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QUANTIZATION WITH ADAPTATION - ESTIMATION OF

GAUSSIAN LINEAR MODELS∗

LÁSZLÓ GERENCSÉR† , ILDIKÓ KMECS‡ , AND BALÁZS TORMA§

Abstract. Quantization is a basic operation in communication, having a considerable impact

also on control, in particular on control over communication networks, see [2] for an early reference.

In this paper we consider a classic, seemingly innocent problem of reconstructing a single signal value

θ∗ when measured with additive Gaussian noise, followed by uniform quantization of sensitivity h,

with or without saturation. A peculiar feature of the above estimation problem is that its Fisher

information varies considerably with the noise variance and the location of the true parameter. It

is therefore a meaningful objective to adjust (shift) the quantization levels so as to maximize the

Fisher information or to inject additional measurement noise for the same purpose. We shall focus on

the first problem. Empirical evidence shows that, for given noise variance, the Fisher information is

maximal when the location parameter is of the form θ∗ = kh+h/2. Adjusting the quantization levels

is equivalent, from the statistical point of view, to adjusting, say increasing the location parameter

by an amount of δ > 0 to achieve a known target, say η∗ = kh+h/2 for some integer k. The problem

that we address in this paper is if such an adjustment of the problem can be done adaptively, in the

context of a previously developed recursive, real-time estimation method for estimating θ∗, that was

called a randomized EM -method for estimating θ∗. We give a positive answer to this question. The

proposed method results in considerable improvement in efficiency, supported both by the algebra

of the asymptotic theory of stochastic approximation, and by extensive experimental evidence. The

basic ideas developed and presented for this benchmark problem can be easily generalized for the

multi-variable case.

Keywords: quantization; Gaussian linear regression; EM -method; Metropolis-Hastings

method; stochastic approximation.

1. Introduction. Quantization is a basic operation in communications, arising

among others in analog-to-digital conversion or in data-compression, having a consid-

erable impact also on control, in particular on control over communication networks.

The latter application area is particularly fit for the present issue honoring Roger

Brockett, due to his fundamental contribution to the area in his 1998 paper, (co-

authored by D. Liberzon), [2]. See also [14] for a recent survey on quantization in

communication and control.

A scalar quantizer is defined as a mapping q from IR to a discrete, finite or

countable set Y ⊂ IR, representing the so-called quantization levels, assigning to each
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x ∈ IR its quantized version

(1) y = q(x).

The simplest scalar quantizer is the uniform quantizer, where the set of quantization

levels is given by the integer multiples of a fixed, positive number, say h, called the

sensitivity of the quantizer, and if x is a real number then we set

(2) q(x) = kh for Ik = {kh − h/2 < x ≤ kh + h/2}.

A more realistic model for quantization is a quantizer with saturation, see [2], defined

as above in the range

−(M + 1/2)h < x ≤ (M + 1/2)h,

with M being a positive integer, and setting q(x) = ±Mh outside the above interval.

Thus there are altogether 2M + 3 quantization domains, and we will denote them

again by Ik, with k ∈ K, where K is the set of possible indices. In this paper we

consider a classic, seemingly innocent problem of reconstructing a single signal value

θ∗ when measured with additive Gaussian noise, followed by quantization. I.e. the

observed values are of the form

(3) yn = q(θ∗ + en),

where en is an i.i.d. Gaussian sequence with mean 0 and known variance σ2 = (σ∗)2,

see e.g. [10]. The assumed knowledge of σ2 may be unrealistic in many applications,

but it greatly simplifies the presentation. We shall discuss the possibility of handling

unknown σ-s at the end of the paper. One of the motivations for revisiting this prob-

lem is the current interest in mobile communications to reduce the required resources

such as power or channel capacity while retaining the quality of service.

A peculiar feature of the above estimation problem is that its 2 × 2 Fisher infor-

mation matrix varies considerably with the noise variance and the location of the true

parameter. We have empirical evidence of the fact that the off-diagonal elements of

the Fisher information matrix, say R∗ are zero. Thus the asymptotic covariance of

the ML estimator of θ∗ will be equal to the inverse of the (1, 1) element of the Fisher

information matrix, denoted by r∗ = r∗11. For brevity sake we call this the Fisher

information for θ∗. It is an empirical fact, that r∗ is small for small σ∗, since then

quantization has a scrambling effect. These features are exhibited on the figures be-

low. In all experiments we assume h = 1, and M = 10. On Figure 1 on the left we plot

the Fisher information against the variance when θ∗ = 0 and θ∗ = 0.5, respectively.

On the right we plot the Fisher information against the location parameter, varying

between 0 and 1, when the variances are (σ∗)2 = 0.08 and (σ∗)2 = 0.1, respectively.

It is therefore a meaningful objective to adjust (shift) the quantization levels so

as to maximize the Fisher information or to inject additional measurement noise for
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Fig. 1. The Fisher information with respect to θ.

the same purpose. We shall focus on the first problem. It is seen from the figures

that the Fisher information is maximal when the location parameter is of the form

θ∗ = kh + h/2. The Fisher information has a large variation in θ∗ if the variance is

small (see Fig. 1 on the left). For example, for (σ∗)2 = 0.01 it varies between 0.0015

and 63.662, for (σ∗)2 = 0.3 it spans the interval between 2.6051 and 2.6154. Adjusting

the quantization levels is equivalent, from the statistical point of view, to adjusting,

say increasing the location parameter by an amount of δ > 0. If θ∗ stands for, say,

a very small weight of a physical object, then an increase can indeed be realized by

adding a known weight to achieve a known target, say η∗ = h/2. The problem that we

address in this paper is if such a shifting can be done adaptively, using observations

of the form, with known δ:

(4) yn = q(θ∗ + δ + en).

An efficient randomized EM -method to solve the off-line maximum-likelihood es-

timation problem, based on say N observations, has been developed in [4]. In the

course of this procedure we generate a sequence of estimators θt that converge to the

off-line maximum likelihood estimator θ̂N almost surely, under appropriate technical

conditions. A real-time version of this method, exhibiting excellent convergence prop-

erties, has been developed in [5]. In the real-time scheme we generate a sequence of

estimators θ̂t such that θ̂t converges to θ∗ almost surely, under appropriate technical

conditions. The asymptotic covariance of θ̂t can be expressed as the solution of a

Lyapunov-equation, using the algebra of Theorem 13, Chapter 4.5.3, Part II of [1].

It is well-known from the theory of stochastic approximation, that, in the case of a

weighted stochastic gradient method based on the maximum-likelihood estimation,

the best available asymptotic covariance is the inverse of the Fisher information. This

is achieved by a stochastic Newton-method.
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Taking into account the volatility of the Fisher information as a function of θ∗, it

makes sense to try to improve the efficiency of our real-time randomized EM -method

by adjusting the problem so that θ∗ is in fact equal to a quantization level. We will

show that such an adaptive adjustment is indeed possible, resulting in considerable

improvement in efficiency. The latter will demonstrated by the results of extensive ex-

perimental studies. The basic ideas developed and presented for the above benchmark

problem can be generalized for the multi-variable case.

The theoretical analysis of the method can be carried out with the theory of

recursive estimation under Markovian dynamics developed in [1, 11]. Although this

theory is not complete, inasmuch a basic problem, the possibility of the estimator

leaving any fixed compact domain is treated in a practically unsatisfactory manner,

this deficiency can be rectified, see [8].

The presentation and verification of all conditions required by the BMP theory

would exceed the allotted space. Henceforth we will restrict ourselves to the verifi-

cation of a key condition of the BMP theory, namely the stability of the associated

ODE, see Chapter 1.5, Part II of [1], and the computation of the asymptotic covari-

ance matrices of the relevant estimators, using the algebra of Theorem 13, Chapter

4.5.3, Part II of [1].

2. The EM-method for estimating θ∗. Consider first the case of off-line

estimation, i.e. when the number of samples N is fixed. For each y in the observation

set define the quantization domain I(y) = {x : q(x) = y}. Write as usual

φ(x; θ, σ2) =
1√
2πσ

e
−

(x − θ)2

2σ2 .

Then for any θ the θ-probability of observing y is, with σ2 = (σ∗)2,

(5) P (I(y); θ) =

∫

I(y)

1√
2πσ

e
−

(x − θ)2

2σ2 dx =

∫

I(y)

φ(x; θ, σ2)dx.

For any θ the logarithm of the θ-probability of observing yN = (y1, ..., yN ) is

(6) LN (yN ; θ) =

N
∑

n=1

log P (I(yn); θ) =

N
∑

n=1

L(yn; θ).

In Figure 2 we plot the expected likelihood function against the running parameter

θ, with σ kept fixed at σ∗ (left), and against the running parameter σ with θ kept

fixed at θ∗ (right). Two problems are considered: a well-conditioned problem (solid

line) with parameters

θ∗ = 0.5, σ∗2

= 0.08,
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and an ill-conditioned problem (dashed line) with parameters

θ∗ = 0, σ∗2

= 0.1.

According to these figures the expected likelihood function is likely to be concave with

unique maximum. It is also seen from the figure on the right, that the expected log-

likelihood function is quite flat in σ in the case of the problem that is well-conditioned

for estimating the location parameter θ∗.
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Fig. 2. The expected log-likelihood function.

The ML estimator θ̂N is obtained by maximizing LN(yN ; θ), or solving the like-

lihood equation

(7)
d

dθ
LN(yN ; θ) = 0.

Introducing the conditional density of x given y

(8) φ(x | y; θ, σ2) =
φ(x; θ, σ2)

P (I(y); θ)
χI(y)(x),

where χE(x) denotes the indicator of the set E, the likelihood equation is equivalent

to the following:

The quantized normal equation:

(9)

(

N
∑

n=1

∫

φ(x | yn; θ, σ2)dx

)

θ =

N
∑

n=1

∫

xφ(x | yn; θ, σ2)dx.

Notice that this equation is non-linear in θ. To solve the likelihood equation would

require the computation of an integral in each step of the iteration, which is not

feasible if θ∗ is vector-valued.

The EM -method: This difficulty has been circumvented in [4] by using a Markov

Chain Monte Carlo (MCMC) method for computing the integrals. Since the likeli-

hood of the observations xn = θ∗ + en is easily obtained, and yn = q(xn), a natural
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approach to solve the likelihood equation is to use the EM -method. Following the

basic steps of the EM -method we replace the log-likelihood function by an auxiliary

function (see e.g. [3])

(10) Q(y; θ, θ̄) = Eθ̄[log p(X, θ, σ2) | y] = E [log p(X, θ, σ2) | y; θ̄],

where θ̄ is a current best estimate, and the random variable X = θ̄+e is the unknown

assumed state. For N independent observations we set

(11) QN(yN ; θ, θ̄) =
N
∑

n=1

Q(yn; θ, θ̄) = E [log p(XN , θ) | yN ; θ̄],

where Xn = θ̄ + en is the unknown assumed state at time n. The so-called M -step,

maximizing QN in θ, gives an updated estimate that will replace θ̄.

To simplify the notations consider now the case of uniform quantization without

saturation. Let Ik be the k-th interval: Ik = {x : q(x) = kh}, and let

(12) Nk = #{n : 1 ≤ n ≤ N, yn ∈ Ik}

be the number of times that kh is observed in the sequence yN . Then the M -step is

equivalent to solving the linear equation

(13)
d

dθ
QN (yN ; θ, θ̄) =

∑

k

Nk

∫

Ik

(x − θ)

σ2
φ(x | kh; θ̄, σ2)dx = 0.

Note that all information on the data is now contained in the counting numbers Nk.

Thus we arrive at the following updating formula:

The M -step:

(14) θ =
∑

k∈K

Nk

N

∫

Ik

xφ(x | kh; θ, σ2)dx.

In the course of the EM -method we set θ̄ = θt, and we get θ = θt+1.

Basic inequalities. The basic inequality connecting the likelihood function and

the Q-function is the following: for any y and for given fixed θ̄ we have for any θ

(15) L(y, θ) ≥ Q(y; θ, θ̄) + D(θ̄||θ) + H(θ̄),

where D(θ̄||θ) ≥ 0 for all θ. (In fact D(θ̄||θ) is a divergence between two conditional

probability densities, and H(θ̄) is an entropy, which depends only on θ̄.) It follows

that the function L(y, θ)−Q(y; θ, θ̄) is minimized at θ = θ̄, thus, if θ̄ is interior relative

to the the parameter domain then, we have for any N and yN

(16) Q′
N(yN ; θ, θ) =

∂

∂θ
QN (yN ; θ, θ̄)|θ̄=θ =

d

dθ
L(y; θ).
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It follows that the solution of the likelihood equation d
dθ

LN(yN ; θ) = 0 is obtained by

solving the equation

(17) Q′
N(yN ; θ, θ) = 0.

Let us now consider the asymptotic log-likelihood function

(18) L̄(θ) = Eθ∗ log P (I(Y ); θ).

Here Y = q(θ∗ + e). It is well-known and directly seen that

(19)
d

dθ
L̄(θ)|θ=θ∗ = 0.

Similarly, define the asymptotic Q-function, with X = θ∗ + e and Y = q(X), as

Q̄(θ, θ̄) = E [ E [log P (X, θ)|Y, θ̄] ],

where the outer expectation is Eθ∗. To relate the asymptotic Q function to the

asymptotic likelihood function the simplest, although formal, procedure is to divide

both sides of (16) by N , and take limit to get

(20) Q̄′(θ, θ) =
∂

∂θ
Q̄(θ, θ̄)|θ̄=θ =

d

dθ
L̄(θ).

Thus the asymptotic problem of determining θ∗ can be formulated, as solving the

equation

(21) Q̄′(θ, θ) = 0.

This equation could be derived directly, but the context of the EM-method gives a

convenient computational framework that will be exploited subsequently.

The Fisher information. The Fisher information for the problem of estimating θ∗

with known σ = σ∗ will be denoted by

(22) r∗ = − d2

dθ2
L̄(θ)|θ=θ∗ .

It is well-known that it can be expressed via the score function

(23)
d

dθ
L(y; θ) =

d

dθ
log P (I(y); θ) =

∫

I(y)

(x − θ)

σ2
φ(x | y; θ̄, σ2)dx

as

(24) r∗ = E

(

d

dθ
L(Y ; θ)

)(

d

dθ
L(Y ; θ)

)

|θ=θ∗ .

Equivalently, we can write, taking into account (16) with N = 1,

(25) r∗ = E [Q′(Y ; θ∗, θ∗) Q′(Y ; θ∗, θ∗)],
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or as

(26) r∗ =
∑

k∈K

P (Ik; θ∗)

(
∫

Ik

(x − θ∗)

σ2
φ(x | kh; θ∗, σ2)dx

)2

.

Note that in the limiting case, when h tends to 0, we get r∗ = σ−2 = (σ∗)−2, as

expected. It is easy to see that in any case the loss in information due to quantization

decreases the Fisher information, i.e

(27) r∗ ≤ σ−2.

3. A randomized EM-method. The integrals on the right hand side of (14)

are expectations with respect to a conditional Gaussian density, and it is therefore

natural to approximate them using a Markov Chain Monte Carlo (MCMC) algorithm,

see [9, 12]. A combination of the latter with the EM -algorithm leads to a stochastic

approximation scheme called a randomized EM -method, first presented in [4, 5]).

A similar method has been developed independently for the problem of log-linear

regression in [13].

The MCMC method. Thus to compute
∫

Ik

xφ(x | kh; θ̄, σ2) dx we generate an

ergodic Markov chain ξ̄k
t (θ̄) on the state-space Ik, which is an interval of length

h (in case of no saturation), such that its invariant measure is φ(x | kh; θ̄, σ2) or

φ(x | Ik; θ̄, σ2). For this purpose we use the Metropolis-Hastings method, with un-

normalized target density

τ(x) = τ(x, θ̄) = e−(x−θ̄)2/(2σ2)χI(yk)(x).

Let the initial transition kernel for the Metropolis-Hastings method be q(x, y) = 1/h

for all x, y ∈ I(yk), i.e. let the initial chain be simply an i.i.d. sequence with uniform

distribution. Then we have a classic Metropolis algorithm defined by the acceptance

probabilities

(28) α(x, y; θ̄) = min

{

τ(y, θ̄)

τ(x, θ̄)
, 1

}

= min
{

e
−(y−x)(y+x−2θ̄)

2σ2 , 1
}

.

For the generation of ξ̄k
ℓ (θ̄) we will need an i.i.d sequence of random vectors

(Ul, Vl), l ≥ 1 with uniform distribution on [0, 1] × [0, 1], independent also of the

initial state ξ̄k
0 (θ̄) = ξ̄k

0 . The first component, Ul, is used to generate the next sate

of the initial chain, while the second component, Vl, is used to realize the acceptance

or rejection. We will thus use the following shorthand notation for the generation of

ξ̄k
ℓ (θ̄):

The frozen parameter Markov chain on Ik:

ξ̄k
ℓ+1(θ̄) = F (ξ̄k

ℓ (θ̄), Ul+1, Vl+1; θ̄).(29)
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Here F depends on θ̄ via the acceptance probability α(x, y; θ̄).

Let KN be the set indices of quantization domains that show up in the observation

sequence of length N . Let k ∈ KN and let the current state of the corresponding

Markov chain be ξ̄k
ℓ (θ̄). Then for large L a good approximation of (14) is given by

(30) θ =
∑

k∈KN

Nk

N

1

L

L
∑

ℓ=1

ξ̄k
ℓ (θ̄).

Allowing time-variation. When the above approximation is applied in an EM -

iteration it is reasonable to run the EM -algorithm and the MCMC method in paral-

lel. Let us now write θ̄ = θt, with θt still to be specified, and consider the time-varying

Markovian dynamics

ξk
t+1 = F (ξk

t , Ut+1, Vt+1; θt).(31)

Here θt is the current approximation of the the maximum-likelihood estimator θ̂N ,

which is in turn updated by an approximation of (30) as follows:

(32) θt+1 =
∑

k∈KN

Nk

N

1

t + 1

t+1
∑

m=1

ξk
m.

The above algorithm, defined by (31) and (32) is called a randomized EM-method. A

simple calculation shows that (32) can be written in the following recursive form:

A randomized EM-method:

(33) θt+1 = θt +
1

t + 1

∑

k∈KN

Nk

N
(ξk

t+1 − θt).

Let us stress again that the number of observations is fixed, and θt is expected to

converge to θ̂N , rather than to θ∗.

4. A real-time recursive randomized EM-method. Consider now the situ-

ation when N is not fixed, instead we have a flow of data, and for each new measure-

ment the estimator of θ∗ will be updated. Since, for increasing N , every integer k will

eventually occur in the observation sequence, we would need to generate an infinite

number of Markov-chains. This is not practical, and also inconvenient for theoretical

analysis. In particular the verification of the geometric ergodicity of the resulting

Markov chain, as required in Part II, [1], would be difficult. Hence we confine our-

selves to the case of quantization with saturation. The price of this is that the state

space is non-compact, and the generation of the MCMC method below and above

the saturation level requires extra care. We shall not discuss this issue in this paper,

since the verification of the conditions required for the underlying Markov chain, as

given in Part II, [1], is not the subject of this paper. The quantization intervals will
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be denoted by Ik as before with k ∈ K. If |K| is large then it is unreasonable to

update all the Markovian states at all time. Instead, at any time T , we update a

single Markov chain, say ξ̄k(θ̄), where k = kT is the index of the current observation.

The first step is to modify the approximation to the M -step (30) so as to take

into account the real time T . Let Nk,T denote the number of visits to the domain Ik

up to time T = N , i.e. set

(34) Nk,T = #{n : xn ∈ Ik, n ≤ T }.

A convenient and reasonable approximation of (30) is obtained if we set L = Nk,T for

the quantization domain Ik, namely then (30) reduces to:

The M -step for increasing sample size:

(35) θ =
1

T

∑

k∈K

Nk,T
∑

t=1

ξ̄k
t (θ̄).

Synchronization. To synchronize the internal times of the individual Markov chains

ξ̄k
t (θ̄) let us define, for each k, a new, piecewise constant extension of ξ̄k

t (θ̄) as follows:

first let Zk
t be the indicator of the event xt ∈ Ik, i.e.

Zk
t = χIk

(xt).

Define the new Markov chain ξ̄◦,k
t = ξ̄◦,k

t (θ̄) so that it stays constant at any time t,

unless xt ∈ Ik, and then follows the dynamics of ξ̄k
t (θ̄). Thus we get:

(36) ξ̄◦,k
t+1 = Zk

t F (ξ̄◦,k
t , Ut+1, Vt+1; θ̄) + (1 − Zk

t )ξ̄◦,k
t .

Let the initial condition be ξ̄◦,k
0 = ξ̄k

0 . Then (ξ̄◦,k
t , Zk

t ) is a Markov-process for each k,

and so is

(ξ̄◦t , Zt) = (ξ̄◦,k
t , Zk

t ), k ∈ K.

Also, the processes (ξ̄◦,k
t , Zk

t ) are independent as k varies. Thus we can write the

M -step (35) as

The M -step for the synchronized Markov-chain:

(37) θ =
∑

k∈K

1

T

T
∑

t=1

Zk
t ξ̄◦k

t (θ̄),

or, in an equivalent form, as

(38) 0 =
∑

k∈K

1

T

T
∑

t=1

Zk
t (ξ̄◦k

t (θ̄) − θ).
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The context of the BMP-scheme. To put the above formula into the context of

the BMP-scheme, see Chapter 1.1, Part II of [1], let us consider a function H(Z, ξ; θ)

defined over the state-space of the Markov-chain (ξ̄◦t , Zt) defined by

(39) H(Z, ξ◦; θ) =
∑

k∈K

Zk(ξ◦,k − θ)/σ2.

Setting Z = Zt and ξ◦ = ξ̄◦t (θ̄) we get a random field depending both on (θ, θ̄) and t:

(40) Gt(θ, θ̄) =
∑

k∈K

Zk
t (ξ̄◦,k

t (θ̄) − θ)/σ2.

It is easy to see that, assuming stationary initialization for ξ̄◦t (θ̄), we have

(41) Q′(θ, θ̄) =
∂

∂θ
Q(θ, θ̄) = EξGt(θ, θ̄).,

and thus for the asymptotic Q-function we have Q̄′(θ, θ̄) = EGt(θ, θ̄). Noting that

Q̄′(θ, θ) = d
dθ

L̄(θ), see (20), it follows that the asymptotic problem of determining θ∗

can be formulated as solving the equation

(42) EGt(θ, θ) = 0,

and thus the context needed for the BMP theory has been established.

To get a real-time randomized EM -method we proceed in the usual manner: let

θ̂t be the estimate of θ∗ at time t. Then generate the next state of a non-homogeneous

Markov chain (ξ◦,k
t+1) by

(43) ξ◦,k
t+1 = Zk

t F (ξk
t , Ut+1, Vt+1; θ̂t) + (1 − Zk

t )ξ◦,k
t .

To update θ̂t we use a stochastic gradient method to maximize L̄(θ). First we estimate

the gradient d
dθ

L̄(θ̂t) = Q̄′(θ̂t, θ̂t) by Gt+1(θ̂t, θ̂t), which in turn is estimated on-line,

see (40), by

H(Zt+1, ξ
◦
t+1, θ̂t) =

∑

k∈K

Zk
t+1(ξ

◦,k
t+1 − θ̂t)/σ2 = (ξk′

Nk′,t+1
− θ̂t)/σ2,

where k′ = k′
t+1 is the index observed at time t + 1. The definition of the non-

homogenous Markov chain ξk
t is self-explanatory. With this notation a real-time

randomized EM -method can be written as follows:

A real-time randomized EM -method:

(44) θ̂t+1 = θ̂t +
α

t + 1
(ξk′

Nk′,t+1
− θ̂t)/σ2,

where k′ = k′
t+1, and α > 0 is a step-size. In case of α = σ2, this is nothing else but

the recursion for the arithmetic mean, and thus the following result is obtained: a

real-time recursive randomized EM -procedure can be defined by

(45) θ̂T =
1

T

∑

k∈K

Nk,T
∑

t=1

ξk
t .
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This method has been first presented in [6], but without justification for its conver-

gence. The above derivation lends to a direct application of the BMP theory.

The associated ODE. The so-called associated ODE, see Chapter 1.5, Part II of [1],

is obtained by fixing θ and taking expected value of the frozen parameter correction

term in (44), assuming stationary initialization. Thus we get

h(θ) = E
∑

k∈K

Zk
t+1(ξ̄

◦,k
t+1(θ) − θ)/σ2 = EGt+1(θ, θ) =

d

dθ
L̄(θ),

and the associated ODE is

(46) θ̇t = α h(θt) = α
d

dθ
L̄(θt).

This is obviously asymptotically stable at θ = θ∗, thus a key technical condition of

BMP theory, see Condition A7 of Chapter 1.6, Part II of [1], is, at least partially,

satisfied.

The asymptotic variance. The asymptotic variance of the estimator θ̂t can be

obtained using the algebra of Theorem 13, Chapter 4.5.3, Part II of [1] summarized

subsequently under (62)-(65). This general result takes a particularly simple form if

we choose

α = (r∗)−1 = −
(

d2

dθ2
L̄(θ)|θ=θ∗

)−1

to be the inverse of the Fisher information for the problem of estimating θ∗. Thus we

get a stochastic Newton-method: the associated ODE is

(47) θ̇t = (r∗)−1 h(θt) = (r∗)−1 d

dθ
L̄(θt),

with the Jacobian of the right hand side at θ = θ∗ being −1, see also the paragraph

following (63) below.

For a standard recursive maximum-likelihood method in stochastic Newton form

we would get that the asymptotic covariance of the estimator is equal to the inverse

of the Fisher information. In our case an additional source of randomness is that the

score functions d
dθ

L(yt; θ̂t) are evaluated by an MCMC method. Thus the asymptotic

covariance of θ̂t is expected to be larger than the inverse of the Fisher information,

and, assuming the validity of Theorem 13, Chapter 4.5.3, Part II of [1], is given as

follows:

The asymptotic variance of θ̂t:

(48) Σ(θ∗) = S(θ∗) =
∑

τ

(r∗)−1E [H(Zt+τ , ξ̄◦t+τ (θ∗), θ∗) · H(Zt, ξ̄
◦
t (θ∗), θ∗)](r∗)−1.

The estimation of r∗. To estimate r∗ note that, by (25),

r∗ = E [Q′(Y ; θ∗, θ∗) Q′(Y ; θ∗, θ∗)],
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and here, using (41),

(49) Q̄′(θ∗, θ∗) = EξGt(θ
∗, θ∗).

Taking into account the definition of G, see (40), we get

(50) r∗ = r(θ∗) = E [
∑

k∈K

Zk
t (ξ̄◦,k

t (θ∗) − θ∗)/σ2 ·
∑

l∈K

Z l
t(η̄

◦,l
t (θ∗) − θ∗)/σ2 ],

where η̄◦,l(θ∗) is an independent copy of ξ̄◦,k(θ∗). Letting k′ be the observed index

at time t, i.e. assuming y ∈ Ik′ . Then all terms, except those with indices k = l = k′

are 0, while Zk′

t = 1, thus we get

r∗ = E [ (ξ̄◦,k′

t (θ∗) − θ∗) · (η̄◦,k′

t (θ∗) − θ∗) ]/σ4,

A stochastic Newton method. Thus r∗ can be estimated recursively, and thus we

get a fully adaptive stochastic Newton method:

θ̂t+1 = θ̂t +
r̂−1
t

t + 1
(ξk′

Nk′,t+1
− θ̂t)/σ2,(51)

r̂t+1 = r̂t +
1

t + 1
(ξk′

Nk′,t+1
− θ̂t)(η

k′

Nk′,t+1
− θ̂t)/σ4,(52)

with self-explanatory notations. Its associated ODE is

θ̇t = r−1
t h(θt),

ṙt = r(θt) − rt,

with r(θ) defined implicitly in (50). The Jacobian matrix of the right hand side at

the equilibrium point θ = θ∗, r = r∗ is of the form

A =

(

−1 0

s −1

)

which is obviously stable. Moreover it is partially stochastic Newton with respect to

θ: A is block-triangular in a trivial manner, and its (1, 1)-element is −1.

The asymptotic variance of θ̂t. The question arises whether the replacement

of r∗ by r̂t effects the asymptotic variance of θ̂t. To answer this we compute the

asymptotic covariance matrix of the combined estimator process (θ̂t, r̂t) denoted by,

say Σ = Σ(θ∗, r∗). Taking into account the algebra of Theorem 13, Chapter 4.5.3,

Part II of [1], summarized below under (62)-(65), we get that the 2 × 2 asymptotic

covariance matrix Σ = Σ(θ∗, r∗) would satisfy the Lyapunov-equation

ĀΣ + ΣĀT + S(θ∗, r∗) = 0

with Ā = A + I/2 and S(θ∗, r∗) being defined in analogy with S(θ∗), see (48). Thus,

in particular, S11(θ
∗, r∗) = S(θ∗). The solution Σ can be obtained via the integral
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representation, see (64), as

Σ =

∞
∫

0

eĀt S(θ∗, r∗) eĀT tdt.

Taking into the block lower triangular structure of A we get that eAt itself is block

lower triangular, and its first block row is of the form (e−tI/2, 0). Thus we get:

The asymptotic variance of θ̂t:

Σ11 = Σ11(θ
∗, r∗) = S11(θ

∗, r∗) = S(θ∗) = Σ(θ∗).

We conclude that due to the fact that the combined estimation of θ∗ and r∗ is partially

stochastic Newton with respect to θ, the asymptotic variance of θ̂n is not effected by

the inclusion of r̂n.

Finally, a reduction of the effect of the additional randomness introduced by the

MCMC on the asymptotic variance of θ̂, see (48), can be decreased by taking say

L >> 1 samples of ξo,k at each new observation. This amounts to redefining the H

function, defined under (39), by setting ξ̃◦ = (ξ◦,k,1, ...ξ◦,k,L), and

(53) H(Z, ξ̃◦; θ) =
∑

k∈K

Zk 1

L

L
∑

i=1

(ξ◦,k,i − θ)/σ2.

5. Estimating the variance. Let us now return to our original model y =

q(θ∗ + e) and consider now the case when σ∗, the variance of the additive noise is

unknown. It is easy to see that the M -step of the EM -method leads to the following

updating formulas

θ =
∑

k∈K

Nk

N

∫

Ik

xφ(x | kh; θ, σ2)dx,(54)

σ2 =
∑

k∈K

Nk

N

∫

Ik

(x − θ)2 φ(x | kh; θ, σ2)dx.(55)

Notice in (54) that θ does not depend on σ, thus we can solve the above equations

successively. Then in analogy with the estimation of the location parameter, we arrive

at the following real-time, partially stochastic Newton, randomized EM -method (see

(51), (52)):

θ̂t+1 = θ̂t +
r̂−1
t

t + 1
(ξk′

Nk′,t+1
− θ̂t)/σ̂2

t ,(56)

r̂t+1 = r̂t +
1

t + 1
(ξk′

Nk′,t+1
− θ̂t)(η

k′

Nk′,t+1
− θ̂t)/σ̂4

t ,(57)

σ̂2
t+1 = σ̂2

t +
1

t + 1
((ξk′

Nk′,t+1
− θ̂t+1)

2 − σ̂2
t ),(58)
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where the dynamics of the time-varying Markov-chain now depends both on θ̂t and

σ̂2
t .

To convert the above procedure into a fully stochastic Newton-method we need

to estimate the 2 × 2 Fisher information matrix, say R∗. As have been said above,

numerical experiments have shown, that the off-diagonal elements of the Fisher infor-

mation matrix are zero: r∗21 = r∗12 = 0. The estimation r22 can be carried out along

the lines described above for r11.

6. Adaptive shifting. The BMP-scheme in general. To start this section we

provide a brief summary to the basics of the BMP-method, without going into much

technical details, see Chapter 1.1, Part II of [1]. Let us write the algorithm of the

previous section using this general formalism, by setting X = (ξ, Z), and θ for what

was (θ, r), as follows:

(59) θ̂t+1 = θ̂t +
1

t
H(Xt+1, θ̂t),

where θ ∈ D ⊂ IRp, with D open, is a parameter, Xt is a non-homogeneous Markov

chain defined by a time-varying kernel of the form

(60) P (Xt+1 ∈ A|Ft) = Π
θ̂t,θ∗(Xt, A).

The dependence of the kernel on the true parameter θ∗ has been explicitly indicated

for reasons that will become clear soon. Here Ft is the σ-field generated by the past

of the Markov process up to time n, and A is any Borel subset of the state-space. In

our application, when X = (ξ, Z), this dependence shows up in the generation of the

i.i.d. data Z = (Zk). The frozen parameter process, generated by

P (Xt+1 ∈ A|Ft) = Πθ,θ∗(Xt, A).

assuming a (unique) stationary initialization, will be denoted by X̄t(θ, θ
∗). Let H(X, θ)

be a function with dimH = dimθ = p, and let us define

h(θ, θ∗) = EH(X̄t(θ, θ
∗), θ).

Then the asymptotic estimation problem is to solve h(θ, θ∗) = 0 for θ. It is assumed

that the solution is θ = θ∗. This is assumed for any choice of problem, i.e. for any

η = θ∗. Thus

(61) h(η, η) = 0.

for all η ∈ D. It is assumed that the associated ODE

θ̇t = h(θt, η)

is asymptotically stable at η for all η ∈ D. In particular, we assume that

A(η) =
∂

∂θ
h(θ, η)|θ=η
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is a stable matrix for all η. Then, under a set of additional technical conditions, such

as resetting, see [1, 8], θt, generated by (59), (60), will converge to θ∗ with probability

1.

The asymptotic covariance matrix of θ̂t. The asymptotic covariance matrix of θ̂t

is obtained, under restrictive conditions, in Theorem 13, Chapter 4.5.3, Part II of [1].

(Note that the conditions of this Theorem are not realistic. However it is likely that

a rigorous derivation can be obtained under realistic assumptions by the methods

of [7].) To summarize the algebra of this theorem let A be the Jacobian matrix of

the associated ODE at θ = θ∗, and let Ā = A + I/2 be stable. Define S(θ∗) as the

asymptotic covariance of the empirical means of H(X̄t(θ
∗), θ∗)when the window size

tends to infinity. This can be also expressed as

(62) S = S(θ∗) =
∑

τ

E [H(X̄t+τ (θ∗), θ∗) · HT (X̄t(θ
∗), θ∗)].

Then the asymptotic covariance matrix of θ̂, denoted by Σ = Σ(θ∗) would satisfy the

Lyapunov-equation

(63) ĀΣ + ΣĀT + S = 0.

The solution Σ can be also obtained as

(64) Σ =

∞
∫

0

eĀt S eĀT tdt.

This general result takes a particularly simple form if the recursive estimation method

is stochastic Newton, i.e. if A = −I, in which case we get

(65) Σ = S.

Reconfiguration of measurements. Assume now that it is possible to reconfigure

the measurement in such a way that, with a fixed and known δ > 0, we can estimate

θ∗(δ) = θ∗ + δ, just like θ∗, using the real-time algorithm

(66) θt+1 = θt +
1

t
H(Xt+1, θt),

with

(67) P (Xt+1 ∈ A|Ft) = Πθt,θ∗+δ(Xt, A).

Note that the dynamics of Xt has changed by changing the true parameter from θ∗ to

θ∗+δ. Then, under appropriate conditions, θt will converge to θ∗+δ, with probability

1.
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Let the a priori known optimal target location with maximal Fisher information

matrix be η∗. This would be reached for the shift δ∗ = η∗ − θ∗. The question arises

if we can estimate δ∗ adaptively, so as to maximize the asymptotic efficiency of the

procedure. In our application, the target value for the location parameter θ∗ would

be of the form kh + h/2, with some integer k, assuming that σ∗ is known. Now, for

any tentative δ the right correction term to δ would be

δ∗ − δ = η∗ − θ∗ − δ = η∗ − θ∗(δ),

which will be approximated by η∗ − θt. Thus, we arrive at the following updating

scheme:

The adaptive shifting algorithm:

(68) δt+1 = δt +
1

t + 1
(η∗ − θt).

We combine this with (66), where the Markovian dynamics of Xt, given by (67), is

now modified so that the shift is time-varying, δ = δt:

(69) P (Xt+1 ∈ A|Ft) = Πθt,θ∗+δt
(Xt, A).

It is then expected that (θt, δt) converges to (η∗, δ∗) with probability 1.

The associated ODE. To convince ourselves of this, we shall restrict ourself to the

analysis of the associated ODE. Let us fix θ and δ. Then, taking the expectation of

the correction terms in (66) and (68), we get

˙̄θt = h(θ̄t, θ
∗ + δt),(70)

δ̇t = η∗ − θ̄t.

Now h(η, η) = 0 for all η implies that

(71) A(η) =
∂

∂θ
h(θ, η)|θ=η = − ∂

∂η
h(θ, η)|η=θ.

Thus, letting A∗ = A(η∗), the Jacobian-matrix of the associated ODE (70) at (η∗, δ∗)

equals

Ã =

(

A∗ −A∗

−I 0

)

.

The stability of this matrix can be established in the case of quantized linear regres-

sion, when

A∗ =

(

−1 0

s −1

)

.

We shall not discuss the stability issue in the general case, since we proceed to improve

the algorithm by using a Newtonian update.
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The stochastic Newton case. Consider now the case when the recursive estimation

method (59), (60) is stochastic Newton, for any choice of θ∗ = η, in particular A∗ =

−I. The resulting method, using adaptive shifting will not be stochastic Newton,

since Ã 6= −I. In order to reduce the asymptotic covariance matrix of (θ̄, δ), we

multiply the pair of equations (66), (68), by −Ã−1, given by

−Ã−1 =

(

0 I

−I I

)

.

Thus we get a pair of equations

(72) θt+1 = θt +
1

t
(η∗ − θt),

(73) δt+1 = δt +
1

t + 1
(−H(Xt+1, θt) + (η∗ − θt)).

with Xt generated by (69). The first equation is free of noise and θt converges to the

known limit η∗. Thus it makes sense to fix θt = η∗, and thus we arrive to the final

algorithm:

The final algorithm for adaptive shifting:

(74) δt+1 = δt −
1

t + 1
H(Xt+1, η

∗),

(75) P (Xt+1 ∈ A|Ft) = Πη∗,θ∗+δt
(Xt, A).

The peculiarity of this procedure is that in the kernel Πη∗,θ∗+δt
the first subindex is

fixed permanently at the target value η∗, and the problem is adapted to this value by

shifting θ∗.

The associated ODE. To compute the associated ODE, let us fix δ. Then the

Markovian dynamics defines the frozen parameter process X̄t(η
∗, θ∗ + δ), and thus

the associated ODE is:

(76) δ̇t = −h(η∗, θ∗ + δt).

Obviously, the Jacobian-matrix of the right hand side at the equilibrium point δ =

δ∗ = η∗ − θ∗ is −I, thus the procedure is stochastic Newton. It follows that the

asymptotic covariance matrix of δt is equal to

(77) S(η∗) =
∑

τ

E [H(X̄t+τ (η∗), η∗) · H(X̄t(η
∗), η∗)T ].

It is easy to see that the above argument can be extended to partial adaptation,

when θ∗ = (θ∗1 , θ
∗
2), and a target value, say η∗

1 is prescribed for θ∗1 only. In this case

we assume that (59)-(60) is partially stochastic Newton with respect to θ∗1 , i.e. the

Jacobian A∗ has the form

A∗ =

(

−I 0

U V

)

.



QUANTIZATION WITH ADAPTATION 241

7. Application to the quantized linear regression problem. Let us rede-

fine (36) so as to include the true values and the variance explicitly in the definition

of ξ̄◦,k
t . Note that the true parameters (θ∗, (σ∗)2) enter only via the data Zk

t :

(78) ξ̄◦,k
t+1 = Zk

t (θ∗, (σ∗)2) · F (ξ̄◦,k
t , Ut+1, Vt+1; θ̄, σ̄

2) + (1 − Zk
t (θ∗, (σ∗)2)) · ξ̄◦,k

t .

Then for the algorithm with partially adaptive shifting we would generate a process

ξ◦,k
t+1 with time-varying dynamics such that θ̄ is fixed at its target value η∗, while θ∗

is shifted:

(79) ξ◦,k
t+1 = Zk

t (θ∗+δt, (σ
∗)2)·F (ξk

t , Ut+1, Vt+1; η
∗, σ̂2

t )+(1−Zk
t (θ∗+δt, (σ

∗)2))·ξ◦,k
t .

This process would then be used in the following updating formula for the shift δ, see

(75), and r and σ2:

Estimation of θ∗ and (σ∗)2 using partial adaptive shifting:

δt+1 = δt −
r̂−1
t

t + 1
(ξk′

Nk′,t+1
− η∗)/σ̂2

t ,(80)

r̂t+1 = r̂t +
1

t + 1
(ξk′

Nk′,t+1
− θ̂t)(η

k′

Nk′,t+1
− θ̂t)/σ̂4

t ,(81)

σ̂2
t+1 = σ̂2

t +
1

t + 1
((ξk′

Nk′,t+1
− θ̂t+1)

2 − σ̂2
t ).(82)

The above dynamics simplifies significantly if σ∗ is known. In this case the Markov

processes ξk can be pre-computed, and in fact, they can be eliminated altogether.

Indeed, taking into account (53), and letting L tend to infinity, we can write the

updating formula for δ as follows:

Estimation of θ∗ for known (σ∗)2 using adaptive shifting:

(83) δt+1 = δt −
(r∗)

−1

t + 1

∑

k∈K

Zk
t (θ∗ + δt, (σ

∗)2) · wk

where the weights

(84) wk =

∫

Ik

(x − η∗)

(σ∗)2
φ(x | kh; η∗, (σ∗)2)dx,

and r∗ can be pre-computed. Thus adaptive shifting does not only reduce the asymp-

totic variance, but can result in significant saving in computational time.

Figure 3 shows the convergence of the real-time randomized EM -method with

adaptive shift. The true, ill-conditioned system is given by

θ∗ = 0, (σ∗)2 = 0.05,
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and the target value for θ∗ is η∗ = 0.5. In order to make use of the advantageous effect

of adaptive shifting, a relatively small variance has been chosen (see discussion about

the Fisher information in the introduction). Both parameters are estimated using

the proposed stochastic Newton algorithm. As seen from the figure, the algorithm

converges to the optimal shift

δ∗ = η∗ − θ∗ = 0.5.

The algorithm was initialized with the parameters

δ̂0 = 0, σ̂2
0 = 0.08.

0 1000 2000 3000 4000 5000 6000 7000 8000
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σ̂ 2
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Fig. 3. The convergence of the estimated parameters.

To illustrate the superior performance of adaptive shifting, we compared the pro-

posed method to the stochastic Newton-type real-time randomized EM -method with-

out adaptive shift. As a figure of merit we used simple statistics about the estimator.

We ran both algorithms 200 times for the same ill-conditioned system described above,
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Table 1

Performace comparision of the algorithms with and without adaptive shift.

Empirical mean

without shift with shift

θ̂8000 0.001736 -0.000136

σ̂2
8000 0.049004 0.055897

Empirical variance

without shift with shift

θ̂8000 0.000413 0.000051

σ̂2
8000 0.000048 0.001931

each run had 8000 iterations, and calculated the empirical mean and variance of the

estimator value after the last iteration. From Table 1 we can conclude that, with

respect to the location parameter, the proposed adaptive shifting method is much

more accurate than the algorithm without shift.
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