x+
α )ii respectively. The equicontinuity of F±

α ensures the continuity
of F , while the Lipshitz condition in (i) is sufficient for the corresponding Lipschitz property
of F. All these conditions together ensure the existence and uniqueness of two solutions xi

and xii for the fuzzy initial value problem (3.1). Let
[
xi

]
α

= [
(
xi

)−
α

,
(
xi

)+
α
] and

[
xii

]
α

=
[
(
xii

)−
α

,
(
xii

)+
α
], α ∈ [0,1]. Then, by Theorem 2.3, since xi Hukuhara differentiable (or i-

differentiable) then [(
xi)′]

α

= [
((

xi)−
α

)′
,
((

xi)+
α

)′
]

and
(
xi

)−
α

,
(
xi

)+
α

is a solution of (3.2). Since (x−α )i
,(x+

α )i is the unique solution of (3.2) we
obtain ((

xi)−
α

,
(
xi)+

α

)
=

((
x−α

)i
,
(
x+

α

)i
)

,∀α ∈ [0,1].

Similar reasoning for the ii-differentiable solution implies[(
xii)′]

α

= [
((

xii)+
α

)′
,
((

xii)−
α

)′
],

so
(
xii

)+
α

,
(
xii

)−
α

is a solution of (3.3), so((
xii)−

α
,
(
xii)+

α

)
=

((
x−α

)ii
,
(
x+

α

)ii
)

,∀α ∈ [0,1].

As a conclusion the solutions of (3.1) are exactly those of (3.2) and (3.3).

Remark. The conditions in Theorems 2.5 and 3.1 are fulfilled by e.g. any triangular
initial value x0 with strictly increasing (strictly decreasing) slopes for the sides, together
with any function F having triangular values and satisfying the Lipschitz property in The-
orem 2.5, (i). Moreover, the conditions are fulfilled for any trapezoidal initial condition,
having strictly increasing (strictly decreasing) slopes for the sides, together with any F hav-
ing trapezoidal values with the Lipschitz property in Theorem 2.5, (i). So, the conditions of
Theorem 2.5, are very relaxed, and we can find large classes of fuzzy differential equations
for which locally, the two solutions exist and are unique. Also, notice that a weaker exis-
tence result for triangular numbers as initial vale data (and for h(t) = t) was presented in [2].
Therefore our theorem generalizes Theorem 25 in [2] from two points of view : firstly, the
form of differential equation is more general (that is, with deviated argument) and secondly,
the initial values and the values taken by the function F can be a general fuzzy number.

In the followings we formulate a particularization of the existence, uniqueness and char-
acterization Theorem 3.1 for fuzzy initial value problems with triangular data. We denote
by RT the space of triangular fuzzy numbers. Any triangular fuzzy number can be charac-
terized by the endpoints of the 0-level set and the core (1-level set) which is a singleton. As
a consequence we can denote x = (x−,x1,x+) ∈ RT any triangular fuzzy number. Also, in
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the next Theorem we consider h(t) = t for simplicity. Similar result holds as in the previ-
ous Theorem 3.1 with general continuous h, but we formulate a simpler result in view of
possible applications.

Theorem 3.2. Let R0 = [t0, t0 + p]×
(
B(x0,q)∩RT

)
, p,q > 0, x0 ∈ RT and F : R0 → RT

be such that

F(t,x) = (F−(t,x−,x1,x+),F1(t,x−,x1,x+),F+(t,x−,x1,x+))

and the following assumptions hold:
(i) F−,F1,F+ are continuous, Lipschitz in their second through last arguments.
(ii) x0 = (x−0 ,x1

0,x
+
0 ) is a nontrivial triangular number such that x−0 < x1

0 < x+
0 . Then

(a) The fuzzy initial value problem

x′(t) = F(t,x(t)), x(t0) = x0, (3.4)

has exactly two triangular valued solutions on some interval [t0, t0 + k].
(b) Problem (3.4) is equivalent to the union of the following two ODEs:

(x−)′ = F−(t,x−,x1,x+)(
x1

)′ = F1(t,x−,x1,x+)
(x+)′ = F+(t,x−,x1,x+)

x−(t0) = x−0 ,x1(t0) = x1
0,x

+(t0) = x+
0

, (3.5)


(x−)′ = F+(t,x−,x1,x+)(

x1
)′ = F1(t,x−,x1,x+)

(x+)′ = F−(t,x−,x1,x+)
x−(t0) = x−0 ,x1(t0) = x1

0,x
+(t0) = x+

0

, (3.6)

Proof. It is easy to check that since F is triangular valued, the solutions of (3.4) are triangu-
lar valued. Further the conditions (i) and (ii) ensure that the problem (3.4) has two unique
solutions locally. It is easy to check that the conditions in Theorem 3.1 are fulfilled with
h(t) = t and that the problems (3.2) and (3.3), in the case of triangular-valued functions are
equivalent with (3.5) and (3.6) respectively, and the proof is complete.

4 Examples

In the following fist we present on example to show the practical applicability of the previ-
ous result for FIVP with triangular data.

Example 1 We consider the Fuzzy Initial Value Problem

x′(t) =−tx(t)+(1,2,3)t2,x(0) = (2,4,7) (4.1)

We observe that F(t,x) = −tx + (1,2,3)t2 is a triangular fuzzy number valued function
(whenever x is triangular) and

F−(t,x−,x1,x+) =−tx+ + t2

F1(t,x−,x1,x+) =−tx1 +2t2

F+(t,x−,x1,x+) =−tx−+3t2.
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It is easy to see that conditions (i) and (ii) are obviously satisfied and as a conclusion, on
some interval [t0, t0 + k] (where the choice of k depends on the existence of the Hukuhara
difference in the definition of the operator Q in Theorem 2.5). The second result shows that
the FIVP of this example is equivalent to the union of two ODEs:

(x−)′ =−tx+ + t2(
x1

)′ =−tx1 +2t2

(x+)′ =−tx−+3t2

(x−,x1,x+) = (2,4,7)

and 
(x−)′ =−tx−+3t2(

x1
)′ =−tx1 +2t2

(x+)′ =−tx+ + t2

(x−,x1,x+) = (2,4,7)

.

The two solutions of the FIVP are shown in the following Figure 1 (by showing the end-
points of the 0-level set and the core (1-level set).

Fig. 1. Solutions xi (left) and xii (right) of the FIVP 4.1.

The choice of k = 1.4 arises from the fact that the operator Q and the Hukuhara differences
in Theorem 2.5 are well defined on the [0,1.4] interval.

The next example shows the applicability of the strongly generalized differentiability in
real-world situations and also it illustrates the existence result in Theorem 2.5.

Example 2 In [20] a logistic fuzzy model is analized in detail and the findings are that
it is an adequate model for population dynamics under uncertainty. We use the strongly
generalized differentiability and the results of the present paper to analyze a similar fuzzy
logistic equation

x′ = ax(K	g x), x(0) = x0

where aKx is the growth rate, ax2 is the inhibition term and K is the environment capacity.
The generalized Hukuhara difference

K	g x =
{

K	 x, if K	g exists
−(x	K) if x	K exists
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proposed in [28] is used here. The advantage of this difference over the Hukuhara difference
is that the generalized Hukuhara difference exists in situations when the usual Hukuhara
difference fails to exist. We consider a,K ∈ RT symmetric triangular numbers and x0 ∈ R.
We use in our simulations x0 = 500, a = (0.98,1,1.02) ·10−3, K = (9,10,11) ·103. Let us
remark that the function f (t,x) = ax(K 	g x) is not a triangular-number-valued function
even if the inputs are triangular numbers, since the product of two triangular fuzzy numbers
is not generally triangular. In this case for any α ∈ [0,1],

F−
α (x−,x1,x+) = a−α min

α∈[0,1]

{
x−α

(
K−

α − x−α
)
,x+

α

(
K+

α − x+
α

)}
F1(x−,x1,x+) = a1x1 (

K1− x1)
F+

α (x−,x1,x+) = a+
α max

α∈[0,1]

{
x−α

(
K−

α − x−α
)
,x+

α

(
K+

α − x+
α

)}
are piecewise quadratic functions of α and the more general characterization result 3.1 is
necessarily used. Locally, the FIVP is equivalent to the problem

(x−α )′ = F−
α (t,x−,x1,x+)

(x+
α )′ = F+

α (t,x−,x1,x+)
x−(t0) = x−0 ,x1(t0) = x1

0,x
+(t0) = x+

0

. (4.2)

It is easy to see that the only solution we have locally on some interval [0, p] is the solution
according to case (i) of differentiability, since x0 ∈R. Let p = inf{t > 0 : x−α (t)(K−

α − x−α (t))=
x+

α (t)(K+
α − x+

α (t))}. In our numerical simulation we have obtained p≈ 0.407. We observe
that if we use now p and x0 = x(p) as initial values for a new initial value problem

x′ = ax(K	g x),x(p) = x0

two solutions will emerge according to Theorem 2.5 characterized by the systems (4.2) and
(4.3), 

(x−α )′ = F−
α (t,x−,x1,x+)

(x+
α )′ = F+

α (t,x−,x1,x+)
x−(t0) = x−0 ,x1(t0) = x1

0,x
+(t0) = x+

0

. (4.3)

One is differentiable as in (i) and another differentiable as in (ii) case of Definition 1.1. Let
us remark also, that we can paste together the solutions and we obtain two solutions on the
[0,1] interval. Let us observe that the most realistic model appears to be the one which starts
with case (i) of differentiability on [0, p] and continues with case (ii) of differentiability
on [p,1]. The solution which is (i) differentiable is the Hukuhara solution on [0,1] and
it is unrealistic from practical point of view since the population may increase according
to that solution much more than the environment’s capacity. In Fig. 1 these solutions
are shown, where xi represents the lower and upper endpoints of the 0-level set of the
solution according to case (i) of differentiability, xii is the 0 level set of the solution as
in case (ii) of differentiability. x1is the common 1-level set of the two solutions. This
example also allows us to underline once more the practical superiority of the strongly
generalized differentiability with respect to the Hukuhara derivative case. Several other
practical examples were also proposed in [1].
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Figure 1. Solutions of the fuzzy logistic equation.

Example 3 As an example of a fuzzy differential equation with deviated argument
we consider the so-called pantograph equation. It is an equation that appears as a model
for several phenomena including cell-growth [23], [31]. Consider the Fuzzy differential
equation with modified argument

x′(t) = ax(t)+bx(qt),x(0) = x0 (4.4)

where 0 ≤ q ≤ 1 and 0 < a,b ∈ R and x0 ∈ RT is a nontrivial triangular fuzzy number
(x < x1 < x̄).

It is easy to see that all the conditions in 2.5 are fulfilled and as a conclusion the equation
4.4 has two solutions on an interval [0, p]. Moreover, using the characterization result 3.1
we can reduce (4.4) to the functional differential equations

(x)′ (t) = ax(t)+bx(qt)(
x1

)′ (t) = ax1(t)+bx1(qt)
(x)′ (t) = ax(t)+bx(qt)

x(0) = x0,x1(0) = x1
0,x(0) = x0

and 
(x)′ (t) = ax(t)+bx(qt)(
x1

)′ (t) = ax1(t)+bx1(qt)
(x)′ (t) = ax(t)+bx(qt)

x(0) = x0,x1(0) = x1
0,x(0) = x0

.

Following [16], we can find the analytic solutions of both equations as a convergent power
series xi = ∑

∞
n=0 αntn, where α0 = x0, αn+1 = a+bqn

n+1 αn,n ≥ 1 is the solution according to
Definition 1.1, (i) of the equation [23], and xii = (∑∞

n=0 antn,∑∞
n=0 bntn,∑∞

n=0 cntn) , a0 = x0,
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Figure 2. Solutions of the fuzzy pantograph equation

b0 = x1
0, c0 = x0 an+1 = a+bqn

n+1 cn, bn+1 = a+bqn

n+1 bn, cn+1 = a+bqn

n+1 an, n ≥ 1 is the solution
according to Definition 1.1, (ii) of (4.4). In Fig. 2 these solutions are shown for the case
when a = b = 1 and q = 1

2 , x0 = (1,4,7) in (4.4). xi represents the lower and upper endpoints
of the 0-level set of the solution according to case (i) of differentiability, xii is the 0-level
set of the solution as in case (ii) of differentiability and x1is the common 1-level set of the
two solutions.

5 Corrections of Recent Results

In what follows we correct some results of [7], which have been propagated also to [21].
Remarks. 1) For the particular case h(t) = t in Theorem 2.5 (and therefore F :=

F(t,x(t))) we obtain a correct version of the existence and uniqueness result stated by The-
orem 6 in [7] cited also as Theorem 3.1 in [21]. Indeed, Theorem 6 in [7] asserts that given
F : T ×RF → RF continuous and satisfying a Lipschitz condition in the second argument,
the Cauchy problem

x′(t) = F(t,x(t)), x(t0) = x0 (5.1)

has exactly two solutions in T = [a,b]. Unfortunately, this theorem fails if for example
x0 ∈ R and if F(t,x(t)) ∈ RF \R in a neighborhood of (t0,x0) (for such an example, it is
enough to take F(t,x(t)) = C ∈ RF \R, where C is a fixed fuzzy number). Indeed, let us
assume that a solution, differentiable according to Definition 1.1, (ii), would exists under
the assumptions above. Then, by Theorem 5 in [7], for x(t) = [ fα(t),ga(t)] we have

x′(t) = [g′α(t), f ′α(t)],

for any t > t0. We easily obtain that the function len(x(t)) = g0(t)− f0(t) is decreasing
whenever x is assumed to be in the case of (ii)-differentiability in Definition 1.1. Since
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len(x(t0)) = 0 and since len(x(t)) is decreasing, we obtain len(x(t)) < 0 which is impossible
for a correct fuzzy number valued function x(t).

2) For the particular case h(t) = t in Theorem 3.1 (and therefore F := F(t,x(t))) we
obtain a correct version of the characterization result stated in Theorem 3.3. in [21]. It is
easy to see that the proof of Theorem 3.3. in [21], uses the result in Theorem 6 of [7]. It
is easy to observe that we may have situations when the solution in the sense of 1.1, (ii) of
(3.1) does not exist (e.g. if y0 ∈ R) however the system (3.3) has a solution.

3) Also, in [7] a very interesting result is obtained (Theorem 8), which connects fuzzy
differential inclusions to fuzzy differential equations with generalized differentiability. Since
Theorem 8 in [7] assumes the existence of the solution for (ii)-differentiable case in Def-
inition 1.1, in the light of Theorem 2.5 above (written for the particular choice h(t) = t),
Theorem 8 in [7] should be slightly reformulated as follows.

Theorem 5.1. Let f : [0,a]×R → R be continuous and F : [0,a]×RF → RF , be the
Zadeh’s extension of f , i.e., [F(t,x)]α = f (t, [x]a). If f is nonincreasing with respect to the
second argument, using the derivative in Definition 1, case (ii), the fuzzy solution of (2)
whenever it exists, coincides with the solution obtained via differential inclusions.

Remark. Theorem 5.1 is another argument for the importance of the cases (iii) and (iv)
in Definition 1.1. Indeed, the above stated theorem does not cover the case when f (t,x)
has not constant monotonicity. In these cases we will have to switch between the cases (i)
and (ii) of differentiability in Definition 1.1, so the cases (iii) and (iv) in Definition 1.1 may
become important as switch-points.

At the end of this note we will correct other two results in [7].
Thus, in Theorem 3 in [7], the authors claim that if F is continuous in T = [a,b], then the

function G(t) =
R t

a F(s)ds is differentiable according to Definition 1, (ii), and G′(t) = F(t).
But for any h > 0 sufficiently small, the H-differences G(t)	G(t +h) and G(t−h)	G(t)
do not necessarily exist. Indeed, if we suppose, for example, that G(t)	G(t +h) exists, we
easily get G(t) = G(t + h)+ α(t) and 0RF =

R t+h
t F(s)ds + α(t), which is impossible for

non-real fuzzy numbers (see e.g. Theorem 1, (ii), in [1]). Therefore, Theorem 3 in [7] is
not valid and its correct version is the following.

Theorem 5.2. Let F : T → RF be continuous in T = [a,b]. Then the function G(t) =
−

R b
t F(s)ds is differentiable according to Definition 1.1, (ii), and G′(t) = F(t).

Proof. For sufficiently small h > 0 we have

G(t) =−
Z b

t
F(s)ds =−

Z t+h

t
F(s)ds−

Z b

t+h
F(s)ds

=−
Z t+h

t
F(s)ds+G(t +h)

and so the H-difference G(t)	G(t +h) exists for any 0 < h < b− t. We obtain

G(t)	G(t +h)
(−h)

=
1
h

Z t+h

t
F(s)ds

and finally

lim
h↘0

G(t)	G(t +h)
(−h)

= F(s).
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Together with the symmetric case, the statement in Theorem 5.2 now easily follows.

The second result which needs a correction is Theorem 4 in [7]. It asserts that for F
differentiable in T = [a,b] according to Definition 1.1, (ii), assuming that the derivative F ′

is integrable over T, then for each t ∈ T we have

F(t) = F(a)+
Z t

a
F ′(s)ds.

Since its statement was based on Theorem 3 in [7], it needs to be corrected as well. Let us
remark that in general, the above equality is not true. Indeed, supposing that it is true and
taking t = a + h, h > 0 sufficiently small, it follows that the H-difference F(a + h)	F(a)
exists. Also, by the assumption that F is differentiable according to Definition 1.1, (ii),
F(a)	 F(a + h) must exists and the simultaneous existence of these two H-differences
easily imply that F ′(a) is real (see e.g. the reasonings in Remark 6, (1) and Theorem 7 in
[2]). Consequently, the equality will not hold for the case when the values of F ′ belong to
RF \R.

The correct form of Theorem 4 in [7] is the following.

Theorem 5.3. Let F : T → RF be differentiable in T = [a,b] according to Definition 1.1,
(ii). Then the derivative F ′ is integrable over T and we have

F(t) = F(b)−
Z b

t
F ′(s)ds,∀t ∈ T. (5.2)

Proof. First we prove that for F differentiable (everywhere in [a,b]) according to Definition
1.1, (ii), it follows that F ′ is integrable. This follows by Theorem 5 in [7]. Indeed, let us
assume that F : T → RF is differentiable according to Definition 1.1, (ii), and let [F(t)]a =
[ fα(t),gα(t)] denote the α-level sets of F, α ∈ [0,1]. Then, by Theorem 5 in [7] we have
that fα and gα are (real valued) differentiable functions and [F ′(t)]α = [g′α(t), f ′α(t)]. The
functions g′α(t) and f ′α(t) are integrable as real valued functions and therefore, by levelwise
the Aumann integral exists and we haveZ b

a
[F ′(t)]αdt =

[Z b

a
g′α(t)dt,

Z b

a
f ′α(t)dt

]
. (5.3)

The levelwise existence of the classical Aumann integral implies the existence of the Fuzzy
Aumann integral (see [9]). Let us remark here that Theorem 5 in [7] is valid and its proof
does not employ Theorem 4 in [7].

Proof. Continuing the proof of the relation in (5.2), by (5.3) we have for any α ∈ [0,1]

−
[Z b

t
F ′(s)ds

]α

= (−1)
[Z b

t
g′α(s)ds,

Z b

t
f ′α(s)ds

]
=

[
−

Z b

t
f ′α(s)ds,−

Z b

t
g′α(s)ds

]
= [ fα(t)− fα(b),gα(t)−gα(b)] .

This relation is equivalent to

[ fα(b),gα(b)]−
[Z b

t
F ′(s)ds

]α

= [ fα(t),gα(t)] ,∀α ∈ [0,1].
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and finally we get

F(b)−
Z b

t
F ′(s)ds = F(t)

which proves Theorem 5.3.

6 Conclusions

We have proved a very general result on existence and uniqueness of two solutions for
fuzzy differential equations with modified argument, based on generalized differentiability.
This generalizes an earlier existence result in [2] and corrects the existence result in [7]
and the characterization result in [21]. Also characterizations of these solutions by ODEs
were obtained. Real-world applications were presented in examples 2 and 3, consisting in
applications to fuzzy pantograph equation that models the cell growth and to fuzzy logistic
equation that models the population dynamics under uncertainty. At the end of the paper,
for other two results in [7] concerning generalized differentiability we prove their correct
statements.
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