$C_{ m ommunications}$ in $M_{ m athematical}$ $A_{ m nalysis}$

Special Volume in Honor of Prof. Peter Lax Volume 8, Number 2, pp. 92–102 (2010) ISSN 1938-9787

www.commun-math-anal.org

A Convex Minorant Problem Arising in Electron Density Theory

Gisèle Ruiz Goldstein*

Department of Mathematical Sciences University of Memphis Memphis, TN 38152, USA

Jerome A Goldstein[†]

Department of Mathematical Sciences University of Memphis Memphis, TN 38152, USA

Naima Naheed[‡]

Department of Mathematics and Computer Science Benedict College Columbia, SC 29204, USA

Dedicated in great admiration to Peter Lax

(Communicated by Toka Diagana)

Abstract

We find the largest convex minorant of the function

$$F\left(x,y\right) = ax^2 + xy + by^2$$

where a,b are positive constants and $x \ge 0$, $y \ge 0$. We explain how the problem is closely connected with finding the ground state Thomas-Fermi electron density for a spin polarized quantum mechanical system with the Fermi-Amaldi correction.

AMS Subject Classification: Primary: 52A41, 26B25; Secondary: 81Q99, 81V55, 92E10

Keywords: Convex minorant, Thomas-Fermi theory, Fermi-Amaldi correction, ground state electron density.

*E-mail address: ggoldste@memphis.edu $^\dagger \text{E-mail}$ address: jgoldste@memphis.edu

[‡]E-mail address: naheedn@benedict.edu

1 THOMAS-FERMI THEORY

The Hamiltonian for an N electron system is

$$H = T + V_{ee} + V_{ne}$$

$$= -\frac{1}{2} \triangle + \frac{1}{2} \sum_{\substack{i,j=1\\i\neq j}}^{N} \frac{1}{|x_i - x_j|} + \sum_{j=1}^{N} V(x_j).$$
(1.1)

The underlying Hilbert space is

$$\begin{array}{rcl} {\cal H} & = & L_a^2 \left(\mathbb{R}^{3N} \right) = \{ u \in L^2(\mathbb{R}^{3N}, \mathbb{C}) : \\ u(x_{\pi_1},...,x_{\pi_N}) & = & \left(sign \; \pi \right) u \left(x_1,...,x_N \right) \; \text{for all} \\ & x & = & \left(x_1,...,x_N \right) \in \mathbb{R}^{3N} \; \text{and all permutations} \; \pi \; \text{of} \; \{1,...,N\}. \end{array}$$

Here $x = (x_1, ..., x_N)$ with $x_j \in \mathbb{R}^3$ representing the position of the jth electron, sign π is 1 or -1, according as the permutation π is even or odd, and the antisymmetry is a mathematical expression of the Pauli exclusion principle for electrons. The kinetic energy operator is

$$T = -\frac{1}{2}\Delta = -\frac{1}{2}\sum_{i=1}^{N}\Delta_{i}$$

$$\tag{1.2}$$

with \triangle_i the Laplacian on \mathbb{R}^3 corresponding to the *i*th electron. The electron (repulsive) potential energy operator is

$$V_{ee} = \frac{1}{2} \sum_{\substack{i,j=1\\i \neq j}}^{N} \frac{1}{|x_i - x_j|}$$
(1.3)

(Throughout this discussion, various constants have been normalized to be one.) The electron-nuclear (attractive) potential energy operator is

$$V_{ne} = \sum_{j=1}^{N} V(x_j) \tag{1.4}$$

where $V: \mathbb{R}^3 \to \mathbb{R}$ is a given potential. For a molecule with M nuclei at fixed position R_j , $1 \le j \le M$, V is given by

$$V(y) = -\sum_{j=1}^{M} \frac{Z_j}{|y - R_j|};$$
(1.5)

here Z_j is the positive charge of the nucleus at R_j . But, for us, V is allowed to vary in a large class of functions.

A basic problem in quantum chemistry is to find the ground state. That is, one wishes to find $E_{GS} \in \mathbb{R}$, $\Psi_{GS} \in \mathcal{H}$ such that $\|\Psi_{GS}\| = 1$ and $H\Psi_{GS} = E_{GS}\Psi_{GS}$ where

$$E_{GS} = \inf\{\langle H\varphi, \varphi \rangle : \varphi \in \mathcal{D}(\mathcal{H}), \|\varphi\| = 1\}.$$

For problems of bulk matter, with $N \simeq 10^{26}$ or so, this problem is extraordinarily difficult, both theoretically and numerically.

In 1927, L. Thomas [17] and E. Fermi [6] independently had the idea to replace this problem by one for the ground state density. If φ is a wave function, i.e. a unit vector in \mathcal{H} , then

$$\rho(x_1) = N \int_{\mathbb{R}^{3(N-1)}} |\varphi(x_1, ..., x_N)|^2 dx_2 ... dx_N$$

is the corresponding position density. That is, $\int_{\Lambda} \rho(x_1) dx_1$ is the expected number

of electrons in the Borel set $\Lambda \in \mathbb{R}^3$ when φ describes the state of the system.

Thomas and Fermi proposed to write the energy $\langle H\varphi,\varphi\rangle$ in the state φ as a functional of ρ , $E\left(\rho\right)$, and to solve the minimization problem

$$E\left(\rho_{GS}\right)=\inf\{E\left(\rho\right):\rho\geq0,\int_{\mathbb{R}^{3}}\rho\left(x\right)dx=N,\text{ and }\rho\in\mathcal{D}\left(E\right)\}$$

for $\rho_{GS} \in \mathcal{D}(E)$ with $\rho_{GS} \geq 0$, $\int_{\mathbb{D}^3} \rho_{GS}(x) dx = N$. The problem with this approach

is that the map $\varphi \to \rho$ is not injective. They proposed using an approximation

$$\widehat{E}(\rho) = \widehat{T}(\rho) + \widehat{V}_{ee}(\rho) + \widehat{V}_{ne}(\rho),$$

corresponding to

$$\langle H\varphi, \varphi \rangle = \langle T\varphi, \varphi \rangle + \langle V_{ee}\varphi, \varphi \rangle + \langle V_{ne}\varphi, \varphi \rangle$$

(see (1.1)-(1.4)). Specifically, they took

$$\widehat{E}\left(\rho\right) = \int_{\mathbb{R}^3} c_o \rho\left(x\right)^{5/3} dx + \frac{c}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{\rho\left(x\right)\rho\left(y\right)}{|x-y|} dx dy + \int_{\mathbb{R}^3} V\left(x\right)\rho\left(x\right) dx. \tag{1.6}$$

The third term $\widehat{V}_{ne}(\rho) = \int_{\mathbb{R}^3} V(x) \rho(x) dx$ equals $\langle V_{ne} \varphi, \varphi \rangle$. The second term,

$$\frac{c}{2}\int\int\limits_{\mathbb{D}^3}\int\limits_{\mathbb{D}^3}\frac{\rho(x)\rho(y)}{|x-y|}dxdy$$
, with $c=1$, is the classical Coulomb electronic repulsion

energy. It is a good approximation of $\langle V_{ne}\varphi,\varphi\rangle$, but it is not exact. For instance, when N=1, we have $\langle V_{ee}\varphi,\varphi\rangle=0$ since there is no electron electron repulsion with only one electron, while $\widehat{V}_{ee}\left(\rho\right)>0$ for every ρ . The Fermi-Amaldi correction is to take $c=1-\frac{1}{N}$; this makes $\widehat{V}_{ee}\left(\rho\right)=0$ when N=1, but leaves $\widehat{V}_{ee}\left(\rho\right)$ relatively unchanged for large N.

The term $\widehat{T}(\rho) = c_o \int_{\mathbb{R}^3} \rho(x)^{5/3} dx$ is the Thomas-Fermi kinetic energy, and the

exponent 5/3 comes from scaling. More precisely, let φ be a wave function, let

 $\lambda > 0$, and let $\Psi_{\lambda}(x) = \lambda^{3N/2} \Psi(\lambda x)$ for $x \in \mathbb{R}^{3N}$. Then $U_{\lambda} \varphi = \varphi_{\lambda}$ defines a unitary mapping on \mathcal{H} . Since $U_{\lambda}^{-1} = U_{1/\lambda}$, we easily see that

$$U_{\lambda}^{-1}(-\triangle) U_{\lambda} = \lambda^2(-\triangle),$$

so that "kinetic energy scales like λ^2 ". Suppose we consider an approximation for kinetic energy at the density level to be of the form $c_p \int_{\mathbb{R}^3} \rho(x)^p dx$. The corresponding

scaled electron density for the N electron system is

$$\rho_{\lambda}(x) = \lambda^{3} \rho(\lambda x)$$

for $\lambda > 0$ and $x \in \mathbb{R}^3$. An elementary calculation shows that

$$c_p \int_{\mathbb{R}^3} \rho_{\lambda}(x)^p dx = \lambda^{3(p-1)} c_p \int_{\mathbb{R}^3} \rho(y) dy.$$

Thus kinetic energy scales like $\lambda^{3(p-1)}$, which is λ^2 precisely when p=5/3.

E. Lieb and B. Simon [13], [14] showed that for molecules and c=1, the Thomas-Fermi problem

{minimize
$$\widehat{E}(\rho)$$
 (defined by (1.6), subject to $\rho \geq 0$, $\int_{\mathbb{R}^3} \rho(x) dx = N$, $\rho \in \mathcal{D}(\widehat{E})$ }

has a unique solution provided

$$0 < N \le Z = \sum_{i=1}^{N} Z_i$$

(see (1.5)), and there is no solution for N>Z. Ph. Benilan and H. Brezis [1], [4], [5] extended this in many ways, replacing the kinetic energy density $\rho\left(x\right)^{5/3}$ by $J\left(\rho\left(x\right)\right)$ for a large class of convex functions J, replacing V defined by (1.5) by a very general class of potentials V, and in other ways as well. G. Goldstein (formerly G. Rieder) and J. Goldstein [16], [11] extended the $N_{\text{max}}=Z$ result of Lieb-Simon to $N_{\text{max}}=Z+1$ when $c=1-\frac{1}{N}$.

Goldstein and Goldstein [10] extended the theory to spin polarized systems. Then Benilan, Goldstein and Goldstein [2], [3] studied the case of spin polarized Thomas-Fermi theory with the Fermi-Amaldi correction. Consider the energy functional

$$\mathcal{E}(\rho_{1}, \rho_{2}) = \sum_{j=1}^{2} c_{j} \int_{\mathbb{R}^{3}} \rho_{j}(x)^{p} + \int_{\mathbb{R}^{3}} V(x) (\rho_{1}(x) + \rho_{2}(x)) dx$$

$$+ \frac{1}{2} \sum_{j=1}^{2} \left(1 - \frac{1}{N_{j}}\right) \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho_{j}(x) \rho_{j}(y)}{|x - y|} dx dy + \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho_{1}(x) \rho_{2}(y)}{|x - y|} dx dy$$
(1.7)

with domain

$$\mathcal{D}\left(\mathcal{E}\right) = \left\{ \left(\rho_{1}, \rho_{2}\right) : \rho_{i} \geq 0, \int_{\mathbb{R}^{3}} \rho_{i}\left(x\right) dx = N_{i}, \text{ each integral in (1.7) is finite} \right\},$$

where $N_i > 1$ is given, i = 1, 2. Here ρ_1 [resp. ρ_2] is the position density of the spin up [resp. spin down] electrons. Let V be given by (1.5). Then (see [2], [12], [8]) the problem

{minimize
$$\mathcal{E}(\rho_1, \rho_2)$$
 subject to $(\rho_1, \rho_2) \in \mathcal{D}(\mathcal{E})$ }

has a solution for p > 3/2 and $N_1 + N_2 \le Z + 1$. But uniqueness was not established.

In the previous problem discussed, the energy functional was strictly convex, but for the spin polarized case with the Fermi-Amaldi correction, the energy functional \mathcal{E} given by (1.7) (and \mathcal{E}_2 also) is not convex. In the previous work, uniqueness followed from strict convexity.

Let $\widetilde{\mathcal{E}}$ be the largest convex minorant of \mathcal{E} , where \mathcal{E} is defined by (1.7). Then it is easy to see that $\widetilde{\mathcal{E}}$ exists, $\min \mathcal{E} = \min \widetilde{\mathcal{E}}$, and $\widetilde{\mathcal{E}}$ is convex. If one can show that $\widetilde{\mathcal{E}}$ is strictly convex, then it follows that \mathcal{E} has a unique minimum (since each minimum for \mathcal{E} is also minimum of $\widetilde{\mathcal{E}}$).

2 The 2-D Problem in the Calculus of Variations

Let $J: \mathcal{D}(J) \subset X \to \mathbb{R}$ be a real functional defined on a convex subset of a Banach space X. Let J_* be the *largest convex minorant* of J, i.e., $J_* = \mathcal{D}(J) \to \mathbb{R}$, J_* is convex on $\mathcal{D}(J_*) = \mathcal{D}(J)$, $J_*(u) \leq J(u)$ for all $u \in D(J)$; and if $K = \mathcal{D}(J) \to \mathbb{R}$ satisfies all these conditions, then $K(u) \leq J_*(u)$ for all $u \in \mathcal{D}(J)$.

We wish to find the largest convex minorant of the spin polarized Thomas-Fermi energy functional \mathcal{E} given by (1.7).

Write

$$\mathcal{E} = \mathcal{E}_1 + \mathcal{E}_2$$

where

$$\boldsymbol{\mathcal{E}}_{2} = \boldsymbol{\mathcal{E}}_{ee} = \sum_{i=1}^{2} \left(1 - \frac{1}{N_{i}} \right) \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho_{i}\left(x\right)\rho_{i}\left(y\right)}{\left|x - y\right|} dx dy + \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho_{1}\left(x\right)\rho_{2}\left(y\right)}{\left|x - y\right|} dx dy \quad (2.1)$$

and $\mathcal{E}_1 = \mathcal{E} - \mathcal{E}_2$. Then \mathcal{E}_1 is strictly convex but \mathcal{E} is not convex; in fact, \mathcal{E} (and \mathcal{E}_2 also) is strictly concave on some subset of its domain when $N_1 \neq N_2$ which we assume (see [3]). Finding the greatest convex minorant of \mathcal{E} seems to be an extremely difficult problem, so we replaced it by an easier problem: Find the largest convex minorant of \mathcal{E}_2^* of \mathcal{E}_2 .

Solving this problem yields a convex minorant $\mathcal{E}_1 + \mathcal{E}_2^*$ for \mathcal{E} . But this may not be the greatest convex minorant of \mathcal{E} . Here is a simple one dimensional example to illustrate this. Let

$$J_1(x) = |x| - 1, \ x \in \mathbb{R},$$

$$J_2(x) = \begin{cases} 1 - |x| & \text{for } |x| \le 1 \\ 0 & \text{for } |x| \ge 1 \end{cases}.$$

Thus J_1 is convex on \mathbb{R} but J_2 is not. A straightforward calculation shows that the greatest convex minorant of J_2 is $J_2^* \equiv 0$. But $J_1 + J_2$ is convex, whence the convex minorant $J_1 + J_2^* = J_1$ is not the greatest convex minorant of $J_1 + J_2$.

A standard way to find the greatest convex minorant of a functional B is to find its second Legendre dual B^{**} . For functions of two variables, this requires B being defined on all of \mathbb{R}^2 , rather than just the first quadrant. The Legendre dual B^* of B is defined to be

$$B^{*}\left(y\right) = \sup_{x \in \mathbb{R}^{2}} \left\{ \left\langle x, y \right\rangle - B\left(x\right) \right\} \in [-\infty, \infty],$$

where $\langle ., . \rangle$ is the given inner product on \mathbb{R}^2 .

We consider

$$B(x) = ax_1^2 + 2x_1x_2 + bx_2^2, (2.2)$$

$$A(x) = ax_1^2 + 2|x_1x_2| + bx_2^2 (2.3)$$

for $x = (x_1, x_2) \in \mathbb{R}^2$, 0 < a, b < 1. We have in mind $a = 1 - \frac{1}{N_1}$, $b = 1 - \frac{1}{N_2}$ from the Thomas-Fermi analogue.

Lemma 2.1. Define B, A by (2.2), (2.3) where 0 < a, b < 1.

- (i) B is not convex on \mathbb{R}^2 .
- (ii) A is not convex on \mathbb{R}^2 .
- (iii) $B^*(y) = \infty$ for all $y \in \mathbb{R}^2$.

Proof. Recall that $f: \mathbb{R}^2 \to \mathbb{R}$ is convex then for any two points P and Q in the plane, $f(M) \leq (f(P) + f(Q))/2$, where M = (P + Q)/2 is the midpoint of the segment joining P and Q.

(i) Let P = (1,0) and Q = (0,1). Then $B(P) = a_1$ and $B(Q) = a_2$. Because $a_1 + a_2 < 2$, we have

$$B(M) = B\left(\frac{1}{2}, \frac{1}{2}\right) = \frac{a_1 + a_2}{4} + \frac{1}{2} > \frac{a_1 + a_2}{2} = \frac{B(P) + B(Q)}{2}.$$

It follows that B is not convex.

- (ii) Because A(x) and B(x) agree on the first quadrant, the example given in (i) shows that A is not convex.
 - (iii) Let x = (t, -t). Then $2 a_1 a_2 > 0$ implies that

$$\{\langle x, y \rangle - B(x)\} = t(y_1 - y_2) + (2 - a_1 - a_2)t^2 \to \infty \text{ as } t \to \infty.$$

Hence

$$B^{*}(y) := \sup_{x \in \mathbb{R}^{2}} \left\{ \langle x, y \rangle - B(x) \right\} = \infty.$$

If we replace B(x) by

$$B_1(x) = \max\{B(x), T\}$$

for some fixed $T \in \mathbb{R}$, then conclusions (i), (iii) hold for B_1 as well.

Lemma 2.2. Let be A be given by (2.3). Then

$$A^*(y) = \sup_{x \in \mathbb{R}^2} \{ \langle x, y \rangle - A(x) \} \in [0, \infty)$$

for each $y \in \mathbb{R}^2$.

Proof. First

$$A^*(y) \ge \{ < 0, y > -A(0) \} = 0 \text{ for } y \in \mathbb{R}^2$$

Next, let

$$G_y(x) := \langle x, y \rangle - A(x),$$

= $\langle x, y \rangle - a_1 x_1^2 - a_2 x_2^2 - 2 |x_1 x_2|,$

$$G_y(x) \le H_y(x) := \langle x, y \rangle - a_1 x_1^2 - a_2 x_2^2.$$
 (2.4)

The critical point x for $H_{\nu}(x)$ is determined by

$$\frac{\partial H_y(x)}{\partial x_1} = 0 = y_1 - 2a_1x_1$$
, which implies that $x_1 = \frac{y_1}{2a_1}$,

$$\frac{\partial H_y(x)}{\partial x_2} = 0 = y_2 - 2a_2x_2$$
, which implies that $x_2 = \frac{y_2}{2a_2}$.

This critical point is where $H_y(x)$ has its maximum. Plugging this critical point in (2.4), we get

$$\sup_{z} G_{y}(z) \le \sup_{z} H_{y}(z) = H_{y}(x)$$

$$= \left\langle \left(\frac{y_{1}}{2a_{1}}, \frac{y_{2}}{2a_{2}}\right), (y_{1}, y_{2}) > -a_{1} \left(\frac{y_{1}}{2a_{1}}\right)^{2} - a_{2} \left(\frac{y_{2}}{2a_{2}}\right)^{2} < \infty.$$

Theorem 2.3. Let $A : \mathbb{R}^2 \to \mathbb{R}$ be given by

$$A(x) = a_1 x_1^2 + a_2 x_2^2 + 2 |x_1 x_2|,$$

where $0 < a_1, a_2 < 1$. Then A^{**} is convex and is given by

$$A^{**}(x) = a_1 x_1^2 + a_2 x_2^2 + \sqrt{4a_1 a_2} |x_1 x_2|.$$

Moreover, $A^{**}(x)$ is the largest convex minorant of A.

Proof. Let A* $(y) := \sup_{x \in \mathbb{R}^2} \{ \langle x, y \rangle - A(x) \}$. To prove Theorem 1, we need two lemmas.

Lemma 2.4.
$$A^*(y) \ge \max \left\{ \frac{y_1^2}{4a_1}, \frac{y_2^2}{4a_2} \right\}$$
 for all $y \in \mathbb{R}^2$.

Proof. First,

$$A^{*}(y) \geq \sup_{x_{1} \in \mathbb{R}} (\langle x, y \rangle - A(x)) \text{ for } x = (x_{1}, 0)$$
$$= \sup_{x_{1} \in \mathbb{R}} (x_{1}y_{1} - a_{1}x_{1}^{2}) =: Q.$$

The critical point of $x_1 \to x_1 y_1 - a_1 x_1^2$ is $x_1 = \frac{y_1}{2a_1}$. At this critical point, the global maximum is attained. So

$$Q = \left(\frac{y_1}{2a_1}\right)y_1 - a_1\left(\frac{y_1}{2a_1}\right)^2 = \frac{y_1^2}{4a_1}.$$

Similarly,

$$A^*(y) \ge \sup_{x_1 \in \mathbb{R}} (\langle x, y \rangle - A(x)) \text{ for } x = (0, x_2)$$

$$= \frac{y_2^2}{4a_2}$$

by the same calculation. So

$$A^*(y) \ge \max\left\{\frac{y_1^2}{4a_1}, \frac{y_2^2}{4a_2}\right\}.$$

Lemma 2.5. If $A_1 \geq A_2$ on \mathbb{R}^2 , then $A_1^* \leq A_2^*$ on \mathbb{R}^2 .

Proof. Obvious.

Let

$$A_1(y) = A^*(y), \ A_2(y) = \max\{\frac{y_1^2}{4a_1}, \frac{y_2^2}{4a_2}\}.$$

By the previous Lemma, for all $z \in \mathbb{R}^2$,

$$A^{**}(z) = A_1^*(z) \le A_2^*(z). \tag{2.5}$$

Now we compute $A_2^*(z)$. For $z \in \mathbb{R}^2$,

$$A_{2}^{*}(z) = \max_{i=1,2,3} \sup_{y \in R_{i}} \left(\left\langle z, y \right\rangle - A_{2}\left(y\right) \right),$$

where

$$R_{1} = \left\{ y \in \mathbb{R}^{2} : \frac{y_{1}^{2}}{4a_{1}} < \frac{y_{2}^{2}}{4a_{2}} \right\},$$

$$R_{2} = \left\{ y \in \mathbb{R}^{2} : \frac{y_{1}^{2}}{4a_{1}} > \frac{y_{2}^{2}}{4a_{2}} \right\},$$

$$R_{3} = \left\{ y \in \mathbb{R}^{2} : \frac{y_{1}^{2}}{4a_{1}} = \frac{y_{2}^{2}}{4a_{2}} \right\}.$$

Clearly R_1 , R_2 , R_3 are pairwise disjoint and $R_1 \cup R_2 \cup R_3 = \mathbb{R}^2$. Let us define

$$K(y) := \langle z, y \rangle - A_2(y)$$

where $y \in R_1$ with y_1 fixed, and z is fixed with $z_2 \neq 0$. Then

$$K(y) = \langle z, y \rangle - A_2(y) = z_1 y_1 + z_2 y_2 - \frac{y_2^2}{4a_2}.$$

Next we calculate $\sup_{y \in R_1} K(y)$. Now K(y) is maximized as a function of y_2 for fixed y_1 when $z_2 - \frac{y_2}{2a_2} = 0$ or $y_2 = 2a_2z_2$. So, after substituting $y_2 = 2a_2z_2$ in R_1 , we get

$$\frac{y_1^2}{4a_1} < \frac{y_2^2}{4a_2} = a_2 z_2^2.$$

Now we see the fixed value of y_1 gives $y_1^2 < 4a_1a_2z_2^2$. Then

$$K(y) = \langle z, y \rangle - A_2(y) = z_1 y_1 + z_2 (2a_2 z_2) - \frac{(2a_2 z_2)^2}{4a_2}$$
$$= z_1 y_1 + a_2 z_2^2.$$

After maximizing over y_1 , we get $\sqrt{4a_1a_2}|z_1z_2|+a_2z_2^2$ as the maximum of K(y) over \overline{R}_1 . Now we can interchange R_1 and R_2 , and using continuity we get

$$\begin{array}{rcl} A_2^*(z) & \leq & \max\left\{a_1z_1^2, \ a_2z_2^2\right\} + \sqrt{4a_1a_2} \, |z_1z_2| \\ & \leq & a_1z_1^2 + a_2z_2^2 + \sqrt{4a_1a_2} \, |z_1z_2| =: G(z). \end{array}$$

Using (2.5) we see that

$$A^{**}(z) \le a_1 z_1^2 + a_2 z_2^2 + \sqrt{4a_1 a_2} |z_1 z_2| = G(z).$$

Here G(z) is convex on \mathbb{R}^2 , and $G \leq A$. Since A^{**} is the largest convex minorant of A on R^2 , thus $A^{**} = G$.

So to get the largest convex minorant of A, we replace the coefficient 2 of $|x_1x_2|$ in A (see (2.3)) by $\sqrt{4a_1a_2}$ with $a_i = \left(1 - \frac{1}{N_i}\right)$ for i = 1, 2.

3 THE SPIN POLARIZED THOMAS-FERMI PROB-LEM

It follows from Theorem 2.3 and some additional analysis that the largest convex minorant of \mathcal{E}_2 defined by (2.1) is \mathcal{E}_2^* given by

$$\begin{split} \mathcal{E}_{2}^{*}\left(\rho_{1},\rho_{2}\right) &= \sum_{i=1}^{2}\left(1-\frac{1}{N_{i}}\right) \int\limits_{\mathbb{R}^{3}} \int\limits_{\mathbb{R}^{3}} \frac{\rho_{i}\left(x\right)\rho_{i}\left(y\right)}{\left|x-y\right|} dx dy \\ &+ 2\left\{\left(1-\frac{1}{N_{1}}\right)\left(1-\frac{1}{N_{2}}\right)\right\}^{1/2} \int\limits_{\mathbb{R}^{3}} \int\limits_{\mathbb{R}^{3}} \frac{\rho_{1}\left(x\right)\rho_{2}\left(y\right)}{\left|x-y\right|} dx dy \end{split}$$

for $(\rho_1, \rho_2) \in \mathcal{D}(\mathcal{E})$.

The Thomas-Fermi problem with $\mathcal{E}^* = \mathcal{E}_1 + \mathcal{E}_2^*$ can be solved by adopting the methods of [2] used to solve the Thomas-Fermi problem for $\mathcal{E} = \mathcal{E}_1 + \mathcal{E}_2$. More accurately, one adapts those methods, but additional nontrivial complications arise in the proof, especially in the topological degree theory portion of the argument. This was done in the thesis [15] and a paper in preparation [9]. Besides existence, we get uniqueness for the minimum of \mathcal{E}^* , since \mathcal{E}^* is strictly convex. But this does not imply uniqueness for the minimum of \mathcal{E} , because the convex minorant of \mathcal{E}^* of \mathcal{E} may not be the maximal. The problem of uniqueness for minimum of \mathcal{E} remains open.

More precisely, what is proved in [9], [15] is that the (Thomas-Fermi) minimization problem for \mathcal{E}^* has a unique solution for (N_1, N_2) , such that $N_1 > 1$, $N_2 > 1$, $N_1 + N_2 \le Z + 1 = \left(\sum_{i=1}^M Z_i\right) + 1$ and $|N_1 - N_2| \le \varepsilon$ for a suitable $\varepsilon > 0$. This last condition says that the number of spin up electrons cannot differ too much from the number of spin down electrons.

Acknowledgments

We thank Cecil Rousseau for simplifying our original proof of Lemma 2.1.

References

- [1] Ph. Bénilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation. J. Evol. Eqns. 3 (2003), pp 637-652.
- [2] Ph. Bénilan, J. A. Goldstein and G. R. Rieder¹, A nonlinear elliptic system arising in electron density theory. *Comm. PDE.* **17** (1992), pp 2079-2092.
- [3] Ph. Bénilan, J. A. Goldstein and G. R. Rieder, The Fermi-Amaldi correction in spin polarized Thomas-Fermi Theory, in *Differential Equations and Mathematical Physics* (ed. by C. Bennewitz), Academic Press. (1991), pp 25-37.
- [4] H. Brezis, Some variational problems of Thomas-Fermi type, in Variational Inequalities and Complementary Problems: Theory and Applications (ed. by R.W. Cottle, F. Giannessi, and J. L. Lions), Wiley (1980), pp 53-73.
- [5] H. Brezis, Nonlinear problems related to the Thomas-Fermi equation, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, (ed. by G. M. de la Penha and L.A. Medeiros), North Holland, Amsterdam, (1978), pp 81-89.
- [6] E. Fermi, Un metodo statistico per la determinazione di alcune prioretà dell'atome, *Rend. Acad. Naz. Lincei* 6 (1927), pp 602-607.

¹*G. R. Rieder is now G. R. Goldstein.

- [7] E. Fermi and E. Amaldi, Le orbit ∞s degli elementi, Mem. Accad. d'Italia 6 (1934), pp 119-149.
- [8] G. R. Goldstein, J. A. Goldstein and W. Jia, Thomas-Fermi theory with magnetic fields and the Fermi-Amaldi correction, Diff. & Int. Eqns. 8 (1995), pp 1305-1316.
- [9] G. R. Goldstein, J. A. Goldstein and N. Naheed, in preparation.
- [10] J. A. Goldstein and G. R. Rieder, Spin-polarized Thomas-Fermi Theory, J. Math. Phys. 29 (1988), pp 709-716.
- [11] J. A. Goldstein and G. R. Rieder, Recent rigorous results in Thomas-Fermi theory, in Lecture Notes in Math No. 1394 (ed. by T. L. Gill and W. W. Zachary), Springer (1989), pp 68-82.
- [12] C. LeBris, On the spin-polarized Thomas-Fermi model with the Fermi-Amaldi correction, Nonlinear Anal., TMA 25 (1995), pp 669-679.
- [13] E. Lieb and B. Simon, Thomas-Fermi Theory revisited, *Phys. Rev. Lett.* **31** (1975), pp 681-683.
- [14] E. H. Lieb and B. Simon, The Thomas-Fermi Theory of atoms, molecules and solids, *Adv. Math.* **23** (1977), pp 22-116.
- [15] N. Naheed, Mathematical Contributions to Spin-polarized Thomas-Fermi Theory, Ph. D. Thesis, Univ. of Memphis, 2009.
- [16] G. R. Rieder, Mathematical contributions to Thomas-Fermi theory, Houston J. Math. 16 (1990), pp 407-430.
- [17] L. H. Thomas, The calculation of atomic fields, *Proc. Camb. Phil. Soc.* **23** (1927), pp 542-548.