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Abstract

In this paper we present a new criterion on characterization of real inner product spaces
concerning the Euler–Lagrange type identity

‖r2x1− r1x2‖2 +‖r1x1 + r2x2‖2 = (r2
1 + r2

2)(‖x1‖2 +‖x2‖2) .
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1 Introduction

In 1932, the notion of (complete) normed linear space was introduced by S. Banach [6].
Then P. Jordan and J. von Neumann [12] showed that a normed linear space V is an inner
product space if and only if the parallelogram equality ‖x−y‖2 +‖x+y‖2 = 2‖x‖2 +2‖y‖2
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holds for all x and y. Later M.M. Day [9] showed that a normed linear space V is an inner
product space if we require only that the parallelogram equality holds for x and y on the
unit sphere. In other words, M. M. Day showed that the parallelogram equality may be
replaced by the condition R2 = 4 (‖x‖ = 1, ‖y‖ = 1), where R2 = ‖x− y‖2 + ‖x + y‖2.
Over the years, interesting characterizations of inner product spaces have been introduced
or developed by numerous mathematicians. Among many significant characterizations for
a normed space V,‖.‖) to be inner product we mentioned the following items for instance,
see [1, 2, 3, 4, 8, 10, 11, 13, 17, 19, 23] and references therein for more information.

(i) For all x,y ∈V , ‖x+y‖2 +‖x−y‖2 ∼ 2(‖x‖2 +‖y‖2), where ∼ is (consistently) one
of the relations ≤, = or ≥; [22].

(ii) Each Diminnie orthogonally additive functional is additive; [21].
(iii) x,y ∈V,‖x‖= ‖y‖= 1 and x ⊥ y imply ‖λx+ y‖= ‖x−λy‖; [24].
(iv) For fixed n ∈ N, n ≥ 2,
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for all x1, · · · ,xn ∈V ; [15, 20].
(v) For x,y in V and α,β in R different from 1 (α,β)-orthogonality is either homo-

geneous or both right and left additive, where , x is said to be (α,β)-orthogonal to y if
‖x− y‖2 +‖αx−βy‖2 = ‖x−βy‖2 +‖y−αx‖2; [5].

(vi) For each x,y ∈V with ‖x‖= ‖y‖= 1,

inf{‖tx+(1− t)y‖ : t ∈ [0,1]}= 2−1/2 ⇒ x ⊥ y,

where x ⊥ y means that x is Birkhoff–orthogonal to y, i.e. ‖x‖ ≤ ‖x+λy‖, λ ∈ R; [7].
In this paper we present a new criterion on characterization of inner product spaces

concerning the Euler–Lagrange type identity (see [14])

‖r2x1− r1x2‖2 +‖r1x1 + r2x2‖2 = (r2
1 + r2

2)(‖x1‖2 +‖x2‖2) .

Our result extends that of J.M. Rassias [18].

2 Main Results

We now state our main result.

Theorem 2.1. Let (X ,‖ · ‖) be a real normed space, n be a positive real number and
r = (r1,r2) be a pair of nonnegative real numbers. If

Rr,n = ‖r2x1− r1x2‖n +‖r1x1 + r2x2‖n ,

Ar,n = (r1‖x1‖+ r2‖x2‖)n +max{(r2‖x1‖− r1‖x2‖)n,(r1‖x1‖− r2‖x2‖)n} ,
and
Br,n = (r1‖x1‖+ r2‖x2‖)n +min{(r2‖x1‖− r1‖x2‖)n,(r1‖x1‖− r2‖x2‖)n} .
Then a necessary and sufficient condition for that the norm ‖ · ‖ over X is induced by an
inner product is that
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(I) Rr,n ≤ Ar,n for n ≥ 2
and
(II) Rr,n ≥ Br,n for 0 < n ≤ 2
for any x1,x2 ∈X .

Proof. The case r1 = r2 is known; cf. [18], so let us assume that r1 6= r2.
Necessity.
Assume that the norm ‖ · ‖ on X is induced by an inner product 〈·, ·〉. Hence ‖x‖2 =
〈x,x〉 (x ∈X ). We have

Rr,n = ‖r2x1− r1x2‖n +‖r1x1 + r2x2‖n

= (‖r2x1− r1x2‖2)
n
2 +(‖r1x1 + r2x2‖2)

n
2

= (a1−bcos p)n/2 +(a2 +bcos p)n/2

= Rr,n(p) ,

where a1 := r2
2‖x1‖2 + r2

1‖x2‖2, a2 := r2
1‖x1‖2 + r2

2‖x2‖2, b := 2r1r2‖x1‖‖x2‖ and p is de-
fined in such a way that 〈x1,x2〉 = ‖x1‖‖x2‖cos p. Note that ‖x1‖ ≤ ‖x2‖ if and only if
a1 ≤ a2. By the first differentiation we find

R′r,n(p) =
n
2
[(a1−bcos p)

n
2−1

−(a2 +bcos p)
n
2−1]bsin p .

Therefore the critical values of Rr,n, being the roots of R′r,n(p)= 0, are p = kπ (k = 0,±1,±2, · · ·).
By the second differentiation we get

R′′r,n(p) = n
2 [(a1−bcos p)

n
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n
2−1]bcos p+ n(n−2)
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n
2−2 +(a2 +
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n
2−2]b2 sin2 p .

If p = 2kπ, then
R′′r,n(2kπ) =
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If p = (2k +1)π, then

R′′r,n((2k +1)π) =
n
2

[
(a2−b)

n
2−1− (a1 +b)

n
2−1

]
b

=



< 0 a1 ≤ a2, n > 2, b > a2−a1
2

< 0 a1 ≤ a2, 0 < n < 2, 0 < b < a2−a1
2

< 0 a1 ≥ a2, n > 2, 0 < b
> 0 a1 ≤ a2, 0 < n < 2, b > a2−a1

2
> 0 a1 ≤ a2, n > 2, 0 < b < a2−a1

2
< 0 a1 ≥ a2, 0 < n < 2, 0 < b



A Characterization of Inner Product Spaces Concerning an Euler–Lagrange Identity 19

For n > 2, by utilizing the second differentiation test, we infer that

Ar,n(2kπ)
= (r1‖x1‖+ r2‖x2‖)n +

max{(r2‖x1‖− r1‖x2‖)n,(r1‖x1‖− r2‖x2‖)n}

= (a2 +b)
n
2 +max{

{
(a1−b)

n
2 ,(a2−b)

n
2

}
= max{Rr,n(2kπ),Rr,n((2k +1)π)}
= maxRr,n(p)

which yields (I). For 0 < n < 2, by applying the second differentiation test, we deduce that

Br,n(2kπ)
= (r1‖x1‖+ r2‖x2‖)n +

min{(r2‖x1‖− r1‖x2‖)n,(r1‖x1‖− r2‖x2‖)n}

= (a2 +b)
n
2 +min{

{
(a1−b)

n
2 ,(a2−b)

n
2

}
= min{Rr,n(2kπ),Rr,n((2k +1)π)}
= minRr,n(p)

which yields (II).
Sufficiency.

Assume that condition (I) to be held. The continuity of the function n 7→ ‖ · ‖n implies that

Rr,2 ≤ Ar,2 = 2(r2
1 +2r2

2)

for ‖x1‖= ‖x2‖= 1. From the pertinent sufficient condition of M.M. Day, it can be proved
the following criterion:
“The necessary and sufficient condition for a norm defined over a vector space X to spring
from an inner product is that Rr,2 ≤ 2(r2

1 +2r2
2) where r1,r2 are positive numbers and ‖x1‖=

‖x2‖= 1”. Due to the fact that this condition holds, we conclude that the norm ‖ · ‖ on X
can be deduced from an inner product. Similarly, if condition (II) holds, then we get

Rr,2 ≥ Ar,2 = 2(r2
1 +2r2

2)

for ‖x1‖= ‖x2‖= 1. Applying the same statement as the above criterion except that Rr,2 ≥
2(r2

1 +2r2
2), we conclude that the norm ‖ · ‖ can be deduced from an inner product.

Corollary 2.2. A normed space (X ,‖ · ‖) is an inner product space if and only if

‖r2x1− r1x2‖2 +‖r1x1 + r2x2‖2 = (r2
1 + r2

2)(‖x1‖2 +‖x2‖2)

for any non-negative real numbers r1,r2 and any x1,x2 ∈X .

We can have an operator version of Corollary above. In fact a straightforward compu-
tation shows that

Corollary 2.3. Let T1,T2 be bounded linear operators acting on a Hilbert space and r1,r2
be real numbers. Then

|r2T1− r1T2|2 + |r1T1 + r2T2|2 = (r2
1 + r2

2)(|T1|2 + |T2|2) ,

where |T |= (T ∗T )1/2 denotes the absolute value of T .
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