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WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO

INFORMATION∗

STEVEN J. MILLER†

Abstract. We investigate a one-parameter family of probability densities (related to the Pareto

distribution, which describes many natural phenomena) where the Cramér-Rao inequality provides

no information.
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1. Cramér-Rao Inequality. One of the most important problems in statistics

is estimating a population parameter from a finite sample. As there are often many

different estimators, it is desirable to be able to compare them and say in what sense

one estimator is better than another. One common approach is to take the unbiased

estimator with smaller variance. For example, if X1, . . . , Xn are independent random

variables uniformly distributed on [0, θ], Yn = maxi Xi and X = (X1 + · · · + Xn)/n,

then n+1
n

Yn and 2X are both unbiased estimators of θ but the former has smaller

variance than the latter and therefore provides a tighter estimate.

Two natural questions are (1) which estimator has the minimum variance, and

(2) what bounds are available on the variance of an unbiased estimator? The first

question is very hard to solve in general. Progress towards its solution is given by the

Cramér-Rao inequality, which provides a lower bound for the variance of an unbiased

estimator (and thus if we find an estimator that achieves this, we can conclude that

we have a minimum variance unbiased estimator).

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with con-

tinuous parameter θ. Let X1, . . . , Xn be independent random variables with density

f(x; θ), and let Θ̂(X1, . . . , Xn) be an unbiased estimator of θ. Assume that f(x; θ)

satisfies two conditions:

1. we have

∂

∂θ

[∫
· · ·

∫
Θ̂(x1, . . . , xn)

n∏

i=1

f(xi; θ)dxi

]

=

∫
· · ·

∫
Θ̂(x1, . . . , xn)

∂
∏n

i=1 f(xi; θ)

∂θ
dx1 · · · dxn;(1.1)
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2. for each θ, the variance of Θ̂(X1, . . . , Xn) is finite.

Then

(1.2) var(Θ̂) ≥
1

nE

[(
∂ log f(x;θ)

∂θ

)2
],

where E denotes the expected value with respect to the probability density function

f(x; θ).

For a proof, see for example [CaBe]. The expected value in (1.2) is called the

information number or the Fisher information of the sample.

As variances are non-negative, the Cramér-Rao inequality (equation (1.2)) pro-

vides no useful bounds on the variance of an unbiased estimator if the information is

infinite, as in this case we obtain the trivial bound that the variance is greater than or

equal to zero. We find a simple one-parameter family of probability density functions

(related to the Pareto distribution) that satisfy the conditions of the Cramér-Rao

inequality, but the expectation (i.e., the information) is infinite. Explicitly, our main

result is

Theorem. Let

(1.3) f(x; θ) =





aθ x−θ log−3 x if x ≥ e

0 otherwise,

where aθ is chosen so that f(x; θ) is a probability density function. The information

is infinite when θ = 1. Equivalently, the Cramér-Rao inequality yields the trivial (and

useless) bound that Var(Θ̂) ≥ 0 for any unbiased estimator Θ̂ of θ when θ = 1.

In §2 we analyze the density in our theorem in great detail, deriving needed results

about aθ and its derivatives as well as discussing how f(x; θ) is related to important

distributions used to model many natural phenomena. We show the information is

infinite when θ = 1 in §3, which proves our theorem. We also discuss there properties

of estimators for θ. While it is not clear whether or not this distribution has an

unbiased estimator, there is (at least for θ close to 1) an asymptotically unbiased

estimator rapidly converging to θ as the sample size tends to infinity. By examining

the proof of the Cramér-Rao inequality we see that we may weaken the assumption of

an unbiased estimator. While typically there is a cost in such a generalization, as our

information is infinite there is no cost in our case. We may therefore conclude that

arguments such as those used to prove the Cramér-Rao inequality cannot provide any

information for estimators of θ from this distribution.
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2. An Almost Pareto Density. Consider

(2.1) f(x; θ) =





aθ/(xθ log3 x) if x ≥ e

0 otherwise,

where aθ is chosen so that f(x; θ) is a probability density function. Thus

(2.2)

∫ ∞

e

aθ

dx

xθ log3 x
= 1.

We chose to have log3 x in the denominator to ensure that the above integral converges,

as does log x times the integrand; however, the expected value (in the expectation in

(1.2)) will not converge.

For example, 1/x log x diverges (its integral looks like log log x) but 1/x log2 x

converges (its integral looks like 1/ logx); see pages 62–63 of [Rud] for more on close

sequences where one converges but the other does not. This distribution is close to the

Pareto distribution (or a power law). Pareto distributions are very useful in describing

many natural phenomena; see for example [DM, Ne, NM]. The inclusion of the factor

of log−3 x allows us to have the exponent of x in the density function equal 1 and

have the density function defined for arbitrarily large x; it is also needed in order to

apply the Dominated Convergence Theorem to justify some of the arguments below.

If we remove the logarithmic factors then we obtain a probability distribution only

if the density vanishes for large x. As log3 x is a very slowly varying function, our

distribution f(x; θ) may be of use in modeling data from an unbounded distribution

where one wants to allow a power law with exponent 1, but cannot as the resulting

probability integral would diverge. Such a situation occurs frequently in the Benford

Law literature; see [Hi, Rai] for more details.

We study the variance bounds for unbiased estimators Θ̂ of θ, and in particular

we show that when θ = 1 then the Cramér-Rao inequality yields a useless bound.

Note that it is not uncommon for the variance of an unbiased estimator to depend

on the value of the parameter being estimated. For example, consider again the

uniform distribution on [0, θ]. Let X denote the sample mean of n independent

observations, and Yn = max1≤i≤n Xi be the largest observation. The expected value

of 2X and n+1
n

Yn are both θ (implying each is an unbiased estimator for θ); however,

Var(2X) = θ2/3n and Var(n+1
n

Yn) = θ2/n(n + 1) both depend on θ, the parameter

being estimated (see, for example, page 324 of [MM] for these calculations).

Lemma 2.1. As a function of θ ∈ [1,∞), aθ is a strictly increasing function and

a1 = 2. It has a one-sided derivative at θ = 1, and daθ

dθ
∈ (0,∞).

Proof. We have

(2.3) aθ

∫ ∞

e

dx

xθ log3 x
= 1.
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When θ = 1 we have

(2.4) a1 =

[∫ ∞

e

dx

x log3 x

]−1

,

which is clearly positive and finite. In fact, a1 = 2 because the integral is

(2.5)

∫ ∞

e

dx

x log3 x
=

∫ ∞

e

log−3 x
d log x

dx
=

−1

2 log2 x

∣∣∣∣∣

∞

e

=
1

2
;

though all we need below is that a1 is finite and non-zero, we have chosen to start

integrating at e to make a1 easy to compute.

It is clear that aθ is strictly increasing with θ, as the integral in (2.4) is strictly

decreasing with increasing θ (because the integrand is decreasing with increasing θ).

We are left with determining the one-sided derivative of aθ at θ = 1, as the deriva-

tive at any other point is handled similarly (but with easier convergence arguments).

It is technically easier to study the derivative of 1/aθ, as

(2.6)
d

dθ

1

aθ

= −
1

a2
θ

daθ

dθ

and

(2.7)
1

aθ

=

∫ ∞

e

dx

xθ log3 x
.

The reason we consider the derivative of 1/aθ is that this avoids having to take the

derivative of the reciprocals of integrals. As a1 is finite and non-zero, it is easy to

pass to daθ

dθ
|θ=1. Thus we have

d

dθ

1

aθ

∣∣∣
θ=1

= lim
h→0+

1

h

[∫ ∞

e

dx

x1+h log3 x
−

∫ ∞

e

dx

x log3 x

]

= lim
h→0+

∫ ∞

e

1 − xh

h

1

xh

dx

x log3 x
.(2.8)

We want to interchange the integration with respect to x and the limit with respect

to h above. This interchange is permissible by the Dominated Convergence Theorem

(see Appendix A for details of the justification). Note

(2.9) lim
h→0+

1 − xh

h

1

xh
= − logx;

one way to see this is to use the limit of a product is the product of the limits, and

then use L’Hospital’s rule, writing xh as eh log x. Therefore

(2.10)
d

dθ

1

aθ

∣∣∣
θ=1

= −

∫ ∞

e

dx

x log2 x
;

as this is finite and non-zero, this completes the proof and shows daθ

dθ
|θ=1 ∈ (0,∞).
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Remark 2.2. We see now why we chose f(x; θ) = aθ/xθ log3 x instead of

f(x; θ) = aθ/xθ log2 x. If we only had two factors of log x in the denominator, then

the one-sided derivative of aθ at θ = 1 would be infinite.

Remark 2.3. Though the actual value of daθ

dθ
|θ=1 does not matter, we can com-

pute it quite easily. By (2.10) we have

d

dθ

1

aθ

∣∣∣
θ=1

= −

∫ ∞

e

dx

x log2 x

= −

∫ ∞

e

log−2 x
d log x

dx

=
1

log x

∣∣∣
∞

e
= −1.(2.11)

Thus by (2.6), and the fact that a1 = 2 (Lemma 2.1), we have

(2.12)
daθ

dθ

∣∣∣
θ=1

= −a2
1 ·

d

dθ

1

aθ

∣∣∣
θ=1

= 4.

3. Computing the Information. We now compute the expected value,

E

[(
∂ log f(x;θ)

∂θ

)2
]
; showing it is infinite when θ = 1 completes the proof of our main

result. Note

log f(x; θ) = log aθ − θ log x + log log−3 x

∂ log f(x; θ)

∂θ
=

1

aθ

daθ

dθ
− log x.(3.1)

By Lemma 2.1 we know that daθ

dθ
is finite for each θ ≥ 1. Thus

E

[(
∂ log f(x; θ)

∂θ

)2
]

= E

[(
1

aθ

daθ

dθ
− log x

)2
]

=

∫ ∞

e

(
1

aθ

daθ

dθ
− log x

)2

· aθ

dx

xθ log3 x
.(3.2)

If θ > 1 then the expectation is finite and non-zero. We are left with the interesting

case when θ = 1. As daθ

dθ
|θ=1 is finite and non-zero, for x sufficiently large (say x ≥ x1

for some x1, though by Remark 2.3 we see that we may take any x1 ≥ e4) we have

(3.3)

∣∣∣∣
1

a1

daθ

dθ

∣∣∣
θ=1

∣∣∣∣ ≤
log x

2
.
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Fig. 1. Plot of the median µ̃θ of f(x; θ) as a function of θ (µ̃1 = e

√
2).

As a1 = 2, we have

E

[(
∂ log f(x; θ)

∂θ

)2
] ∣∣∣∣∣

θ=1

≥

∫ ∞

x1

(
log x

2

)2

a1
dx

x log3 x

=

∫ ∞

x1

dx

2x log x

=
1

2

∫ ∞

x1

log−1 x
d log x

dx

=
1

2
log log x

∣∣∣
∞

x1

= ∞.(3.4)

Thus the expectation is infinite. Let Θ̂ be any unbiased estimator of θ. If θ = 1 then

the Cramér-Rao inequality gives

(3.5) var(Θ̂) ≥ 0,

which provides no information as variances are always non-negative. This completes

the proof of our theorem. �

We now discuss estimators for θ for our distribution f(x; θ). If X1, . . . , Xn are

n independent random variables with common distribution f(x; θ), then as n → ∞

the sample median converges to the population median µ̃θ (if n = 2m + 1 then the

sample median converges to being normally distributed with median µ̃θ and variance

1/8mf(µ̃θ; θ)
2; see for example Theorem 8.17 of [MM]). For θ close to 1 we see in

Figure 1 that the median µ̃θ of f(x; θ) is strictly decreasing with increasing θ, which

implies that there is an inverse function g such that g(µ̃θ) = θ. We obtain an estimator

to θ by applying g to the sample median. This estimator is a consistent estimator

(as the sample size tends to infinity it will tend to θ) and should be asymptotically

unbiased.
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The proof of the Cramér-Rao inequality starts with

(3.6) 0 = E

[∫
· · ·

∫ (
Θ̂(x1, . . . , xn) − θ

)
h(x1; θ) · · ·h(xn; θ)dx1 · · · dxn

]
,

where Θ̂(x1, . . . , xn) is an unbiased estimator of θ depending only on the sample values

x1, . . . , xn. In our case (when each h(x; θ) = f(x; θ)) we may not have an unbiased

estimator. If we denote this expectation by F(θ), for our investigations all that we

require is that dF(θ)/dθ is finite (which is easy to show). Going through the proof of

the Cramér-Rao inequality shows that the effect of this is to replace the factor of 1 in

(1.2) with (1 + dF(θ)/dθ)2; thus the generalization of the Cramér-Rao inequality for

our estimator is

(3.7) var(Θ̂) ≥

(
1 +

dF(θ)

dθ

)2 /
nE

[(
∂ log f(x; θ)

∂θ

)2
]

.

As our variance is infinite for θ = 1 we see that, no matter what ‘nice’ estimator we

use, we will not obtain any useful information from such arguments.

Appendix A. Applying the Dominated Convergence Theorem.

We justify applying the Dominated Convergence Theorem in the proof of Lemma

2.1. See, for example, [SS] for the conditions and a proof of the Dominated Conver-

gence Theorem.

Lemma A.1. For each fixed h > 0 and any x ≥ e, we have

(A.1)

∣∣∣∣
1 − xh

h

1

xh

∣∣∣∣ ≤ e logx,

and e log x

x log3 x
is positive and integrable, and dominates each 1−xh

h
1

xh

1
x log3 x

.

Proof. We first prove (A.1). As x ≥ e and h > 0, note xh ≥ 1. Consider the case

of 1/h ≤ log x. Since |1 − xh| < 1 + xh ≤ 2xh, we have

(A.2)
|1 − xh|

hxh
<

2xh

hxh
≤

2

h
≤ 2 logx.

We are left with the case of 1/h > log x, or h logx < 1. We have

|1 − xh| = |1 − eh log x|

=

∣∣∣∣∣1 −

∞∑

n=0

(h log x)n

n!

∣∣∣∣∣

= h log x

∞∑

n=1

(h log x)n−1

n!

< h log x

∞∑

n=1

(h log x)n−1

(n − 1)!
= h log x · eh log x.(A.3)
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This, combined with h log x < 1 and xh ≥ 1 yields

|1 − xh|

hxh
<

eh logx

h
= e log x.(A.4)

It is clear that e log x

x log3 x
is positive and integrable, and by L’Hospital’s rule (see (2.9))

we have that

(A.5) lim
h→0+

1 − xh

h

1

xh

1

x log3 x
= −

1

x log2 x
.

Thus the Dominated Convergence Theorem implies that

(A.6) lim
h→0+

∫ ∞

e

1 − xh

h

1

xh

dx

x log3 x
= −

∫ ∞

e

dx

x log2 x
= −1

(the last equality is derived in Remark 2.3).
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