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Abstract

We use atomic decomposition and molecular characterization to show that some Calderén-
Zygmund operators are bounded on Hj,-boundedness for 0 < p < 1, where w belongs
to the Muckenhoup A;-class.
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1 Introduction

The classical Calderén-Zygmund operators (CZO’s) are a class of convolution operators
defined on R”

Tfx)= [ kx=y)f()dy,

where the Fourier transform of k is essentially bounded and k is of class C! outside the
origin with

|Vk(x)] < C/|x|"*. (1.1)
It is well known that 7 is bounded on L, 1 < p < oo, and is of weak type (1, 1). Furthermore,
the results hold with (1.1) replaced by a weaker condition,

[ Ka=y)-k@ldx<c, >0
[ >2]y]

The theory of CZO’s has been studied and extended by many mathematicians in different
topics, such as non-convolution type of CZO’s, pseudo-differential operators, and oscilla-
tory singular integrals (see [7]).
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In this article we are concerned about the following Calder6n-Zygmund type operators.
We say that K € K,;,2 < g < oo, if there is a sequence of positive constants {C;} such that,
for jeN,

1

q . —
(/) K —Kalax) < ()
Vlz=y|<r—y| <2/ =y

1

s

(1.2)

and

q . —
</ _ \K(an)—K(z,X)\qu> <Cj-(2z—y|) 7. (1.3)
2 |y—z|<|y—x|<2/ Ty~

Here and afterwards, ¢’ denotes the conjugate number of g satisfying 1/g+1/q' = 1. Let
S(R™) be the space of all Schwartz functions on R” and §'(IR") its dual space, the class of
all tempered distributions on R”. Suppose T : S(R") — S'(R") is a linear operator with
kernel K(-,-) on R” x R™\{(x,x) : x € R"}, which is defined initially by

=

Tfe) = [ Ky fO)ds, 1€ GE. (14

The operator T is said to be a Calderon-Zygmund type operator if T can be extended as a
bounded operator on L?(R") and K € K,, with

[ (K = K2)| + K (ux) K (2] )dx < €
e=y[>2[z—y|

where C > 0 is a constant independent of y and z. It is clear that (1.1) implies that (1.2)
with C; = C27/ when K (x,z) = K(x—z) and y = 0. This tells us that the class of Calderén-
Zygmund type operators contains classical CZO’s. Chang and Lee [1] obtained estimates
for Calder6n-Zygmund type operators acting on Hardy spaces of homogeneous groups. For
the weighted case, Chang, Li and Xiao [2] showed that Calderén-Zygmund type operators
are bounded on L} (R").

Theorem 1.1. [2] Let T be a Calderén-Zygmund type operator associated with kernel
K € K, and a sequence {C;} satisfying (1.2)-(1.3). For 1 < p <o, if {C;} € £' and w €
A1NRH,, then T can be extended as a bounded operator on L1, for 1 < p < oo and satisfies
weak L. boundedness.

The purpose of this paper is to generalize the boundedness to the weighted Hardy
spaces.

Theorem 1.2. Let T be a Calderon-Zygmund type operator associated to a kernel K € K,
and a sequence {C;} satisfying (1.2)-(1.3). For 0 < p < 1, suppose the following three
conditions hold:

(i) there exists € > max { [n(% =D]rw(rw =1 4+ (ry = 1)"",1/p— 1} such that
{275(Cj)} e,

(i) T*(x*) =0 with |a| < [n(% —1)], where T* is the adjoint operator of T,

(i) w e Ay ﬁRHq/(q_z).
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Then T can be extended as a bounded operator on H(R").

Remark 1.3. This result extends [1, Theorem 3.8] to the Hﬁ(R”) boundedness.

For the convenience of statement, we always assume that the letter C stands for a generic
constant independent of main variables and B; denotes either the set {x € R": 2/|z —y| <
|x—y| <2/t z—y|} or the set {y € R" : 2/|x —z| < |y — x| < 2/T!|x —z|} for each j € N,
unless a special remark is made.

2 Preliminaries

Let @ be a Schwartz function with [p, @ = 1, and set ¢,(x) = ¢t7"@(x/t),t > 0. For an
distribution f, we define its radial maximal function by

[ (x) = sup@;  f(x)].

t>0

The weighted Hardy space H); consists of the distributions whose radial maximal functions
are in Ly} for 0 < p < co and || fllyp = [If*[|z- Since Hy is Lf for 1 < p < co, we only
consider the case 0 < p <1 in this section.

Regarding the constraints of weight functions, w is required to be in the Muckenhoupt
A,-class (see [4, Chapter 4] for details about A,). For 1 < p < oo, a locally integrable
nonnegative function w on R" is said to belong to A, if there exists C > 0 such that, for
every ball B C R”,

(%/Igw(x)dx> (,;/Bw(x)l/(pl)dap_] <C,

where |B| denotes its Lebesgue measure. For the case p = 1, w € A if there exists C > 0
such that, for every cube B C R",

1/W()c)dx < C essinf w(x).
|B | B XEB
It is well-known that if w € A, for 1 < p < oo, then w € A, for all r > p and w € A, for some
1 < g < p. We thus use ¢,, = inf{g > 1 :w € A;} to denote the critical index of w and set
the weighted measure w(E) = [ w(x)dx.

A closed relation to A, is the reverse Holder condition. If there exist » > 1 and a fixed
constant C > 0 such that, for every ball B C R”",

(Il}?l /B W(X)rdx> Wgc(é /B w(x)dx),

we say that w satisfies the reverse Holder condition of order r and write w € RH,.. It follows
from Holder’s inequality that w € RH, implies w € RH, for s < r. It is known that if w €
RH,,r > 1, then w € RH,¢ for some € > 0. We denote by r,, = sup{r > 1:w € RH,} the
critical index of w for the reverse Holder condition. For any ball B and A > 0, we denoted
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by AB the ball concentric with B whose radius is A times as long. It is known that for
weA,, 1< p<oo, wsatisfies the doubling condition

w(AB) < CA"y(B) @.1)

and

p
(’E‘> < C@ for any measurable subset E of a ball B. (2.2)
B w(B)

We recall Garcia-Cuerva’s atomic decomposition theory for weighted Hardy spaces
(cf.[3,6]). Let 0 < p <1 < g <o and p # ¢ such that w € A, with critical index g,,. Use
[-] to denote the greatest integer function. For s € Z satisfying s > [n(g,,/p — 1)], a function
a € L}, is called a w-(p, g, s)-atom centered at xg if

(i) a is supported on a ball B centered at xo,
(i) [laflg <w(B)Va1/r,
(iii) [gna(x)x*dx=0 for every multi-index a with |a| <.

Then we can characterize weighted Hardy spaces in terms of atom decomposition. A
tempered distribution f is in H} (R") if and only if there exist a sequence {a;} of w-(p,q,s)-
atoms and a sequence {A;} of scalars with Y |A;|? < oo such that f =} A;q; in the sense of
distributions. Furthermore,

||f||25 ~ inf{ Z |Ai|P Z?L,a[ is a decomposition of f into w—(p,q,s)—atoms}.

Denote by O;° the cube centered at xy with side length 2r. We now define the molecules
corresponding to the atoms mentioned above.

Definition 2.1. For0 < p <1 <g < e and p # g, let w € A, with critical index g,, and r,,.
Set s > [n(qw/p—1)], &€ > max{sr,(r, — 1) 'n "'+ (r,— 1)~ 1/p—1},a=1-1/p+e,
andb=1—1/q+¢. A (p,q,s,€)-molecule centered at xy with respect tow (or w-(p,q,s,€)-
molecule centered at xo) is a function M € L},(R") satisfying

(i) M()-w(Qy )" € LL®R"),

Jx—xo|

l—a/b __

(i) M5 || M) w2, )Pl =

[x—2xo|

Ny (M) < oo,
(i) [peM(x)x*dx=0 |of <s.

The above M,,(M) is called the molecular norm of M with respect to w (or w-molecular
norm of M).

We have the following molecular characterization of weighted Hardy spaces.

Theorem 2.2. [6] Let (p,q,s,€) be the quadruple in the definition of w-molecule, and let
w € Ag. Every (p,q,s,€)-molecule M centered at any point with respect to w is in HY)(R")
and ||M||gp < COUM), where the constant C is independent of M.
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If a linear mapping is bounded on L2, then to prove its H}-boundedness is sufficient
to show that this operator maps the w-atoms into w-molecules with uniform w-molecular
norms.

Theorem 2.3. [5] Let O < p < 1 and w € A;. For a linear operator T bounded on Lfv (R™),
T can be extended to a bounded operator from HL (R") to HY (R™) if and only if there exists
an absolute constant C such that

2
ITaly <C for any w-(p,2,[n(= —1))-atom a.
v P

3 Proof of Theorem 1.2

We now are ready to prove the main theorem.

Proof of Theorem 1.2. By Theorems 2.1 and 2.3, it suffices to show that 7' f is a w-(p, 2, s, €)-
molecule satisfying

b -4
N (Tf) = IITal 327 1T () W(Q_ )Pllya (g <€

for any w-(p,2,s)-atom f and s := [n(; —1)]. Given w-(p,2,s)-atom f supported on a ball
B centered at xg, leta=1— % +€eand b= % + €. Then Theorem 1.1 and (2.1) yield

/ ITFOPWQR_ ) w(x)dx < Cw(B) 177 = Cw(B)™. 3.1)
On the other hand, set 2¢ = g. Holder’s inequality and (2.1) imply

/ W@ V1K (x,y) — K (x.x0) Pw(x)dx
be=y[>2[x0—y] !

1

i 2b</ K(x,y) - xxo)y%dxy(/g

J

1
v

w(x)f’dx>

Since w € RH, 4/(q—2)» We obtain

VA

J

1
g o . .

w(x)é dx> < C’2]+IB|_2/qw(21+‘B)

and K € K, shows
1
7

(/B- [ xy) = K(x’xo)’%dx> < C(Cj)*w(B;) "2,
J
The condition (i) of Theorem 1.2 and (2.2) yield

/Ix ¥|>2[x0—y]| W(QT;)*Xo\)zﬂK(x’Y) — K (x,x0)|[*w(x)dx

oo j+1
i+1pn2b 2 W2 B)
< ng,l W(2 B) (CJ) |2j+1B|2
W(B)2+28 oo . W(B)2+2£

<cl (C.)222n8] <C—L
|BJ? ,:Zl ! |BJ?
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By Holder’s inequality and w € A} C A,

L 1re)lay <z ( / wl(x)dx>; <Cllflz (W‘fB’)> g

Hence, we may establish the following estimates:

gy PO TSP
< [, e (oK) - Koty ) wios
{/f(y)! (/x_yb” s xo)Zb\K(x,y)—K(x,xo)lzw(x)dxfdy}z

<O ([ < e

Combining (3.1) and the above estimate,

IN

b 1-¢
M (Tf) = || Tall {2 ITF ()W )P 12

a/b a(l1—¢
< Cllal g w(B) =8

<C.

It follows from the assumption 7*(x*) = 0 for all |a| < [n(% —1)] that T f satisfies the
required moment condition. Hence the proof is completed. 0
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