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ACCESSIBILITY OF A CLASS OF GENERALIZED

DOUBLE-BRACKET FLOWS∗

G. DIRR†
AND U. HELMKE†‡

Abstract. We investigate a generalization of Brockett’s celebrated double bracket flow that is

closely related to matrix Riccati differential equations. Using known results on the classification of

transitive Lie group actions on homogeneous spaces, necessary and sufficient conditions for acces-

sibility of the generalized double bracket flow on Grassmann manifolds are derived. This leads to

sufficient Lie–algebraic conditions for controllability of the generalized double bracket flow. Accessi-

bility on the Lagrangian Grassmann manifold is studied as well, with applications to matrix Riccati

differential equations from optimal control.

Keywords: Double bracket flows, Grassmann manifolds, transitive Lie group actions, matrix

Riccati equations.

1. Introduction. In this paper, we study the controlled double bracket equation

(1) Ẋ = [Ω(u), X ] +
[

[S(u), X ], X
]

on adjoint orbits of real symmetric, or complex Hermitian matrices X . Here, Ω(u)

and S(u) denote arbitrary real skew–symmetric and real symmetric (or, complex

skew–Hermitian and complex Hermitian) matrices, respectively, depending on real

input functions u. For Ω(u) = 0 and S(u) = A, system (1) coincides with Brockett’s

isospectral double bracket flow [7]

(2) Ẋ =
[

[A, X ], X
]

on real symmetric (Hermitian) matrices. Hence, (1) provides a straightforward exten-

sion of Brockett’s equation and is thus called generalized double bracket flow, although

such terminology might be in conflict with [5] (see also exercises in [16]), where a dif-

ferent class of generalizations has been considered.

The double bracket flow (2) has found numerous applications to diverse topics,

such as e.g. linear programming, eigenvalue and singular value computations, model

reduction, variational problems and Hamiltonian systems; see e.g. [16] and the refer-

ences therein. For Lie–algebraic extensions we refer to [2, 3, 11]. Most of the prior

research has focused on the uncontrolled double bracket equation (2), with an ex-

ception in [8], where (1) is considered as a means to simulate arbitrary finite-state

automata. Here, as well as in further applications of isospectral flows to neural net-

works and subspace learning [9, 10], Brockett introduced a controlled variant of the
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double bracket flow that is equivalent to the generalized double bracket system (1).

Interest in (1) is also spurred through a mechanical systems interpretation. In fact,

if one considers (1) as a flow on an adjoint orbit of the special unitary group SUn

acting via conjugation on its Lie algebra, then the first summand [Ω, X ] is a Hamil-

tonian vector field, while for S skew-Hermitian, the second one
[

[S, X ], X
]

presents a

gradient term.

Despite these scattered efforts towards a control theory of (1), a systematic anal-

ysis of the accessibility properties of generalized double bracket flows is missing. The

purpose of this paper is to close this gap and to develop necessary and sufficient condi-

tions for accessibility. For simplicity, we focus on the case, when the initial states are

restricted to a Grassmannian, i.e. to the set of all selfadjoint (Hermitian) projection

operators of a fixed rank. The general case of analyzing accessibility of (1) on an

arbitrary adjoint orbit is much more involved and left out here. However, even the

special case of considering (1) on the Grassmannian is of interest for various appli-

cations and thus deserves a detailed controllability analysis, as is done in this paper.

Equation (2) on the Grassmannian has been first considered in [1, 15] and later in [4].

A characterization of the stable manifolds together with structural stability properties

of the double bracket flow on Grassmannians was explored in [18, 24]. A Lie algebraic

generalization in the context of parabolic subalgebras was treated in [22].

In addition to the above mentioned applications in neural networks and principal

component analysis we mention two further examples for applying double bracket

flows to numerical analysis and computer vision. In numerical analysis there is interest

to consider continuous–time versions of the shifted QR-factorization as continuous–

time eigenvalue methods, cf. [13]. For instance, if A denotes any cyclic real n × n

matrix and if
∑n−1

j=0
ujx

j denotes any real polynomial of degree at most n − 1, then

A(u) :=
∑n−1

j=0
ujA

j will be an arbitrary element of the centralizer of A. Here, the

n coefficients of the polynomial act as control variables. Another important example

from numerical analysis with scalar control u includes the case A(u) := (A− u In)−1,

which corresponds to a continuous-time version of the celebrated shifted inverse power

iteration. In any case, for Ω(u) + S(u) := A(u) denoting the decomposition of A(u)

into skew-symmetric and symmetric part Ω and S, respectively, the equation

(3) Ṗ = [Ω(u), P ] +
[

[S(u), P ], P
]

defines a control system on the (n − 1)–dimensional real Grassmannian of rank 1

selfadjoint projection operators of R
n. A natural question then is, whether one can

always steer this system from any initial point to a desired target point, e.g. to a one-

dimensional eigenspace of A. A partial answer towards this problem is given in this

paper. However, in the special case, where A(u) = (A− u In)−1, the one-dimensional

eigenspaces of A are fixed points of (3) so that neither controllability nor accessibility

from any initial point can be expected. Thus, in the presence of fixed points, the
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subsequent results based on the classification of transitive Lie group actions are not

powerful enough to capture the fine structure of the set of accessible points, e.g. they

do not provide necessary conditions for accessibility from almost all initial points. For

results in this direction further arguments on almost homogeneous spaces are needed.

Proceeding in a different direction, one can try to estimate the projective lines

[x(t)] = R x(t) of non-zero state trajectories of bilinear control systems

(4) ẋ(t) =
(

A + u(t)B
)

x(t)

from perspective output measurements y(t) = [Cx(t)]. This is a interesting problem

in computer vision and observability conditions analogous to the celebrated Hautus-

Popov criterion are available; see [14, 27]. The induced flow of (4) on the real projec-

tive space P
n−1 is equivalent to the double bracket flow (3); see Section 3 for further

details. Thus, the combination of control and perspective estimation problems leads

to interesting control tasks for generalized double bracket flows, e.g. by finding con-

trols that steer an initial state to a target space, defined by minimizing a cost function

on the outputs.

In the sequel, we will not address these challenging issues and specific examples

in any more detail, but rather focus on the characterization of controllability and

accessibility properties of the general system (1) on Grassmannians. The paper is

structured as follows. In Section 2, we present simple and well-known facts on the

control of systems on homogeneous spaces. In Section 3, we derive a necessary and

sufficient accessibility condition for system (1) in terms of the associated system Lie

algebra. This main result exploits the known classification of matrix Lie groups that

act transitively on Grassmann manifolds. The same line of reasoning has been used

earlier by Brockett [6] to analyze controllability of bilinear systems on spheres. We

deduce a simple controllability criterion for (1). An extension to generalized double

bracket flows on Lagrangian Grassmannians is treated as well. In Section 4, we

apply these results to characterize accessibility of controlled matrix Riccati differential

equations. This part of our paper complements previous work by Rosenthal [27] on

the dual problem of observability for the Riccati equation.

2. Preliminaries. In this section we recall some well-known definitions and facts

on control system which are induced by a smooth Lie group action; see e.g. [20] for

further details on nonlinear control. To simplify notation, we assume that G is a closed

matrix Lie group, i.e. a closed Lie subgroup of the group GLn(K) of real (K = R)

or complex (K = C) invertible n × n–matrices. Let g denote its matrix Lie algebra,

which is thus a Lie subalgebra of gln(K) := K
n×n with Lie bracket [A, B] := AB−BA.

Consider a right invariant control system on G

(5) (Σ) ġ = A(u)g, g(0) = In,
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where u 7→ A(u) ∈ g denotes an arbitrary map from a control set U ⊂ R
m to

the Lie algebra g. Let M be a connected smooth manifold and α : G × M → G,

(g, p) 7→ α(g, p) = g · p be a smooth left group action of G on M . Then, the induced

control system on M is

(6) (̂Σ) ṗ = fu(p) := D1 α(In, p)A(u).

Conversely, Σ is said to be a group lift of ̂Σ. Clearly, one has the following relation

between the solutions of Σ and ̂Σ. We omit the straightforward proof.

Lemma 1. Let u : [0, T ] → U be any piecewise constant control and let g : [0, T ] →
G be the corresponding unique solution of Σ. Then p(t) := α

(

g(t), p0

)

is a solution of

̂Σ. Moreover, any trajectory of ̂Σ, with piecewise constant controls, can be obtained

in this way.

The orbit of Σ through In is called the systems group of Σ. It is defined by the

subgroup

(7) G := O(In) := 〈etA(u) | u ∈ U, t ∈ R〉 ⊂ G

generated by the one-parameter groups t 7→ etA(u). It can be shown that G is actually

a Lie subgroup of G with Lie algebra

(8) L := L(G) = 〈A(u) | u ∈ U〉 ⊂ g

generated by {A(u) | u ∈ U}. Thus, L is called the system algebra of Σ. Similarly,

for ̂Σ let

(9) ̂G := 〈Φu,t | u ∈ U, t ∈ R〉,

be the group generated by all diffeomorphisms Φu,t, where Φu,t denotes the flow which

corresponds to the vector field fu. Let

(10) O(p0) := {Φ(p0) | Φ ∈ ̂G}

denote the associated group orbit. Hence, ̂G is a subgroup of the diffeomorphism

group Diff(M). Furthermore, let S and ̂S denote the system semi-groups obtained

by restricting t ≥ 0 in the definitions of G and ̂G, respectively. Thus the reachable

sets R(In) = S and R(p0) = ̂S · p0 are semigroup orbits of In and p0, respectively. A

control system is called accessible if all reachable sets have non-empty interior, and

controllable if all reachable sets coincide with the entire state space. In the sequel, let

V F (M) be the Lie–algebra of all smooth vector fields on M endowed with its standard

Lie algebra structure, i.e. [X, Y ] := LXY , where LXY denotes the Lie derivative of

vector fields X, Y ∈ V F (M). Moreover, let

(11) Γα : G → Diff(M), g 7→ αg(·) := α(g, ·)
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denote the canonical representation of G, associated with the Lie group action α.

Proposition 2 ([21]). One has Γα(G) = ̂G and Γα(S) = ̂S. The map

(12) ξ : g → V F (M), A 7→ ξA := −D1 α(In, · )A

is a Lie algebra homomorphism. Moreover, the pull-back of ξA under the diffeomor-

phism αg satisfies α∗
g(ξA) = ξAd

g−1 (A) with Adg−1(A) := g−1Ag.

Corollary 3.

(a) The group ̂G acts transitively on M if and only if G acts transitively on M .

(b) The induced system ̂Σ is controllable if and only if S acts transitively on M .

We briefly recall the so-called Lie algebra rank condition. A control system defined

on a manifold M satisfies the Lie algebra rank condition if the Lie subalgebra F ⊂
V F (M), generated by the vector fields of the control system by taking iterated Lie

derivatives, satisfies Tp M = {f(p) | f ∈ F} for all p ∈ M .

Corollary 4. The induced system ̂Σ satisfies the Lie algebra rank condition if

and only if the map ξp : L → Tp M , A 7→ ξA(p) is onto for all p ∈ M . Moreover, the

Lie subalgebra F generated by the vector fields of ̂Σ has constant rank along α-orbits.

Proof. The first assertion is a straightforward consequence of the homomorphism

property of ξ. The second one follows from the identity D1 α(In, p) g = Tp Oα(p) and

the pull-back property α∗
g(ξA) = ξAd

g−1 (A).

The following basic result relates accessibility of ̂Σ to transitivity of the system group

action on M .

Proposition 5. The following statements are equivalent:

(a) The induced system ̂Σ is accessible.

(b) The group G acts transitively on M .

(c) The induced system ̂Σ satisfies the Lie algebra rank condition.

Proof. First, assume that ̂Σ is accessible, i.e. R(p0) contains an interior point

for all p0 ∈ M . Hence, each orbit O(p0) has non-empty interior and thus O(p0)

is open for all p0 ∈ M . Then, the connectedness of M implies O(p0) = M for all

p0 ∈ M . Now, from Corollary 3 we conclude that G acts transitively on M . If G acts

transitively on M , then by Corollary 3 one has O(p0) = M for all p0 ∈ M . Thus,

Corollary 4 implies that the Lie subalgebra generated by the control vector fields of

̂Σ has constant rank on M . Thus, the Frobenius theorem guarantees the Lie algebra

rank condition, as otherwise one would obtain the contradiction dimO(p0) < dimM .

Finally, it is well-known that accessibility follows from the Lie algebra rank condition

[20]. This completes the proof.

Corollary 6. If G is compact, then one has the equivalence:

̂Σ is controllable ⇐⇒ G acts transitively on M .

Proof. The compactness of G implies the equality G = S, cf. [19, 20]. Hence, the

result follows immediately from Corollary 3.
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We emphasize, that Corollary 6 becomes false if compactness of G is replaced by com-

pactness of M . A counter-example appears at the end of Section 3. For control affine

systems, Corollary 6 can be strengthened significantly. Here, we give two different

generalizations. A right-invariant system Σ is said to be control affine, if A(u) is of

the form

(13) A(u) = A0 +

m
∑

k=1

ukAk, u := (u1, . . . , um)⊤ ∈ U ⊂ R
m

with A0, A1, . . . , Am ∈ g. Here, A0 is called the drift term of Σ and the A1, . . . , Am

are referred to as control terms. Moreover, we assume that the following condition is

satisfied:

(∗) The origin of R
m is an interior point of the convex hull of U .

The Lie subalgebra generated by the control terms is denoted by L0 and the corre-

sponding Lie subgroup by G0. The following two results yield useful sufficient condi-

tions for checking controllability.

Theorem 7. Let Σ be control affine with drift term A0 and ξ : g → V F (M) be

given by (12). If there exists K0 ∈ ker ξ such that the one-parameter group et(A0+K0),

t ∈ R, is contained in some compact subgroup of G, then the following statements are

equivalent:

(a) The induced system ̂Σ is controllable.

(b) The induced system ̂Σ is accessible.

(c) The group G acts transitively on M .

Proof. By Proposition 5, it is sufficient to show the equivalence (a) ⇐⇒ (b).

Obviously, (a) implies (b), Therefore, we are left with proving the implication (b)

=⇒ (a). By the above compactness assumption, the right-invariant vector field g 7→
(A0 + K0)g is (weakly) positively Poisson stable. Thus, the induced vector field

ξA0
= ξA0+K0

is also (weakly) positively Poisson stable and therefore the Lie algebra

rank condition, which holds by Proposition 5, together with condition (∗) implies

controllability.

From a previous remark we know that compactness of M together with accessibil-

ity of the system is not sufficient to guarantee controllability of ̂Σ. Therefore, one

needs an additional assumption to exploit the compactness of M for controllability.

For instance, if the induced drift vector field is Hamiltonian, the compactness of M

guarantees again positive Poisson stability and therefore controllability of ̂Σ.

Proposition 8. Let Σ be control affine with drift term A0 and unbounded control

set U = R
m. If the closure of the convex hull of the adjoint orbit AdG0

(A0) :=

{gA0g
−1 | g ∈ G0} intersects the open half space R

−A0 + ker ξ := {λA0 + K | λ <

0, K ∈ ker ξ}, then accessibility of the induced system ̂Σ is equivalent to controllability.

Proof. Since controllability implies accessibility it suffices to show the converse.

Moreover, the kernel of ξ is the Lie subalgebra of the closed subgroup Γ−1

α (idM ) :=
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{g ∈ G | αg = idM}. Thus, G′ := G/Γ−1

α (idM ) is a Lie group and α has a natural

restriction to G′ which acts effectively on M . Therefore, we can assume without loss of

generality that the closure of the convex hull of the adjoint orbit AdG0
(A0) intersects

the open half line R
−A0. Now, since the controls can be chosen arbitrarily in R

m, a

standard argument shows that the exp
(

tAdg(A0)
)

, t > 0 is contained in the closure

of S (relative to G). The same applies to all A′ in the closure of the convex hull of

the adjoint orbit AdG0
(A0), i.e. exp

(

tA′) ∈ clG(S) for all t > 0. Thus, by the above

assumption exp(−tA0) ∈ clG(S) for t > 0. This, however, implies clG(S) = G and

therefore S = G, cf. [20].

An illustrative application of the previous result is given after Corollary 15.

3. Generalized Double Bracket Flow. We now analyze the controllability

properties of the generalized double bracket equation (gdbe)

(14) Ẋ = [Ω(u), X ] +
[

[S(u), X ], X
]

.

Throughout the remaining sections the set of admissible controls is supposed to con-

tain at least all piecewise constant controls with arbitrary values in U := R
n. More-

over, Ω(u) and S(u) are either real skew-symmetric and symmetric, respectively, or

complex skew-Hermitian and Hermitian, respectively. Thus, A(u) := Ω(u)+ S(u) de-

notes an arbitrary real or complex n× n-matrix. For symmetric A(u) = A, Equation

(14) reduces to Brockett’s double bracket equation (dbe)

(15) Ẋ =
[

[A, X ], X
]

on symmetric matrices X , cf. [7, 8, 9, 10]. Thus, (14) constitutes a natural general-

ization of Brockett’s equation. Both systems (15) and (14) define isospectral flows on

the set of real symmetric (complex Hermitian) matrices. In this paper, we focus on

the simplified situation, where X is an arbitrary selfadjoint or Hermitian projection

operator of rank k. For the sake of clarity, we first discuss the complex, i.e. Hermitian

case. Later on, we summarize the corresponding results for real selfadjoint projection

operators. Finally, we also address the symplectic case.

Clearly, the gdbe evolves on the unitary similarity orbit of its initial value X(0) =

X0. Thus, if X0 is a Hermitian projection operator of rank k, Equation (14) restricts

to a control system on the complex Grassmannian Grassk,n(C). Furthermore, it is

straightforward to see that (14) can also be regarded as a control system on the

complex Grassmann manifold of k-dimensional subspaces of C
n. This relation will be

heavily exploited in the sequel. Therefore, we briefly review some well-known facts

on Grassmannians and the Grassmann manifold.

Let gln(C) := C
n×n be the set of all complex n × n-matrices and let sln(C) ⊂

gln(C) be the Lie subalgebra of all complex n×n-matrices with trace zero. Moreover,

let GLn(C) be the set of all invertible n × n-matrices and let SLn(C) ⊂ GLn(C) be
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the closed Lie subgroup of all invertible n × n-matrices with determinant one. The

Grassmannian Grassk,n(C) is defined as the set of all Hermitian n × n-projection

operators of rank k, i.e.

(16) Grassk,n(C) := {X ∈ C
n×n | X = X∗, X2 = X, trX = k}.

Here, M∗ := M
⊤

denotes the conjugate transpose of a matrix. In contrast, the Grass-

mann manifold Gk,n(C) is given as the set of all complex k-dimensional subspaces of

C
n, i.e.

(17) Gk,n(C) := {V ⊂ C
n | V complex linear subspace, dimV = k}.

Note, that Grassk,n(C) and Gk,n(C) carry natural real analytic manifold structures.

More precisely, Grassk,n(C) can be viewed as a homogeneous orbit of a compact Lie

group action on C
n×n and thus constitutes a real analytic submanifold of C

n×n,

whereas Gk,n(C) can be equipped with a quotient manifold structure via coordinate

charts.

Lemma 9 ([16]). The manifolds Grassk,n(C) and Gk,n(C) are diffeomorphic via

the real analytic map µ : Grassk,n(C) → Gk,n(C), X 7→ Im X.

The gdbe as induced system. Clearly, any right invariant control system

(18) ġ = A(u)g, g(0) = In

on GLn(C) induces by the left action β : (g, V ) 7→ gV a control system on Gk,n(C).

By Lemma 9, the β-action can be pulled–back to the Grassmannian Grassk,n(C) via

α := µ−1
(

β( ·, µ(·))
)

and therefore (18) induces a control system on Grassk,n(C).

Next, we show that this construction yields exactly the generalized double bracket

flow. The proof of Lemma 10 below is obtained by a straightforward computation,

using the fact, that (19) does not depend on the choice of the factors R and R∗ in the

decomposition X = RR∗.

Lemma 10. For any full rank factorization X = RR∗ ∈ Grassk,n(C) with R∗R =

Ik, the GLn(C)–action α := µ−1
(

β( ·, µ(·))
)

on Grassk,n(C) is given by

(19) α : (g, X) 7→ gR
(

R∗g∗gR
)−1

R∗g∗.

Lemma 10 leads to an explicit formula for the α-induced vector fields on Grassk,n(C).

It therefore shows how the gdbe is related with a linear induced flow on Gk,n(C).

Proposition 11. Let A := Ω + S ∈ gln(C) be a constant matrix with Ω skew

Hermitian and S Hermitian and let g 7→ Ag be the corresponding right invariant

vector field on GLn(C). Then the vector field on Grassk,n(C) induced by α is

(20) D1 α(In, X)A = [Ω, X ] +
[

[S, X ], X
]

.
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Proof. Consider the solution t 7→ etA of the linear system (18). Then, we know

that t → α(etA, X) yields a solution of the induced vector field. Now, let X = RR∗

with R∗R = Ik. Hence, from Lemma 10 we obtain

D1 α(In, X)A =
d

d t
α(etA, X)

∣

∣

∣

t=0

=
d

d t
etAR

(

R∗etA∗

etAR
)−1

R∗etA∗
∣

∣

∣

t=0

= AX + XA∗ − X(A∗ + A)X

= [Ω, X ] + SX + XS − 2XSX = [Ω, X ] +
[

[S, X ], X
]

and thus the induced vector field satisfies (20).

The following result is therefore an immediate consequence of Lemma 1 and 9 together

with Proposition 11.

Corollary 12. Let A := Ω + S ∈ gln(C) with Ω skew Hermitian and S Hermi-

tian. The unique solution X(t) of the gdbe on the Grassmannian

(21) Ẋ = [Ω, X ] +
[

[S, X ], X
]

, X(0) = X0 ∈ Grassk,n(C)

with X0 = R0R
∗
0

and R∗
0
R0 = Ik, is given by

(22) X(t) = etAR0

(

R∗
0
etA∗

etAR0

)−1

R∗
0
etA∗

.

Moreover, Im X(t) = etAIm X0 holds for all t ∈ R.

To compute the Lie algebra homomorphism ξ of Proposition 2 induced by −D1 α(In, · )
we introduce the following notation. For Ω skew-Hermitian and S Hermitian, let ζΩ

and ηS be vector fields on Grassk,n(C) given by

(23) ζΩ : Grassk,n(C) → TGrassk,n(C), X 7→ ζΩ(X) := [Ω, X ]

and

(24) ηS : Grassk,n(C) → T Grassk,n(C), X 7→ ηS(X) :=
[

[S, X ], X
]

.

Theorem 13. The map ξ : gln(C) → V F
(

Grassk,n(C)
)

, A 7→ ξA = −ζΩ−ηS is a

Lie algebra homomorphism, where Ω and S denote the skew-Hermitian and Hermitian

part of A, respectively. In particular, for Ω1, Ω2 skew-Hermitian and S1, S2 Hermitian

one has the Lie-brackets relations

[ζΩ1
, ζΩ2

] = −ζ[Ω1,Ω2]
,

[ζΩ1
, ηS1

] = −η[Ω1,S1]
,

[ηS1
, ηS2

] = −ζ[S1,S2]
,

(25)

The kernel of ξ is given by C ·In. Thus, the restriction ξ : sln(C) → V F
(

Grassk,n(C)
)

is a Lie algebra isomorphism onto the image of ξ.
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Proof. Clearly, by Proposition 11 we have ξ = −D1 α(In, · ) and thus the first as-

sertion follows immediately from Proposition 2. The identities in (25) are obtained by

the usual commutator relations for Hermitian and skew-Hermitian matrices. Hence,

we are left with the computation of the kernel of ξ. Let A = Ω + S ∈ C
n×n with Ω

skew-Hermitian and S Hermitian and suppose ξA = 0, i.e.

(26) [Ω, X ] +
[

[S, X ], X
]

= 0 for all X ∈ Grassk,n(C).

Then, the identity Grassk,n(C) =
{

Θ
[

Ik 0

0 0

]

Θ∗ | Θ ∈ SUn

}

implies that (26) is

equivalent to

(27)

[

Θ∗ΩΘ,

[

Ik 0

0 0

]]

+

[[

Θ∗SΘ,

[

Ik 0

0 0

]]

,

[

Ik 0

0 0

]]

= 0 for all Θ ∈ SUn,

where SUn denotes the set of all special unitary n × n-matrices. Now, define ̂Ω :=
[

̂Ω11
̂Ω12

̂Ω21
̂Ω22

]

:= Θ∗ΩΘ and ̂S :=
[

̂S11
̂S12

̂S21
̂S22

]

:= Θ∗SΘ. Then (27) yields

(28)

[

0 −̂Ω12

̂Ω21 0

]

+

[

0 ̂S12

̂S21 0

]

= 0 for all ̂Ω, ̂S,

which further implies

(29) Θ∗AΘ = Θ∗ΩΘ + Θ∗SΘ =

[

∗ ∗
0 ∗

]

for all Θ ∈ SUn.

It follows that Θ
[

Ik

0

]

is an A-invariant subspace for all Θ ∈ SUn, i.e. all V ∈ Gk,n(C)

are invariant subspaces of A. Thus A = λ In with λ ∈ C and hence ker ξ = C · In. The

result follows.

Accessibility and Controllability. Let A0, A1, . . . , Am ∈ gln(C) and A(u) :=

A0 +
∑m

j=1
ujAj = Ω(u) + S(u) with u := (u1, . . . , um)⊤ ∈ R

m, where Ω(u) and S(u)

denote the skew-Hermitian and Hermitian part of A(u), respectively. Moreover, let G
and L be the corresponding system group and system algebra, cf. (7) and (8). Thus,

we are prepared to apply the accessibility and controllability results of Section 2 to

the gdbe

(30) Ẋ = [Ω(u), X ] +
[

[S(u), X ], X
]

, X(0) = X0 ∈ Grassk,n(C).

evolving on the Grassmannian Grassk,n(C).

Proposition 14. The generalized double bracket equation (30) is accessible on

Grassk,n(C) if and only if the system group G acts transitively on the Grassmann

manifold Gk,n(C).

Proof. From Proposition 11 we readily concluded that the gdbe (30) coincides

with the α-induced system on Grassk,n(C). Thus, Proposition 5 says that accessibility
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is equivalent to transitive group action of G on Grassk,n(C). By construction, however,

the action of α on Grassk,n(C) and the linear action of G on Gk,n(C) are related via

the diffeomorphism µ, cf. Lemma 9 and 10. Thus, transitivity of G on Grassk,n(C) is

equivalent to transitivity of G on Gk,n(C).

Now, combining Theorem 7 and 13 as well as Proposition 8 yields the following suffi-

cient controllability conditions for the gdbe. For the definition of G0 see the paragraph

before Theorem 7.

Corollary 15. With the same notation as in Proposition 8 one has.

(a) If the drift term A0 is of the form A0 = Ω0 + λ In with λ ∈ C and Ω0 skew-

Hermitian, then controllability of the generalized double bracket equation (30)

is equivalent to its accessibility.

(b) If the closure of the convex hull of the adjoint orbit AdG0
(A0) intersects the

half space R
−A0 + C In, then controllability of the generalized double bracket

equation (30) is equivalent to its accessibility.

A similar result for the linear induced flow on the real Grassmann manifold Gk,n(R)

can be found in [20], Ch. 6, Thm. 5. However, part (a) and (b) of the cited result is

somewhat incomplete; a closedness assumption on the subgroup H is missing.

With regard to the classical dbe

(31) Ẋ =
[

[A(u), X ], X
]

with symmetric A0, . . . , Am, the condition of Corollary 15(b) can only be fulfilled if

there is more than one control term Aj . Then, however, the Lie algebra L0 gen-

erated by the control terms is known to coincide generically with sln(C) or gln(C),

cf. [20], and controllability follows straightforwardly without referring to Corollary

15(b). Therefore, it is of interest to see a non-trivial application of Corollary 15(b),

i.e. an example where controllability holds, while L0 does not coincide with sln(C) or

gln(C). Let

(32) A0 := H0 + I4 with H0 :=













1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3













and let {A1, A2} be any generating set of the Lie algebra

(33) {Z1 ⊗ I2 + I2 ⊗Z1 | Z1, Z2 ∈ sl2(C)},

where ⊗ denotes the Kronecker product of matrices. Then G0 = SL2(C) ⊗ SL2(C) (

SL4(C). However, G0 contains a subgroup Π of the Weyl group of SL4(C) (i.e of the

group of all ‘signed’ permutation matrices) such that the convex hull of the orbit

{ΘH0Θ
∗ | Θ ∈ Π} intersects R

−H0. Thus, the adjoint orbit AdG0
(A0) satisfies the
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hypothesis of Corollary 15(b). Moreover, it is easy to check that the set {A0, A1, A2}
generates gl4(C). Hence, the dbe

(34) Ẋ =
[

[A0 + u1A1 + u2A2, X ], X
]

with (u1, u2)
⊤ ∈ R

2 is controllable on Grassk,4(C) for all 1 ≤ k ≤ 3. Yet, L0 6= sl4(C)

and L0 6= gl4(C).

Above, we have seen that accessibility of the gdbe is equivalent to transitivity

of the system group action on a corresponding Grassmann manifold. Now, Völklein

has completely characterized all connected linear matrix groups which act transitively

on Grassmann manifolds. Here, we state only that part of Völklein’s work which is

relevant for us.

Theorem 16 ([30]). Let G be a connected Lie subgroup of GLn(C).

(a) If n ∈ N is odd, then G acts transitively on Gk,n(C) if and only if G is a

direct product of the form G = Z · G0, where Z is a connected Lie subgroup

of C
∗ In and G0 is conjugate to SLn(C) or SUn.

(b) If n ∈ N is even, then one has to distinguish two cases:

(i) For 1 < k < n, transitivity holds if and only if Z and G0 satisfy the

conditions of (a).

(ii) For k = 1 or k = n− 1, transitivity holds if and only if Z is a connected

Lie subgroup of C
∗ In and G0 is conjugate to SLn(C), SUn, SLn/2(H),

Spn/2
(C) or Spn/2

.

Here, SUn and Spn/2
denote the special unitary and the compact symplectic group,

respectively. Spn/2
(C) is the non-compact complex symplectic group and SLn/2(H)

the special linear group of H
n/2 embedded in SLn(C), where H denotes the quaternions

[12]. By combining Völklein’s result with Theorem 14 we conclude that the gdbe (30)

is accessible if and only if the system group G is conjugate to one of the groups listed

above. Hence, the subsequent theorem follows readily from the fact that the Lie

algebra of G is given by the system Lie algebra L.

Theorem 17. Let L denote the system Lie algebra generated by A(u), u ∈
R

m. The generalized double bracket equation (30) is accessible on the Grassmannian

Grassk,n(C) if and only if

(a) L = z ⊕ L0, where z is a Lie subalgebra of C In and L0 is equal to sln(C) or

conjugate to sun, if n is odd or 1 < k < n.

(b) L = z ⊕ L0, where z is a Lie subalgebra of C In and L0 is equal to sln(C)

or conjugate to sun, sln/2(H), spn/2(C) or spn/2, if n is even and k = 1 or

k = n − 1.

Observe, that Theorem 17 and Corollary 15 lead to a simple purely algebraic control-

lability test for the gdbe. Next, we specify the previous result to the double bracket

equation. In this case, all compact candidates in Theorem 17 can be excluded. Note,
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however, that all remaining Lie algebras of Corollary 18 can indeed occur as system

Lie algebra of the dbe.

Corollary 18. Let L denote the system Lie algebra generated by the Hermitian

matrices A(u), u ∈ R
m. The double bracket equation

(35) Ẋ =
[

[A(u), X ], X
]

, X(0) = X0 ∈ Grassk,n(C)

is accessible on the Grassmannian Grassk,n(C) if and only if

(a) L = z ⊕ sln(C), where z is either trivial or R In, if n is odd or 1 < k < n.

(b) L = z ⊕ L0, where z is either trivial or R In and L0 is conjugate to sln(C),

sln/2(H) or spn/2
(C), if n is even and k=1 or k=n − 1.

Finally, we give an example of an accessible, but non-controllable dbe on the

complex projective line CP
1 = Grass1,2(C), proving a previous remark of Section 2.

For a ∈ R and w ∈ C with Re w ≥ 0 let

(36) S0 :=

[

a w

w −a

]

and S1 :=

[

1 0

0 −1

]

.

Consider the system

(37) ż = (S0 + uS)z

with u ∈ R on C
2 \ {0} and the non-convex cone

C := {z = (z1, z2)
⊤ ∈ C

2 \ {0} | Re z1z2 ≥ 0} ( C
2 \ {0}.

Then any solution z(t) of (37) satisfies

d

d t

(

Re z1(t)z2(t)
)

=
(

|z1(t)|2 + |z2(t)|2
)

Re w ≥ 0.(38)

Hence, the set C is positively invariant under the flow of (37). Therefore, R(z) ⊂ C for

all z ∈ C and thus (37) is not controllable on C
2 \ {0}. Note, that C is invariant under

scalar multiplication by non-zero complex numbers and thus defines a proper subset

of Grass1,2(C). Then, controllability fails also for the induced system on Grass1,2(C).

Finally, it is straightforward to show that the Lie algebra generated by S0 and S is

equal to sl2(C) for a generic choice of a and w. A similar construction can be carried

out for Rew ≤ 0 and ̂C := {z = (z1, z2)
⊤ ∈ C

2 \ {0} | Re z1z2 ≤ 0}. This implies that

the double-bracket flow

(39) Ẋ =
[

[S0 + uS, X ], X
]

is in general accessible but never controllable on Grass1,2(C).

Remark 19. It is known that the control system

(40) Ẋ = (A0 + u1A1)X, u ∈ R,
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where A0 and A1 are symmetric with trace zero, is never controllable on SLn(R) for

n = 2 and n = 3, e.g. [28]. Hence, Theorem 20 below implies that (39) is never

controllable on Grassk,n(R) for n = 2, n = 3 and 1 ≤ k ≤ n−1. Jurdjevic and Kupka

conjectured that controllability of (40) fails for all n ∈ N. According to Theorem 20

below, this is equivalent to the double bracket equation (39) being never controllable

on Grassk,n(R) for 1 < k < n− 1. (Note, that for symmetric A0 and A1, the compact

Lie algebras son, g
2

and spin
7

can be excluded from the list in Theorem 20).

The real and symplectic case. In this subsection, we summarize the corre-

sponding results for the real and symplectic gdbe. Thereby, the real case can be

treated completely by the same techniques as before—yet the classification of all

groups acting transitively on real Grassmann manifolds becomes much more involved

[30]. For the symplectic gdbe, we need to classify all groups acting transitively on

Lagrangian Grassmann manifolds; a case which was not studied by Völklein. The only

reference for this case we are aware of is the unpublished diploma thesis by H. Kramer

at the University Würzburg (2001). Therefore, we will sketch the proof after Theorem

21.

Real case. Let A0, A1, . . . Am ∈ gln(R) and A(u) := A0 +
∑m

j=1
ujAj = Ω(u) +

S(u) with u := (u1, . . . , um)⊤ ∈ R
m, where Ω(u) and S(u) denote the skew-symmetric

and symmetric part of A(u), respectively. Then the real gdbe is given by

(41) Ẋ = [Ω(u), X ] +
[

[S(u), X ], X
]

, X(0) = X0 ∈ Grassk,n(R),

where Grassk,n(R) := {X ∈ R
n×n | X = X⊤, X2 = X, trX = k} denotes the

Grassmannian of all real selfadjoint projectors of rank k.

Theorem 20. Let L denote the system Lie algebra generated by A(u), u ∈ R
m.

(a) The generalized double bracket equation (41) is accessible on the real Grass-

mannian Grassk,n(R) with 1 < k < n if and only if L = z ⊕ L0, where z is

a Lie subalgebra of the centralizer of L0 and L0 is conjugate to one of the

following cases:

(i) sln(R), son

(ii) g2 for n = 7 and k ∈ {2, 5},
(iii) spin

7
for n = 8 and k ∈ {2, 3, 5, 6}.

(b) The generalized double bracket equation (41) is accessible on the real Grass-

mannian Grass1,n(R) (and Grassn−1,n(R)) if and only if L = z ⊕L0, where

z is a Lie subalgebra of the centralizer of L0 and L0 is conjugate to one of the

following cases:

(i) sln(R), spn(R), son

(ii) sln/2(C), sun/2 for n even,

(iii) sln/4(H), spn/2
(C), spn/4

for n ≡ 0 mod 4,

(iv) g2 for n = 7,
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(v) spin
7

for n = 8,

(vi) spin9, spin9,1(R) for n = 16.

Here, son and spn(R) denote the Lie algebras of the special orthogonal and real

symplectic group, respectively. A matrix representation of g2, the compact real form

of g∗
2
, cf. [17], can be obtained by intersecting g∗

2
with su7. For the spin Lie algebras

see e.g. [12, 26]. Note, that spin
7

and spin
9

are compact Lie algebras.

Symplectic case. Let A0, . . . , Am ∈ spn(C) be arbitrary complex Hamiltonian

matrices and let A(u) := A0 +
∑m

j=1
ujAj = Ω(u) + S(u) with u := (u1, . . . , um)⊤ ∈

R
m, where Ω(u) and S(u) denote the skew-Hermitian and Hermitian part of A(u),

respectively. Moreover, let

Jn :=

[

0 In

−In 0

]

denote the standard symplectic form on C
2n. Then the complex symplectic gdbe is

given by

(42) Ẋ = [Ω(u), X ] +
[

[S(u), X ], X
]

, X(0) = X0 ∈ LGrassn(C),

where LGrassn(C) := {X ∈ Grassn,2n(C) | X⊤ Jn X = 0} denotes the complex La-

grangian Grassmannian of all Hermitian projectors onto Lagrangian subspaces. Simi-

larly, for real Hamiltonian matrices A0, A1, . . . Am ∈ spn(R) one has the real symplectic

gdbe on the real Lagrangian Grassmannian

LGrassn(R) := {X ∈ Grassn,2n(R) | X⊤ Jn X = 0}.

Theorem 21. Let L denote the system Lie algebra generated by A(u), u ∈ R
m.

(a) The complex symplectic gdbe is accessible on the complex Lagrangian Grass-

mannian LGrassn(C) if and only if L is equal to spn(C) or conjugate to

spn := u2n ∩ spn(C).

(b) The real symplectic gdbe is accessible on the real Lagrangian Grassmannian

LGrassn(R) if and only if L is equal to spn(R) or conjugate to ospn := so2n ∩
spn(R).

Proof. First, consider the complex case. Let X = RR∗ ∈ Grassn,2n(C) with

R∗R = In. Then, one has the equivalence

(43) X⊤ Jn X = 0 ⇐⇒ RR⊤ Jn RR∗ = 0 ⇐⇒ R⊤ Jn R = 0.

Thus, the diffeomorphism µ of Lemma 9 restricts to a diffeomorphism from

LGrassn(C) to the complex Lagrangian Grassmann manifold

(44) LGn(C) := {V ∈ Gn,2n(C) | v⊤ Jn v = 0 for all v ∈ V }.

According to the previous sections, one is therefore left with the problem of classifying

all connected Lie subgroups of Spn(C) which act transitively on LGn(C). Thus, part
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(a) follows easily from Proposition 22(a) below. The same line of arguments applies

to (b).

Proposition 22. A connected Lie subgroup G of Spn(K) with K = C or K = R

acts transitive on LGn(K) if and only if

(a) G is equal to Spn(C) or conjugate to Spn, if K = C.

(b) G is equal to Spn(R) or conjugate to OSpn := SO2n ∩Spn(R), if K = R.

Proof. (Sketch) First, it is straightforward to show that the compact symplectic

groups Spn and OSpn act transitively on LGrassn(C) and LGrassn(R), respectively.

Then, exploiting the classification of all irreducible factorizations of compact con-

nected simple Lie groups [25] one can derive that Spn and OSpn are up to conju-

gation the only compact subgroups which act transitively. Finally, let G ⊂ Spn(C)

be any connected Lie subgroup which acts transitively on LGn(C). Then a result

by Montgomery [23] implies that G contains a compact subgroup which already acts

transitively. Thus, G contains a subgroup which is conjugate to Spn. Since Spn is the

maximally compact connected subgroup of a Cartan decomposition of Spn(C) and

Spn(C) itself is simple, we conclude that G = Spn(C). The same arguments apply to

OSpn and Spn(R).

4. Accessibility of Riccati Equations. Due to the well–known connection

between linear induced flows on the Grassmann manifold and matrix Riccati differ-

ential equations [29], the above results readily translate to accessibility conditions

for Riccati equations. For K = R or K = C, let A(u) := A0 +
∑m

j=1
ujAj with

A0, A1, . . . Am ∈ gln(K) as before. Given any integer 1 ≤ k ≤ n−1 and a correspond-

ing partitioning

(45) A(u) =

[

A11(u) A12(u)

A21(u) A22(u)

]

∈ gln(K)

with A11(u) ∈ K
k×k, A22(u) ∈ K

(n−k)×(n−k) and A12(u) ∈ K
k×(n−k), A21(u) ∈

K
(n−k)×k, then we associate with A(u) a matrix Riccati differential equation

(46) K̇ = −KA11(u) + A22(u)K − KA12(u)K + A21(u),

where u ∈ R
m are controls parameters. Similarly, for 2n×2n-Hamiltonian matrices

(47) A(u) =

[

A11(u) A12(u)

A21(u) −A⊤
11

(u)

]

∈ spn(K) with A12(u), A21(u) symmetric,

we consider the matrix Riccati differential equation from optimal control

(48) K̇ = −KA11(u) − A⊤
11

(u)K − KA12(u)K + A21(u),

evolving on the space S(n) of (real and, respectively, complex) symmetric n × n-

matrices. Here, we are interested in necessary and sufficient conditions that guarantee
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accessibility for Riccati equations, i.e. conditions which guarantee that the reachable

sets of (46) and (48), respectively, have non-empty interior. To this end, we relate the

Riccati equation with the gdbe by the subsequent result.

Lemma 23.

(a) Let ρ : K
(n−k)×k → Grassk,n(K) be defined by

(49) ρ(K) :=

[

Ik

K

]

(Ik + K∗K)−1

[

Ik K∗
]

.

Then, ρ maps K
(n−k)×k diffeomorphically onto an open and dense subset of

Grassk,n(K). Moreover, restricting ρ to symmetric matrices for k = n
2

yields

a diffeomorphism onto an open dense subset of the Lagrangian Grassmannian

LGrassn(K).

(b) The push-forward of the Riccati vector field R(K) := −KA11 + A22K −
KA12K + A21 to Grassk,n(K) yields the generalized double bracket equation,

i.e.

(50) D ρ(K)R(K) = (In − P )AP + PA∗(In − P ) = [Ω, P ] +
[

[S, P ], P
]

with K := ρ−1(P ), Ω := 1

2
(A − A∗) and S := 1

2
(A + A∗).

Proof. The result follows either by a straightforward computation or from Corol-

lary 12 together with the well-known relation between matrix Riccati differential equa-

tions and linear induced flows on Grassmann manifolds [16, 29].

Thus, the results of the previous section imply the following accessibility criterion for

(46) and (48), respectively. We begin with the complex case of (46). For the real case

of (46), we refer to Theorem 20.

Theorem 24. Let A(u) ∈ gln(C) be partitioned as in (45) and let L be the system

Lie algebra generated by A(u), u ∈ R
m. The Riccati equation (46) is accessible if and

only if

(a) L = z ⊕ L0, where z is a Lie subalgebra of C In and L0 is equal to sln(C) or

conjugate to sun, if n is odd or 1 < k < n.

(b) L = z ⊕ L0, where z is a Lie subalgebra of C In and L0 is equal to sln(C)

or conjugate to sun, sln/2(H), spn/2
(C) or spn/2

, if n is even and k = 1 or

k = n − 1.

For the Riccati equation (48) we obtain.

Theorem 25. Let A(u) ∈ spn(C) be partitioned as in (47) and let L be the

system Lie algebra generated by A(u), u ∈ R
m.

(a) The complex Riccati equation (48) is accessible if and only if L is equal to

spn(C) or conjugate to spn := u2n ∩ spn(C).

(b) The real Riccati equation (48) is accessible if and only if L is equal to spn(R)

or conjugate to ospn := so2n ∩ spn(R).
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