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CONTROL THEORY AND THE NUMERICAL SOLUTION OF ODES∗

M. P. B. EKANAYAKE†, B. HE‡ , L. HUO§ , K. KAPHLE¶, AND C. MARTIN‖

Abstract. The goal of this paper is to study the entire class of linear second order multi-

point methods. We characterize, as a three parameter family, those methods with good numerical

properties. We will examine the error analysis of the class of second order methods and will study

in some detail the statistics of switching between two methods. We characterize the average value

obtained by switching and construct the covariance matrix. Two examples are done in some detail.

1. Introduction. In 1969 David Evans graduated from MIT. His dissertation,

[4], done under the direction of Roger Brockett, was the first time that the connection

between numerical methods for the solution of ordinary differential equations and

modern control theory was noted. Part of the dissertation was published in the SIAM

Journal of Applied Mathematics, [5]. In this paper we extend the applications, that

were pioneered by Evans and Brockett, of control theoretic methods to the problem

of obtaining numerical solutions of ODEs. This continues a line of investigation that

Martin and students have been pursuing, [6, 7, 10, 11, 12]. Our goal is to study the

entire class of linear second order multi-point methods. We characterize, as a three

parameter family, those methods with good numerical properties, i.e., consistency,

convergence, numerical stability, etc. We will examine the error analysis of the class of

second order methods and will study in some detail the statistics of the error obtained

by switching between two methods. We characterize the average value obtained by

switching and construct the covariance matrix. We will use as primary examples a

scalar Riccati equation and a time varying second order linear system. As is usual in

the numerical literature the theory will be built using a first order linear system. We

will accomplish two major goals in this paper. The first is a serious study of the effect

of randomly switching between two numerical procedures and the second is to tailor

a method for the solution of a fixed differential equation. This second goal is not

the usual numerical procedure. Normally a method is derived that has good general

properties, such as Adams-Bashforth, but here we are asking to find a method that

is “optimal” for a specific differential equation.

There are a few papers in the numerical literature that are relevant. The work of

Dahlquist, [1, 2], are important in the classification of linear multi-point methods and

for describing the limits to accuracy for specific methods, Dahlquist’s first and second
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barriers. The book of Lambert, [14], is written in a very control theoretic manner and

was the inspiration for much of this work. Henrici, [8, 9] studies the statistical nature

of the error for first order methods and we extend part of his results to second order

methods.

The object of study is the difference equation

(1.1) yn+2 + α1yn+1 + α0yn = h(β2fn+2 + β1fn+1 + β0fn)

and its relation to the differential equation

ẏ = f(t, y), y(0) = y0.

This difference equation come from considering

∫ t+h

t

ẏdt =

∫ t+h

t

f(y(t), t)dt

and approximating both sides using various techniques. The reader should consult a

good book such as Lambert’s, [14], for more details.

Using standard material we must have

1 + α1 + α0 = 0

and

2 + α1 = β2 + β1 + β0

in order to have consistency and convergence, again see [14] for details. Thus we can

write the difference equation as

(1.2) yn+2 − (1 + α0)yn+1 + α0yn = h(β2fn+2 + β1fn+1 + (1 − α0 − β1 − β2)fn).

We will be particulary interested in the case that β2 = 0, the explicit case as opposed

to the implicit case when β2 6= 0. Using Dahlquist’s second barrier, [14] we will reduce

this to a one parameter family of systems. One of the main objectives of this paper

is to optimize with respect to that single parameter. This is done in Section 4.

There is a corresponding control system namely

(1.3) yn+2 − (1 + α0)yn+1 + α0yn = β2un+2 + β1un+1 + (1 − α0 − β1 − β2)un.

Note that the transfer function is

β2s
2 + β1s + (1 − α0 − β1 − β2)

s2 − (1 + α0)s + α0
.

It is never explicitly stated in the numerical literature that the transfer function should

be proper but it is implicitly assumed. This has a realization of the form

xn+1 = Axn + bun, yn = cxn + un



CONTROL THEORY AND THE NUMERICAL SOLUTION OF ODES 203

and the explicit case of course has a realization of the form

xn+1 = Axn + bun, yn = cxn.

Applying a nonlinear feedback

un = hfn + vn,

we recover the original system when vn = 0. However the goal of the feedback is not

to produce a system that is asymptotically correct but one that is close to exact for

the first few values of n. This approach has been recently exploited in a masterful

paper by Kashima and Yamamoto, [13]. An approach using optimal control has been

studied in some detail in [10, 12]. There the control vn plays an essential role.

2. Error Analysis. The error that occurs when solving an ODE is basically of

two types. There is error inherent in the method and there is accumulated roundoff

error. We will characterize the inherent error in this section for linear differential

equations. The error that is due to roundoff is random in nature and can be captured

using time series. However, not much is known about the statistical properties of this

error. Time series analysis is very much related to modern control theory. We begin

by considering two first order methods, Euler explicit and the so called theta method.

We will then consider the general form of the error for second order methods.

2.1. Euler Methods. We begin with the two methods

(2.1) yn+1 = yn + hfn Euler explicit

and

(2.2) yn+1 = yn + h(θfn + (1 − θ)fn+1) Theta method.

We will apply these two methods to the differential equation

ẋ = λx, x(0) = 1.

2.1.1. Euler explicit. Now the error inherent in either method is given by

en = yn − eλhn

and hence by substituting we have

en+1 = en + hλen − eλh(n+1) + eλhn + hλeλhn

= (1 + hλ)en + (1 + h − eλh)eλhn.
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Now e0 = 0 and so we have the error given neatly as a convolution.

en =

n−1
∑

i=0

(1 + λh − eλh)eλih(1 + λh)n−1−i

= (1 + λh − eλh)

n−1
∑

i=0

eλih(1 + λh)n−1−i

= (1 + λh − eλh)(1 + λh)n−1
n−1
∑

i=0

(

eλh

1 + λh

)i

= (1 + λh − eλh)(1 + λh)n−1
1 −

(

eλh

1+λh

)n

1 −
(

eλh

1+λh

)

= (1 + λh)n − eλhn.

This is the accumulated error that is inherent in the Euler method. It is independent

of machine error. If λ is negative then en tends to 0 but if λ is positive then the

error approaches minus infinity since eλh > 1 + λh. However the percentage error is

of order nh2.

2.1.2. Theta method. For the theta method we have

yn+1 = yn + hλ(θyn + (1 − θ)yn+1)

and solving we have

yn+1 =

(

1 + θλh

1 − λh(1 − θ)

)

yn = Λyn.

Calculating the error we have as for Euler explicit

en+1 = Λen + (Λ − eλh)enhλ}

and

en = (Λ − eλh)
n−1
∑

i=0

eiλhΛ(n−1)−i

= (Λ − eλh)Λn−1
n−1
∑

i=0

(

eλh

Λ

)i

= (Λ − eλh)Λn−1
1 −

(

eλh

Λ

)n

1 −
(

eλh

Λ

)

= Λn − enλh.

This raises the possibility of choosing θ to minimize the error. We can ask for example

that the error be zero. To determine if there is such a θ we simply have to solve

Λ = eλh.
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Table 1

Optimal choices for θ

λ -10 -5 -2 -1 1 2 5 10

θ 0.491 0.495 0.498 0.499 0.501 0.502 0.504 0.508

In Table 1 a few values are calculated using h = .01. These methods then closely

approximate the classical trapezoid rule.

2.2. Two Step Methods. We consider the general two step method.

(2.3) yn+2 − (1 + α0)yn+1 + α0yn = h(β2fn+2 + β1fn+1 + (1 − α0 − β1 − β2)fn).

For simplicity we will assume that β2 = 0 and we will let 1−α0 −β1 − β2 = γ. So we

have

yn+2 − (1 + α0)yn+1 + α0yn = h(β1fn+1 + γfn).

We apply this to the differential equation ẋ = λx. We then have the recurrence

yn+2 = (1 + α0 + hλβ1)yn+1 + (hλγ − α0)yn.

As before we let

en = yn − eλhn

and we then have the forced recurrence

en+2 = (1 + α0 + hλβ1)en+1 + (hλγ − α0)en(2.4)

+(−e2λh + (1 + α0 + hλβ1)e
λh + (hλγ − α0))e

nλh.

Examining the forcing term we see that we reach Dahlquist’s second barrier, [14], by

expanding the expression in a Taylor series and setting the first three coefficients to

zero. This gives α0 = 3 − 2β1 or as we will use later

(2.5) β1 =
1

2
(3 − α0).

This gives the error as

en+2 = (1 +
3hλ

2
+ (1 − hλ

2
)α0)en+1 − (

hλ

2
+ (

hλ

2
+ 1)α0)en +

[

−e2λh + (1 +
3hλ

2
+ (1 − hλ

2
)α0)e

λh − (
hλ

2
+ (

hλ

2
+ 1)α0)

]

enλh.

Evaluating this at h = .01 and λ = 1 we have

en+2 = (1.015−8.375E−08α0)en+1−(.005+1.005α0)en+(−.005−8.375E−08α0)e
.01n.
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This is numerically equivalent to

en+2 = (1.015)en+1 − (.005 + 1.005α0)en − .005e.01n.

Writing this in matrix form we have
(

en+1

en+2

)

=

(

0 1

−.005 − 1.005α0 1.015

)(

en

en+1

)

+

(

0

1

)

(−.005e.01n)

= Aên + bun(2.6)

and the eigenvalues of the matrix are

1

2
(1.015 ±

√
.830225− 4.02α0).

At α0 = −1 we have eigenvalues of 1.6 and −.59 and so we lose stability. At α0 = .034

stability is regained and the system is stable for α0 ∈ (.034, 1). Interestingly though,

the eigenvalues are complex for part of this range. This is somewhat dual to the

stability analysis in most of the numerical theory. There the parameter α0 is specified

and the analysis is done in terms of which values of hλ produce stable systems, see

for example [14].

The complete analysis of the second order methods is exactly the same as for

first order methods. The only difference is that we have to consider the effect of

mismatched initial conditions. The initial error e0 = 0 but usually we have to calculate

e1. Thus there is a certain amount of error propagated via An(0, e1)
⊥.

3. Switching. Consider two simple first order methods, Euler explicit and im-

plicit, for solving ẋ = x, x(0) = 1. After a minimal amount of effort we have from

the explicit method

xn = (1 + h)n

and from the implicit method

xn = (1 − h)−n.

The true solution is of course x(t) = et and the two methods should both approximate

enh. Now

enh = 1 + nh +
1

2
n2h2 +

1

6
n3h3 + · · · .

Expanding the explicit solution we have,

xn = 1 + nh +
n(n − 1)

2
n2h2 + · · ·

and expanding the implicit solution we have,

xn = 1 + nh +
n(n + 1)

2
n2h2 + · · · .
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Comparing these solutions to enh we have

1 + nh +
n(n − 1)

2
n2h2 + · · · < enh < 1 + nh +

n(n + 1)

2
n2h2 + · · · .

so for this differential equation the explicit solution always under estimates the true

solution and the implicit solution always over estimates the true solution. This sug-

gests that by using the two methods in some alternating model we should be able to

find a very accurate method. The problem with this in general is that we have no

way of knowing, expect for a few very special differential equations, when we should

switch between the two methods. A natural alternative is to construct all possible

switching schemes and average of over all such schemes.

3.1. Euler Methods. The idea is to flip a coin at each step and use explicit if

heads and implicit if tails. Because the process is scaler we have at the nth step

xn = (1 + h)i(1 − h)−(n−i).

Let Cn,i = n!
i!(n−i)! the combinatorial symbol. There were Cn,i different ways we could

have arrived at this xn. Then averaging over all possible switching patterns we have

xavg
n =

1

2n

n
∑

i=0

Cn,i(1 + h)i(1 − h)−(n−i)(3.1)

=
1

2n
(1 + h + (1 − h)−1)n(3.2)

=

(

(1 + h) + (1 − h)−1

2

)n

(3.3)

=

(

2 − h2

2(1 − h)

)n

.(3.4)

Expanding this as a Taylor series we have

xavg
n = 1 + nh +

1

2
n2h2 + · · · .

From this we see that enh −xavg
n = O(h3) as compared to order h2 approximation for

both the explicit and implicit methods. So the average is a much better approximation

than either the implicit or the explicit.

It is worth while to calculate more than the average value for we would like to

know how much spread we can expect if we calculate several but not all switching



208 M.P.B. EKANAYAKE, B. HE, L. HUO, K. KAPHLE, AND C. MARTIN

Table 2

Values for Euler Methods

Method h Eigenvalue Approx. to e

Euler-explicit .1 1.1 -0.124539368

.01 1.01 -0.013467999

.001 1.001 -0.001357896

Euler-implicit .1 1.111111 0.149690162

.01 1.01010101 0.013717198

.001 1.001001001 0.001360388

Switched .1 1.105555556 0.009475386

.01 1.010050505 9.09562E-05

.001 1.001000501 9.06434E-07

patterns and average numerically. The variance of course is a good measure of spread.

xvar
n =

1

2n

n
∑

i=0

Cn,i(1 + h)2i(1 − h)−2(n−i) − (xavg
n )2

=
1

2n

(

(1 + h)2 + (1 − h)−2
)n − (xavg

n )2

=

(

(1 + h)2 + (1 − h)−2

2

)n

−
(

(1 + h) + (1 − h)−1

2

)2n

= (1 + 2h + 2h2 + 2h3 + 5h4 + · · · )n − (1 + 2h + 2h2 + 2h3 +
5

4
h4 + · · · )n

= O(h4).(3.5)

It is interesting that this is independent of n. The variance is very small so this

suggests that it is feasible to numerically calculate several different switching regimes

and average them as a good approximation of the average of all of the means. Of

course the central limit theorem guarantees the convergence but it says very little

directly about the spread. In Table 2 we show the level of approximation obtained

by each method. Note that the switching method is two orders of magnitude better

than either the Euler implicit or explicit.

These calculations were done with the differential equation ẋ = x but the conclu-

sions would have been the same for ẋ = λx. In the formulas we would have replaced

h with λh.

3.2. Higher order methods. We consider here the problem of switching be-

tween two higher order methods. Part of the first order method material generalizes

quite nicely. As we saw in the introduction we can write a linear method applied to a

first order linear differential equation in the form xn+1 = Axn. Now suppose we have

two methods of the same order, the second being xn+1 = Bxn. We have initial value
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x0. The switching system can be written in the form

xn+1 = (δnA + (1 − δn)B)xn

where δn ∈ {0, 1}. Thus we have

xn = (δn−1B + (1 − δn−1)A) · · · (δ0B + (1 − δ0)A)x0.

Let

Sn
δ = (δn−1B + (1 − δn−1)A) · · · (δ0B + (1 − δ0)A).

Now let

Sn =
1

2n

∑

δ∈2n

Sn
δ .

We use the notation δ ∈ 2n to indicate that δ is a mapping from {i : i = 0, · · · , n−1}
to 2 = {0, 1}. Sn is the average taken over all possible switching patterns.

Now we can write the following.

(3.6) {Sn
δ : δ ∈ 2n} = {ASn−1

δ : δ ∈ 2n−1} ∪ {BSn−1
δ : δ ∈ 2n−1}.

From this we have

Sn =
1

2n

∑

δ∈2n

Sn
δ

=
1

2

(

1

2n−1

∑

δ∈2n−1

ASn−1
δ +

1

2n−1

∑

δ∈2n−1

BSn−1
δ

)

=
1

2
(A + B)Sn−1,(3.7)

the next theorem then follows immediately.

Theorem 3.1. Let xn+1 = (δnA+(1−δn)B)xn, xδ
n = (δn−1B +(1−δn−1)A) · · ·

(δ0B + (1 − δ0)A)x0 and let

xavg
n =

1

2n

∑

δ∈2n

xδ
n.

Then xavg
n x0 is the solution of the equation

xn+1 =
A + B

2
xn, x0 given.

Using these techniques we can also calculate the covariance of the xδ
n. We have

covariance(xδ
n) =

1

2n

∑

δ∈2n

(xδ
n − xavg

n )⊥(xδ
n − xa

nvg)

=
1

2n

∑

δ∈2n

(xδ
n)⊥xδ

n − (xavg
n )⊥xavg

n .
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We now concentrate on the sum. Here Cn is the covariance of the erro at time

step n.

x⊥
0 Cnx0 =

1

2n

∑

δ∈2n

(xδ
n)⊥xδ

n

=
1

2n

∑

δ∈2n

(Sδ
nx0)

⊥Sδ
nx0

=
1

2
x⊥

0

(

1

2n−1

∑

δ∈2n−1

A⊥(Sδ
n−1)

⊥Sδ
n−1A+

1

2n−1

∑

δ∈2n−1

B⊥(Sδ
n−1)

⊥Sδ
n−1B

)

x0

= x⊥
0

1

2

(

A⊥Cn−1A + B⊥Cn−1B
)

x0.(3.8)

Thus both the average and the covariance are generated by linear difference equations.

3.3. An example. We consider here two standard 2nd order methods–the

Adams-Bashforth and the Adams-Moulton methods.

(3.9) yn+1 − yn =
h

2
(3fn − fn−1) Adams − Bashforth,

(3.10) yn+1 − yn =
h

12
(5fn+1 + 8fn − fn−1) Adams − Moulton.

Following the first order example we will solve ẏ = y y(0) = 1. Thus we have

yn+1 − yn =
h

2
(3yn − yn−1)

and

yn+1 − yn =
h

12
(5yn+1 + 8yn − yn−1).

Rewriting these in matrix form we have

(3.11)

(

yn+1

yn+2

)

=

(

0 1

−h
2

2+3h
2

)(

yn

yn+1

)

,

(3.12)

(

yn+1

yn+2

)

=

(

0 1

− h
12−5h

12+8h
12−5h

)(

yn

yn+1

)

.

For the average we have

(3.13)

(

yn+1

yn+2

)

=

(

0 1
5h2−14h
48−20h

−15h2+42h+48
48−20h

)(

yn

yn+1

)

.

Evaluating at various values of h we get Table 3. We now consider the covariance.
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Table 3

Values for Adams Methods

Method h Max. eigenvalue Min. eigenvalue Approx. to e

Adams-Bashforth .1 1.104740503 0.045259497 -0.01056798

.01 1.010049749 0.004950251 -0.000112573

.001 1.0010005 0.0004995 -1.13194E-06

Adams-Moulton .1 1.105175358 0.00786812 0.000109217

.01 1.010050168 0.000828494 1.12847E-07

.001 1.0010005 8.32847E-05 1.13618E-10

Switched .1 1.1049617 0.026560039 -0.005141555

.01 1.010049959 0.002889372 -5.61153E-05

.001 1.0010005 0.000291392 -5.65794E-07

We calculate the properties of the linear operator defined by

L(X) = A⊥XA + B⊥XB

where X is a symmetric 2× 2 matrix and A and B are in companion form. We begin

by calculating
(

0 a

1 b

)(

x y

y z

)(

0 1

a b

)

=

(

0 a

1 b

)(

ay x + yb

az y + zb

)

=

(

a2z ay + abz

ay + abz x + 2by + b2z

)

.

Vectorizing this we have

L(X) =







a2 0 0

ab a 0

b2 2b 1













z

y

x







and thus for Adam-Bashforth we have

AB(X) =













(h
2 )2 0 0

− 2h+3h2

4 −h
2 0

(2+3h
2 )2 4+6h

2 1

























z

y

x













and for Adams-Moulton we have

AM(X) =













( h
12−5h

)2 0 0

− 12h+8h2

(12−5h)2 − h
12−5h

0

(12+8h
12−5h

)2 24+16h
12−5h

1

























z

y

x













.
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We then have the sum

1

2
(AM + AB)(X) =













1
2 (h

2 )2 + 1
2 ( h

12−5h
)2 0 0

− 1
2

2h+3h2

4 − 1
2

12h+8h2

(12−5h)2 − 1
2

h
2 − 1

2
h

12−5h
0

1
2 (2+3h

2 )2 + 1
2 (12+8h

12−5h
)2 1

2
4+6h

2 + 1
2

24+16h
12−5h

1

























z

y

x













.

Switching systems play an important role in modern system theory. there is a

large literature on the stability of switching systems, [3], but this set of literature is not

particulary relevant to the development of this paper. In systems theory stability is

an asymptotic phenomena and for ODEs we are only interested in the first few values

of n. There is a literature concerned with the controllability of switched systems and

this theory will probably eventually be relevant. However both the theory of switched

systems from control theory and from ODEs need refinement before they can be

merged. The theory of random products of matrices seems to be quite relevant. The

paper of Wang and Martin, [15], is developing the theory in this direction.

4. Two Major Examples. We consider two major examples. The first is a

second order time varying differential equation. The theory of second order time

varying differential equation is vastly complex. It contains the bulk of the theory

of special functions. See for example Watson’s A Treatise on the Theory of Bessel

Functions , [16]. The second example is the scalar Riccati equation. Riccati equations

are also closely related to second order linear differential equations. We exploit the

theory of second order equations to study the numerical solutions of this equation.

4.1. A Second Order Differential Equation. The differential equation, (x−
a)2(x − b)2y′′ = cy, is very interesting due to several factors. The first things that

can be noticed are the singularities in the independent variable, x. This gives rise to

challenges in finding a numerical solution as well as in computing the exact solution.

The nonlinearity and symmetry of the differential equation is another interesting

feature. Still, except at the discontinuities at x = a and x = b, the system is fairly

well behaved. It is possible to notice that the equation, when written as a system, is

Lipschitz in any finite interval which does not include the singularities.

Further more, depending on the parameters a, b and c, the solution of the equation

can take different forms. The exact solutions are found via substitutions given in [17],

for a 6= b, and in [18], for a = b.

4.2. The Exact Solution.

4.2.1. For a 6= b. The given equation: (x − a)2(x − b)2y′′ = cy, can be exactly

solved following the variable transformations given in [17], for a 6= b. The transfor-

mation prescribed is:

ξ = ln

∣

∣

∣

∣

x − a

x − b

∣

∣

∣

∣

, y = (x − b)η.



CONTROL THEORY AND THE NUMERICAL SOLUTION OF ODES 213

Above transformation will convert the original differential equation to a second order

constant coefficient differential equation of the following form:

(a − b)2
(

d2η

dξ2
− dη

dξ

)

= cη.

We may now write this as (a− b)2η′′
ξξ − (a− b)2η′

ξ − cη = 0. This is nothing more

than a second order differential equation with constant coefficients. For this we can

write the auxiliary equation: (a − b)2m2 − (a − b)2m − c = 0. Such m will produce

the solution to the above equation.

On solving for m:

m =
(a − b)2 ±

√

(a − b)4 + 4c(a − b)2

2(a − b)2
.

Set λ2 = 1 + 4c
(a−b)2 , then,

m =
1 ± λ

2
.

With this, we can identify three classes of solutions for λ2 > 0, λ2 = 0 and λ2 < 0.

4.2.2. When λ2 > 0 or λ2 < 0 (i.e. λ2 6= 0). After considerable calculation

When λ2 > 0:

y =
√

|(x − a)(x − b)|
(

C1

∣

∣

∣

∣

x − a

x − b

∣

∣

∣

∣

λ/2

+ C2

∣

∣

∣

∣

x − b

x − a

∣

∣

∣

∣

λ/2
)

.

When λ2 < 0:

y =
√

|(x − a)(x − b)|
(

Cc cos

(ℑ(λ)

2
ln

∣

∣

∣

∣

x − a

x − b

∣

∣

∣

∣

)

+ Cs sin

(ℑ(λ)

2
ln

∣

∣

∣

∣

x − a

x − b

∣

∣

∣

∣

))

where Cs = C1 + C2, Cs = i(C1 − C2) and ℑ(λ) is the imaginary part of λ. Since λ

is purely imaginary, it should be noted that λ = iℑ(λ).

4.2.3. When λ2 = 0.

y =
√

|(x − a)(x − b)|
(

C1 + C2 ln

∣

∣

∣

∣

x − a

x − b

∣

∣

∣

∣

)

.

4.2.4. For a = b. When a = b the equation becomes (x − a)4y′′ = cy and the

above technique will fail. Instead, the following substitutions can be used as in [18]:

ξ =
1

(x − a)
, η =

y

x − a
= yξ.

This means after significant computation,

d2η

dξ2
= c y ξ = cη.

We can write this equation as η′′
ξξ − cη = 0.

Here again we can analyze different cases depending on the value of c.
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4.2.5. When c = 0.

y = C1(x − a) + C2.

4.2.6. When c > 0. Then we get η = C1 cosh(ξ)+C2 sinh(ξ). Therefore, we get

the solution

y = (x − a)

(

C1 cosh

(

1

(x − a)

)

+ C2 sinh

(

1

(x − a)

))

.

4.2.7. When c < 0. Then we get η = C1 cos(ξ) + C2 sin(ξ) Therefore, we get

the solution

y = (x − a)

(

C1 cos

(

1

(x − a)

)

+ C2 sin

(

1

(x − a)

))

.

4.3. Association of Initial Conditions. In general, solving for the exact so-

lution, incorporating the initial conditions in x and y, into the above solutions does

not give a very clean result. It is quite messy and does not end up with a nice answer

for most cases. Therefore, we shall employ an indirect method of incorporating the

initial conditions by assuming a ”nice” choice for x.

x = a or for that matter, x = b “seems” to be “nice” for initial conditions,

but those are the exact locations where the discontinuities occur. Therefore, those

locations have to be ruled out. The next “good” initial point is x = 0. We will try

to solve the initial value problem, IVP, for initial conditions specified at this point in

terms of x and y, transform them to the initial conditions in terms of ξ and η, solve

the IVP, for ξ and η, re-transform to the IVP of x = 0 and y and finally generalize

the result to an arbitrary initial conditions of x and y, in particular to any arbitrary

x.

We pick x = 0, y(x)|x=0 = y0 and y′(x)|x=0 = y′
0. Then we have, for a 6= b:

ξ0 = ξ|x=0 = ln
∣

∣

∣

a

b

∣

∣

∣
, and η0 = η|x=0 = −y0

b
.

Furthermore

dy

dx

∣

∣

∣

∣

x=0

=
(a − b)

(0 − a)

dη

dξ

∣

∣

∣

∣

x=0

+ η0,

dη

dξ

∣

∣

∣

∣

x=0

=
−a

(a − b)

(y0

b
+ y′

0

)

= η′
0.

For a = b, similarly for x = 0 we see that, ξ0 = −1/a, η0 = −y0/a, and η′
0 =

a
(

y0

a
+ y′

0

)

.

Now we shall analyze how this is done for each case.
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For λ2 = 1 + 4c
(a−b)2 6= 0, we had

η = C1e
ξ(1+λ)/2 + C2e

ξ(1−λ)/2.

On matching the initial conditions at ξ = ξ0, η(ξ0) = η0 and η′(ξ0) = η′
0,

η0 = C1e
ξ0(1+λ)/2 + C2e

ξ0(1−λ)/2,

η′
0 = C1

(1 + λ)

2
eξ0(1+λ)/2 + C2

(1 − λ)

2
eξ0(1−λ)/2.

By setting D1 = C1e
ξ0/2 and D2 = C2e

ξ0/2 they become

η0 = D1e
ξ0λ/2 + D2e

−ξ0λ/2,

η′
0 = D1

(1 + λ)

2
eξ0λ/2 + D2

(1 − λ)

2
e−ξ0λ/2.

Look at the last of the above two equations:

η′
0 = D1

(1 + λ)

2
eξ0λ/2 + D2

(1 − λ)

2
e−ξ0λ/2,

2η′
0 = D1(1 + λ)eξ0λ/2 + D2(1 − λ)e−ξ0λ/2

=
(

D1e
ξ0λ/2 + D2e

−ξ0λ/2
)

+ λ
(

D1 + eξ0λ/2 − D2e
−ξ0λ/2

)

= η0 + λ
(

D1 + eξ0λ/2 − D2e
−ξ0λ/2

)

.

Eventually, we have to solve the two equations:

η0 = D1e
ξ0λ/2 + D2e

−ξ0λ/2,

2η′
0 − η0

λ
= D1e

ξ0λ/2 − D2e
−ξ0λ/2.

This yields,

D1 =
2η′

0 − (1 − λ)η0

2λ
e−ξ0λ/2,

D2 =
−2η′

0 + (1 + λ)η0

2λ
eξ0λ/2.

Hence for the required C1 and C2

C1 =
2η′

0 − (1 − λ)η0

2λ
e−ξ0(λ+1)/2,

C2 =
−2η′

0 + (1 + λ)η0

2λ
e−ξ0(1−λ)/2.

The initial conditions can be associated to the other cases in a similar manner,

but to write them down for all the cases is quite tedious and hence will be omitted.
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4.4. Nature of Solutions and Other Considerations. As it was explained

in the previous sections, the solution to the differential equation can have one of six

possible different solutions. To complicate the matters further, the initial conditions

associate to the solutions in quite an obscure manner, making the initial value problem

non-trivial to solve. Furthermore, there could be two second order (when a 6= b) or one

fourth order (when a = b) singularities on the x-axis. Therefore, it is very interesting

to see how the solutions of the IVP behaves under different parameter values as well

as initial conditions.

This could be done by means of a phase diagram, with y and y′ defined as the

states. Let y1 = y(x) and y2 = y(x)′. Then we have the following system.

y′
1 = y2,

y′
2 =

cy1

(x − a)2(x − b)2
.

Since there is a multitude of cases to analyze, a computational software tool can

be used to develop a good intuition of the system, despite the fact that numerical

software tools only provide an approximation. For this paper, MATLAB was used

to find the numerical solutions. It should be understood that MATLAB, as any

other numerical method, can solve only within an interval which does not include a

singularity. Therefore, the time interval on which the simulation should be run, has

to selected so that no singularities are included.

4.5. Optimization Problem.

4.5.1. A Complete Parameterization of Two Step Methods. The two step

method in 2.3, can be completely parameterized for the optimization problem for an

explicit method by setting β2 = 0 and 2.5. Hence we can completely characterize all

the second order two step methods by a single parameter, α0.

For the implicit methods we can use the same Taylor Series method used to find

2.5 using 2.3. But this time it is easier to work on 1.1, and parameterize the entire

class of implicit second order two step methods by the parameters α0 and β0 as follows.

a1 = −1 − a0,(4.1)

b1 = (1 − 3a0 − 4b0)/2,(4.2)

b2 = (1 + a0 + 2b0)/2.(4.3)

The implicit method has to be implemented as a predictor-corrector pair. In this

implementation, we can use a explicit two-step second-order method method as the

predictor. Hence we end up with a three parameter family for the implementation.

The additional parameter is inherited due to the ‘α0’ of the predictor. To reduce the

burden on computation time, we may use the same alpha0 for both and simplify the

optimization problem to a two parameter problem.
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To inspect the stability, look at the left hand side of the difference equation:

yj+2 + a1yj+1 + a0yj . We need the auxiliary equation z2 + a1z + a0 = 0 to have

solutions |z| ≤ 1 if the solutions for z are distinct, if not, we need |z| < 1.

By substituting the values of a1 we see that the auxiliary equation becomes,

z2 − (1 + a0)z + a0 = 0. This gives

z =
(1 + a0) ±

√

(1 + a0)2 − 4a0

2
,

z =
(1 + a0) ± (1 − a0)

2
,

z = 1, or a0.

Hence, for stability we need, |a0| ≤ 1 but a0 6= 1.

These steps completes the parameterization of the numerical methods of interest

using a least number of parameters and gives their applicable ranges. The two-step

second-order explicit methods were parameterized with a single a0, |a0| ≤ 1, a0 6= 1

parameter and all such implicit methods were parameterized with two parameters, a0

and b0, |a0| ≤ 1, a0 6= 1 no restrictions had been yet set on b0.

4.5.2. Minimizing Error. One of the main goals of this paper is to develop,

or to be more precise, “tailor”, a numerical method to solve the given differential

equation.

A heuristic approach is employed for the optimization process. The error is quan-

tified using the L2−norm and the ∞−norm of the difference between the computed

solution and the exact solution. A specific case with parameter values, a = 12, b = 14,

and c = −100 was picked and it was numerically solved in the interval [0, 10] with

initial conditions y(0) = 1 and y′(0) = 1.

For the above choice of equation, with a0 ≈ .333766 the explicit method gives the

minimum error in the L2−norm. Figure 1 shows the actual variation of the error with

α0 for it and Figure 2 shows the numerical solution in relation to the exact solution.

Figure 3 shows the variation of the error for the 2-parameter implicit method.

4.6. The Riccati Equation. Here we consider the Riccati equation ẏ = 1 +

y2, y(0) = 0. Simple integration shows that the solution of the equation is y(x) =

tan x. The Riccati equation is intimately related to the linear initial value problem
(

ż

ẇ

)

=

(

0 1

−1 0

)(

z

w

) (

z(0)

w(0)

)

=

(

0

1

)

.

Interestingly this correspondence is almost as old as the calculus. The relationship was

discussed in correspondence between Leibnitz and Bernoulli in 1697 and the reduction

to a linear equation was accomplished in 1702, [16].

The solution of the linear equation is bounded and it would be desirable for

the numerical solution to likewise be bounded. We first consider the Theta method.
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Fig. 1. Logarihtmetic error pattern for (x − 12)2(x − 14)2y′′ = −100y with variation at α0.

Fig. 2. Solution and error pattern for (x − 12)2(x − 14)2y′′ = −100y.

Applying the Theta method we obtain after a few calculations

(4.4)

(

yn+1

yn+2

)

=

(

1−θ(1−θ)h2

1+(1−θ)2h2

h
1+(1−θ)2h2

−h
1+(1−θ)2h2

1−θ(1−θ)h2

1+(1−θ)2h2

)(

yn

yn+1

)

.
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Fig. 3. Logarihtmetic error pattern for (x − 12)2(x − 14)2y′′ = −100y

The eigenvalues of the matrix are

1 − θ(1 − θ)h2

1 + (1 − θ)2h2
± hi

1 + (1 − θ)2h2

and for the iteration to be bounded we must have

(

1 − θ(1 − θ)h2

1 + (1 − θ)2h2

)2

+

(

h

1 + (1 − θ)2h2

)2

≤ 1.

For θ = 0 the inequality is satisfied and for θ = 1/2 the expression is equal to 1 and so

for θ ∈ [0, 1/2) the numerical solution is bounded. This give hope that second order

methods may give good results.

On varying the parameter a0, which determines all the constants of the method,

between -1 and 1, we find that the error, defined as (exact solution - numerical solu-

tion) does not change sign (i.e. it is always positive). This can be clearly seen from

figures 4 and 5. The solution with the least error was observed when a0 = −1. This

is actually the mid point method:

yj+2 = yj + 2hf(xj+1, yj+1).

In order to find two methods that gives similar positive and negative error, the

second order constraint had to be sacrificed. Meaning that, in order to find two such

methods, it was necessary to employ two first order methods instead of second order

methods.
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Fig. 4. L2 error for the Riccati equation ẏ = 1 = y2 with variation at α0.
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Fig. 5. Error pattern for the Riccati equation ẏ = 1 + y2 with variation at α0

First order methods were found by relaxing the condition on b0. In other words,

the first order methods were constructed as to be b0 6= −(1 + a0)/2. As such, for

both methods a0 = −1 was used with b0 = −.3 for the first method b0 = .3 for the

second. The equation was solved by randomly switching between the two methods

each step. By repeating this several times, it was observed that the distribution of
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error was approximately normal.

Since there were no applicable explicit two step second order methods, two step

implicit methods were considered. Referring to the general two step method, the

following relations can be found in order to satisfy the consistency and order with an

analysis identical to the case of explicit method.

On further analysis, two second order implicit two step methods were found which

gives positive and negative error. Rather surprisingly, it was observed that the two

methods had extremely close error values in absolute value. The method with a0 = −1

and b0 = −1 gives the positive error where as the method with a0 = .3 and b0 = .28

gives the negative error.

That is, for positive error, the pair:

yj+2 = yj + 2hf(xj+1, yj+1) : Predictor

yj+2 = yj + 2h(−f(xj+2, yj+2) + 4f(xj+1, yj+1) − f(xj , yj)) : Corrector

For the negative error, the pair:

yj+2 = −.3yj + 1.3yj+1 + h(1.35f(xj+1, yj+1) − .65f(xj, yj)) : Predictor

yj+2 = −.3yj + 1.3yj+1 + h(.93f(xj+2, yj+2) − 1.02f(xj+1, yj+1) + .28f(xj , yj))

Corrector

5. Conclusion. This paper provides a broad discussion on the entire class of

linear second order multi-point methods. We characterize, as a three parameter family,

those methods with good numerical properties. We also examine the error analysis of

the class of second order methods and discuss in some detail the statistics of switching

between two methods. We provide a closed form expression for the average value

obtained by switching and construct the covariance matrix. Two examples are done

in some detail, to emphasize the notion of ‘tailoring’ numerical methods to solve

differential equations.
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