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USING STOCHASTIC OPTIMIZATION METHODS FOR STOCK

SELLING DECISION MAKING AND OPTION PRICING:

NUMERICS AND BIAS AND VARIANCE DEPENDENT

CONVERGENCE RATES

J. BAO∗, A. BELU† , Y. GERSHON‡ , Y. J. LIU§ , G. YIN¶, AND Q. ZHANG‖

Abstract. This paper is concerned with using stochastic approximation and optimization meth-

ods for stock liquidation decision making and option pricing. For stock liquidation problem, we

present a class of stochastic recursive algorithms, and make comparisons of performances using

stochastic approximation methods and that of certain commonly used heuristic methods, such as

moving averaging method and moving maximum method. Stocks listed in NASDAQ are used for

making the comparisons. For option pricing, we design stochastic optimization algorithms and

present numerical experiments using data derived from Berkeley Options Data Base. An important

problem in these studies concerns the rate of convergence taking into consideration of bias and noise

variance. In an effort to ascertain the convergence rates incorporating the computational efforts, we

use a Liapunov function approach to obtain the desired convergence rates. Variants of the algorithms

are also suggested.

1. Introduction. The original motivation of stochastic approximation intro-

duced by Robbins and Monro [13] is concerned with finding roots of a continuous

function f(·), where either the precise form of the function is unknown, or it is too

complicated to compute; the experimenter is able to take “noisy” measurements at de-

sired values. A classical example is to find appropriate dosage level of a drug, provided

only f(x)+noise is available, where x is the level of dosage and f(x) is the probability

of success (leading to the recovery of the patient) at dosage level x. The classical

Kiefer–Wolfowitz (KW) algorithm introduced by Kiefer and Wolfowitz [6] concerns

the minimization of a real-valued function using only noisy functional measurements.

Tremendous progress has been made in the study of stochastic approximation meth-

ods for the past a half of century. The interesting theoretical issues in the analysis of

iteratively defined stochastic processes and a wide variety of applications focus on the
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basic paradigm of stochastic difference equations. Simple statistical treatment has

been substantially extended to accommodate complex stochastic dynamic systems.

Emerging applications have arisen in queueing theory, manufacturing and produc-

tion planning, adaptive control, signal processing, and wireless communications. A

most up-to-date development on stochastic approximation can be found in the recent

book [7] and references therein. This work continues our effort in using stochastic

approximation and optimization methods to make decisions for financial engineering

applications. Specifically, we focus our attention on stock selling decision making and

option pricing.

Investing in a financial market requires constantly making decision on timing

certain actions with respect to the market. Frequently, a question asked by a stock

holder is: What is the “best” time to sell the stock? The action of selling is taken to

realize one’s return or to cut short one’s loss. The term “best” here means either to

take profit or to stop loss in order to maximize an expected return over time. Likewise,

for portfolio manager involving options, a question of concern, for example, is: When

should we exercise an American put option?

Since it is a decision making process involving randomness and uncertainty, sto-

chastic control techniques naturally come into play. In [16], liquidation of a stock was

formulated as an optimization problem. Assuming that the stock price is represented

by a regime-switching geometric Brownian motion model, a diffusion process modu-

lated by a continuous-time Markov chain with finite state space, optimal strategies

are shown to be of threshold type. When the continuous-time Markov chain has only

two states, the optimal selling decision can be made by solving a system of two-point

boundary value problems. For Markov chains having more than two states, although

it can still be demonstrated that the optimal strategy is of threshold type, an ana-

lytic solution may not be possible. Although the aforementioned reference provides

insight into the structure of the optimal solution, in trading practice, a more sys-

tematic approach is much appreciated. Moreover, generally, one does not know the

precise model; the return rate of the stock may be unknown, and the volatility is very

likely to be stochastic. Calibration of the precise model may require sophisticated

estimation and filtering techniques. Nevertheless, the stock price can be observed. In

fact, to most of the investors, the stock price is the main or only available information

to them. For example, plotting the daily closing prices of a stock, one traces out a

curve. Figure 1 presents daily closes of Microsoft for a period of more than two years.

The data were downloaded from Yahoo finance. One question of crucial importance

is: Having observed stock closing prices, based on only such observations without

knowing the exact model or precise parameter values, can we figure out the right time

to liquidate a stock? Not only is it of practical value, but also it is an interesting
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Fig. 1. Daily closing prices of Microsoft (adjusted to stock splits and dividend payouts). Hori-

zontal axis–days; Vertical axis–stock prices

mathematical question.

Focusing on threshold-dependent decisions, a stochastic approximation method

was developed in [14]. A class of easily implementable recursive algorithms was pro-

posed; convergence of the algorithms was obtained via the limit ordinary differential

equation of the interpolated sequence of the iterates; rates of convergence were as-

certained using stationary covariance of associated diffusions together with scaling

factors. Simulations and real data were also demonstrated. Subsequently, in [15],

probability estimates of the iterates escaping from a neighborhood of the optimal

threshold value were derived. Moreover, we used issues from NASDAQ 100 daily

closes and intra-day data to demonstrate the effectiveness of our algorithms.

Pricing options has been a major research topic in financial engineering for years.

There is a substantial research devoted to it; see for example, [1, 2, 5] and references

therein. As is well known, pricing American put options can be formulated as an

optimal stopping problem. A typical method of solution is a variational or quasi-

variational inequality approach. Although such an approach provides theoretically

interesting results, the computation required often deemed to be infeasible in real

applications. Thus, taking such practical concern into consideration, Monte Carlo

methods were suggested in [4, 10], and references therein. Nevertheless, the compu-

tation required is normally rather extensive; the number of simulation runs is often

large (e.g., from 50000 to 100000 or even more). Designing more efficient procedures

will be beneficial. Here, our approach is to use stochastic optimization methods to

design recursive algorithms that can be easily implemented and that depends only
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on the closing pricing of the underlying stock up to current time. It requires neither

calibration of system parameters nor estimation of states of the switching process.

Although the result obtained via stochastic approximation may be only suboptimal,

the method serves practical purpose well. These are distinct advantages of the SA

methods. The rationale of our approach is to focus on the class of stopping rules

depending on some threshold values. We do not attempt to solve the correspond-

ing variational inequalities or partial differential equations; the underlying problem is

treated parametrically. Stochastic recursive algorithms are developed to approximate

the optimal parameter values. We demonstrate that the stochastic approximation and

optimization approach provides an efficient and systematic computation scheme. In

the proposed algorithm, since the noise varies much faster than that of the parameter,

certain averaging takes place and the noise is averaged out resulting in a projected

ordinary differential equation whose stationary point is the optimal parameter we are

searching for. After establishing the convergence of the algorithm, we reveal how a

suitably scaled and centered estimation error sequence evolve dynamically.

The rest of the paper is arranged as follows. Section 2 presents the stochastic

approximation and optimization algorithms. Section 3 examines algorithms with con-

stant stepsize and exploits the connections of bias, noise, and stepsizes. Section 4

is devoted to numerics of stock liquidation problems, whereas Section 5 is concerned

with pricing options. we make comparisons of our stochastic approximation approach

with heuristic approaches such as moving average and moving maximum are often

used by practitioners. Section 5 presents numerical experiments using data derived

from Berkeley Options Data Base by means of stochastic optimization methods. Sec-

tion 6 is concerned with variants of the basic algorithm including soft constraints, and

robust procedures. Finally, the paper is concluded with a few more remarks.

2. Recursive Algorithms. This section is divided into two parts. The first part

is concerned with stock liquidation, and the second part focuses on pricing American

put options. Recursive algorithms of stochastic approximation type are provided.

2.1. Algorithms for Stock Liquidation. We consider one stock at a time.

Denote the stock price at time t ∈ [0,∞) by S(t), and the observed stock prices

at discrete time n by Sn ∈ R. In what follows, n is used as the iteration number

of the recursive algorithms. To avoid fast growth of the iterates of the stochastic

approximation algorithm, we use the log price instead. That is, we use Xn = lnSn.

We are concerned with threshold type of selling rule and use θ = (θ1, θ2)′ ∈ R
2 to

denote the threshold vector. Focusing on threshold-dependent stopping time, with

the threshold value fixed at θn = (θ1n, θ
2
n)′ ∈ R

2, we compute τn the first exit time of

X(t) from Iθn
= (−θ1n, θ

2
n) (the interval with the lower and upper boundaries set at



STOCHASTIC OPTIMIZATION METHODS 115

−θ1n and θ2n, respectively) by

(1) τn = inf{t > 0 : X(t) 6∈ Iθn
}.

We consider the expected profit

(2) φ(θ) = EΦ(θ, ξn),

where Φ is a utility function and {ξn} is a stationary sequence of random variables

representing the observation noise and φ(·) is a smooth function. Note that ξn is a

combined process, which includes the random effects from X(t) and the stopping time

τn as

(3) ξn = (X(τn), τn)′.

Our objective can be stated as: Choose θ so as to maximize the expected profit φ(θ).

[That is, the objective of choosing the right time τ is converted to choose the best θ so

that φ(θ) is maximized.] In [14], exponential type utility functions were used. Here,

we do not specify utility functions. Thus, functions other than exponential utility

may also be used if it is desired so.

We are facing a situation that the precise form of φ(·) is unknown, only noise

corrupted observations are available at any parameter value θ. To solve the problem,

we use stochastic approximation/optimization methods to construct a sequence {θn}

to approximate the optimum. Assuming φ(·) to be a smooth function, the maximiza-

tion problem is equivalent to finding the stationary points of φ(·) (the points at which

∇φ(θ) = 0). The precise value of φ(·) is not available. Therefore, we replace the

gradient of φ(·) by its noisy finite difference estimate. Let {cn} be the finite difference

interval, a sequence of positive real numbers satisfying cn → 0. Suppose that θn has

been obtained. Define the finite difference approximation of the gradient as

∆φn =




Φ(θn + cne1, ξ
+
n ) − Φ(θn − cne1, ξ

−
n )

2cn
Φ(θn + cne2, ξ

+
n ) − Φ(θn − cne2, ξ

−
n )

2cn


 ,

where {cn} is a sequence of positive real numbers tending to 0 as n→ ∞ representing

the finite difference interval, e1 and e2 are two-dimensional standard unit vectors. In

the above, central finite difference is used and {ξ±n } are observation noises associated

with the use of θn ± cnei. The stochastic approximation/optimization algorithm is

given by

(4) θn+1 = θn + εn∆φn,

where {εn} is a sequence of positive real numbers satisfying εn → 0 as n → ∞ and
∑

n εn = ∞. In order to avoid the iterates becoming unbounded, adjustments may
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be made through projection and/or truncations. In lieu of (4), we could consider

(5) θn+1 = ΠH [θn + εn∆φn],

where ΠH is the projection onto the constraint set H = {θ : θi,l ≤ θi ≤ θi,u}, and θi,l,

θi,u are real numbers being the lower and upper bounds of θi. If the iterates are in

the interior of H , we keep the values as they are. If the iterates ever escape from the

bounded region, we project them back to the boundary of the respective intervals.

That is, if θi
n > θi,u (resp. θi

n < θi,l), we reset the iterate to θi,u (resp. θi,l).

Using the stochastic recursive algorithm, we obtain the estimate of the optimal

threshold vector θ∗ = (θ1∗, θ
2
∗). This in turn, determines the threshold values

(L,U) = (S0 exp(−θ1∗), S0 exp(θ2∗)),

where S0 is the purchase price of the stock. The selling strategy is: Sell the stock

when the first time the price is at or below the lower bound L or the price is at or

above the upper bound U . Concerning exponential type utility functions, convergence

and rates of convergence of algorithms (4) and (5) were studied in [14]. Further large

deviations type results were obtained in [15].

2.2. Algorithms for Pricing American Put Options. At any given time

t ≥ 0, the stock price S(t) is available to the investors. Denote X(t) = lnS(t). We

again focus on threshold-type solutions. Let ς be a stopping time depending on the

threshold value defined by

(6) ς = ς(θ) = inf{t > 0 : X(t) 6∈ Ξ(θ)},

where Ξ(θ) = (θ,∞). The reason to use the logarithm of the price instead of the price

itself is to avoid the possible exponential growth and numerical errors. We aim at

finding the optimal threshold level θ∗ so that the expected return is maximized. The

problem can be rewritten as:

(7)

{
Find argmax φ(θ),

subject to φ(θ) = E exp(−µς(θ))(K − S(ς(θ)))+.

An analytic solution is often difficult to obtain in general. Noting the dependence

of the optimal solution on the threshold values in connection with option pricing, we

focus on a class of stopping times that depends on a parameter θ and convert the

problem to a stochastic optimization problem. The basic premise stems from a twist

of the optimal stopping rules. The rational is to focus on the class of stopping times

depending on threshold values in lieu of finding the optimal stopping time among all

stopping rules. Another distinct feature is that our approach enables us to handle

perpetual options as well as pricing options in a finite horizon.
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Let Ft be the σ-algebra generated by {X(s) : s ≤ t}, the logarithm of the price,

and let AT be the class of Ft-stopping times that are bounded by T , i.e., AT = {ς :

ς is an Ft-stopping time and ς ≤ T w.p.1}, where T is the expiration date. [Note

that the perpetual option corresponds to the case T → ∞.] We propose a stochastic

optimization procedure to find the optimal threshold value θ∗ using the recursive

algorithm

θn+1 = θn + {stepsize} · {noisy gradient estimate of φ(θn)},

where the stepsize is a decreasing sequence of real numbers. The stochastic approxi-

mation procedures to be developed depend on how the gradient estimates of φ(θ) are

constructed. We use finite-difference schemes. Let us now describe the procedure.

1. Initial estimate: Choose an arbitrary initial estimate θ0, we then compute

the exit time ς(θ0) of X(t) defined by

ς(θ0) = inf{t > 0 : X(t) 6∈ Ξ(θ0)}.

Observe φ̃(θ0) = exp (−µς(θ0)) (K−S(ς(θ0)))
+ (with observation noise χ(θ0,

ζ0))

(8) Ψ̂(θ0, ζ0) = φ̃(θ0) + χ(θ0, ζ0).

Construct derivative estimate

∆φ̂0 =
Ψ̂(θ0 + δ0, ζ

+
0 ) − Ψ̂(θ0 − δ0, ζ

−
0 )

2δ0
.

where ζ±0 are two observation noises and the sequence of positive real numbers

{δn} is the finite difference stepsize satisfying δn → 0.

2. Update: Next, we compute θ1 by using the recursive algorithms

θ1 = θ0 + ε0∆φ̂0.

3. Induction: Suppose that θn has been obtained. We compute the exit time

ς(θn) = inf{t > 0 : X(t) 6∈ Ξ(θn)},

and observe φ̃(θn) = exp (−µς(θn)) (K − S(ς(θn)))+ with the observation

noise χ(θn, ζn). Let

(9) Ψ̂(θn, ζn) = φ̃(θn) + χ(θn, ζn).

Construct derivative estimate

∆φ̂n =
Ψ̂(θn + δn, ζ

+
n ) − Ψ̂(θn − δn, ζ

−
n )

2δn
.
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We obtain the next estimate θn+1 by using a stochastic approximation algo-

rithm

(10) θn+1 = θn + εn∆φ̂n.

To ensure the boundedness of the iterates, we use a projection algorithm:

(11) θn+1 = Π[θl,θu][θn + εn∆φ̂n],

where the projection operator Π is defined by

Π[θl,θu](θ) =





θl, if θ < θl;

θu, if θ > θu;

θ, otherwise,

and θl and θu are the lower bound and upper bound, respectively. As in [7], we rewrite

(11) as

θn+1 = θn + εn∆φ̂n + εnZn,

where εnZn = θn+1 − θn − εn∆φ̂n is the quantity with the shortest Euclidean length

needed to take θn + εn∆φ̂n back to the constraint set [θl, θu] if it ever escapes from

there. Under broad conditions, it can be shown that the above algorithm converges.

We refer the reader to [9] for further details. We reiterate that unlike the Monte Carlo

approach, the precise model need not be known. The recursion depends on the ob-

served data only. More will be said in the numerical experiment section. Henceforth,

for simplicity, we write ∆φn in lieu of ∆φ̂n.

3. Bias, Noise, and Convergence Rates. This section is devoted to rate of

convergence study taking into consideration of bias, noise variance, and stepsize. Con-

cerning stochastic optimization using sequential Monte Carlo methods, convergence

rates were evaluated for a class of stochastic optimization algorithms with decreasing

stepsizes in conjunction with computational budget. For simplicity of argument, we

consider algorithms without projection. Projection and truncation algorithms can be

handled in essentially the same way. Our attention is on classes of constant stepsize

algorithms.

3.1. Rate of Convergence: Algorithms for Stock Liquidation. In (4), we

replace εn by ε, where ε > 0 is a constant stepsize. It is known that constant stepsize

algorithms have the ability to track slight variation of the true parameter, and are

easily implementable. Therefore, in this section, we consider

(12) θn+1 = θn + ε∆φn.
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We pose some conditions and assumptions. They are not the most general ones

available. Weaker conditions on the regularity are possible (see [15]). However, here

our main objective is to present the functional dependence of the error estimates

on bias, noise, and stepsize. Thus we choose to use simple setting without undue

technical complexity.

To proceed, let Fn be the σ-algebra generated by past data up to n (i.e., Fn

measures at least {θ0, ξj : j < n}). Define the bias and “variance” as

(13)
bn = En∆φn −∇φ(θn),

ψn = ∆φn − En∆φn.

In view of (12) and (13),

(14) θn+1 = θn + ε∇φ(θn) + εbn + εψn.

Throughout this section, we assume the following conditions. Henceforth, K denotes a

generic positive constant, whose value may change for different appearances. However,

note that in (A1), κ = κ(ω) depends on the underlying sample point ω.

(A1) There is a β > 0 such that |bn| ≤ κεβ w.p.1 and E|bn|
2 ≤ Kε2β.

(A2) There is a δε > 0 such that E|ψn|
2 ≤ Kδ−2

ε such that as ε → 0, δε → 0, but

ε/δ2ε → 0.

(A3) ∇φ(·) is continuous; the autonomous ordinary differential equation

(15) θ̇ = ∇φ(θ)

has a unique solution for each initial condition; ∇φ(θ) = 0 has a unique root

θ∗; ∇φ(θ) = A(θ − θ∗) + O(|θ − θ∗|
2), where A is a 2 × 2 stable matrix (i.e.,

all of its eigenvalues belong to the left half of the complex plane).

Note that θ∗ is the precise stationary point of the objective function φ(·) we are

searching for. The uniqueness of θ∗ implies that the function φ(·) has a unique station-

ary point. Assumption (A2) stems from the use of finite difference approximation of

the gradient estimates. One can think of a finite difference approximation with step-

size δε replaces δn. Then this condition says nothing more than that the noise variance

will be proportional to δ−2
ε To study the asymptotic behavior of the algorithm, we

take a continuous-time interpolation defined by θε(t) = θn for t ∈ [nε, nε+ ε). Then

θε(·) belongs to the space of functions that are right continuous, have left limits,

endowed with the Skorohod topology.

Theorem 3.1. Under assumptions (A1)–(A3), θε(·) converges weakly to θ(·) such

that θ(·) is the solution of (15). Furthermore, let tε → ∞ as ε → 0. Then θε(· + tε)

to θ∗ weakly as ε→ 0.

Proof. The proof is, in fact, simpler than that of [14] since the conditions there

are weaker. We omit the details.
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Our main interest here is to establish the following results. It gives us a precise

order estimate on the convergence rate with respect to the bias, noise, and stepsize.

Theorem 3.2. Assume (A1)–(A3), and E|θ0|
2 < ∞. Then we have for suffi-

ciently large n,

(16) E|θn − θ∗|
2 = O(ε) +O(ε1+2β) +O(εδ−2

ε ).

Proof. Without loss of generality and for simplicity, assume θ∗ = 0. Define

V (θ) = (1/2)|θ|2. To proceed, we first show that

(17) sup
n

EV (θn) <∞.

The w.p.1 convergence of θn → 0 and (17) enable us to conclude EV (θn) → 0 as

n→ ∞. Next, we refine the order of magnitude estimate.

(i) Since θn is measurable with respect to the Fn,

(18) Enθ
′
nψn = θ′nEn[∆φn − En∆φn] = 0.

For the remainder of the proof, we suppose that n ≥ n0 is large enough. Observe that

|θ′(Aθ −∇φ(θ))| ≤ |θ|(|A||θ| +K(1 + |θ|)) ≤ K(1 + V (θ)),

for each θ and for some K > 0. In the above and henceforth, K is taken to be a

generic positive constant, whose value may change for different usage. Using (14),

(18), and (A1)–(A3), we obtain

(19)

E[V (θn+1) − V (θn)]

= E(EnV (θn+1) − V (θn))

= EEnV
′
θ (θn)(θn+1 − θn) +

1

2
E|θn+1 − θn|

2

= εEθ′n[Aθn + (∇φ(θn) −Aθn) + bn + ψn] +
1

2
E|θn+1 − θn|

2

≤ −ελ0EV (θn) +Kε(1 + EV (θn)) + εEθ′nbn

+Kε2E
(
|∇φ(θn)|2 + |bn|

2 + |ψn|
2
)
,

where λ0 is a positive real number.

It is easily seen that

(20) E|∇φ(θn)|2 ≤ K(1 + EV (θn)).

We also have that by use of the familiar inequality ab ≤ (a2 + b2)/2 for a, b ∈ R,

(21) εE|θ′nbn| ≤ O(ε)EV (θn) +O(ε1+2β).

In addition,

(22)
ε2E|bn|

2 ≤ O(ε2+2β),

ε2E|ψn|
2 ≤ O(ε2δ−2

ε ).
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By virtue of (19)–(22), we obtain that

(23)

EV (θn+1) − EV (θn)

≤ −λ0εEV (θn) +O(ε)(1 + EV (θn)) +O(ε1+2β)

+O(ε2)(1 + EV (θn)) +O(ε2+2β) +O(ε2)O(δ−2
ε ).

Moreover, there is a λ1 > 0 such that −λ0 +O(ε) < −λ1. Then we obtain

(24)
E[V (θn+1) − V (θn)] ≤ −λ1εEV (θn) +O(ε)(1 + EV (θn))

+O(ε1+2β) +O(ε2) +O(ε2+2β) +O(ε2)O(δ−2
ε ).

It follows that

EV (θn+1) ≤ (1 − λ1ε)EV (θn) +O(ε)(1 + EV (θn))

+O(ε1+2β) +O(ε2) +O(ε2+2β) +O(ε2)O(δ−2
ε ).

Iterating on the above inequality leads to

(25)

EV (θn+1) ≤ (1 − λ1ε)
nEV (θ0) +Kε

n∑

j=0

(1 − λ1ε)
n−j

+Kε

n∑

j=0

(1 − λ1ε)
n−jEV (θj)

+Kε

n∑

j=0

(1 − λ1ε)
n−jO(ε2β)

+Kε2
n∑

j=0

(1 − λ1ε)
n−j

+Kε2
n∑

j=0

(1 − λ1ε)
n−jO(ε2β)

+Kε2
n∑

j=0

(1 − λ1ε)
n−jO(δ−2

ε ).

An application of the Gronwall’s inequality yields

EV (θn+1) ≤ Kε

n∑

j=0

(1 − λ1ε)
n−j = O(1).

Furthermore, the bound holds uniformly in n. That is, (17) holds. It then follows

from the w.p.1 convergence of θn → 0 and (17), EV (θn) → 0 as n→ ∞.

(ii) Next, we refine the order estimates. In view of (A1)–(A3) and (i),

(26)
E[θ′n∇φ(θn)] = E[θ′nAθn] + o(EV (θn)),

E|∇φ(θn)|2 ≤ E[θ′nA
′Aθn] + o(EV (θn)).

Then

|o(EV (θn))| ≤
1

2
λ0EV (θn).
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Similar to (19),

(27)

E[V (θn+1) − V (θn)]

= εEθ′n[∇φ(θn) + bn + ψn] +
1

2
E|θn+1 − θn|

2

≤ −ελ1EV (θn) + εEθ′nbn +Kε2E
(
|∇φ(θn)|2 + |bn|

2 + |ψn|
2
)

≤ −ελ1EV (θn) +O(ε2)(1 + EV (θn)) +O(ε2+2β) +O(ε2δ−2
ε )

≤ −ελ2EV (θn) +O(ε2) +O(ε2+2β) +O(ε2δ−2
ε ),

where 0 < λ2 < λ1 < λ0. Iterating on (27),

EV (θn+1) ≤ Kε

n∑

j=0

(1 − λ2ε)
n−j [O(ε) +O(ε1+2β) +O(εδ−2

ε )]

≤ O(ε) +O(ε1+2β) +O(εδ−2
ε ).

The desired result thus follows.

3.2. Rate of Convergence: Algorithms for Pricing Options. Here all

processes under consideration are real valued.

(28) θn+1 = θn + ε∆φn.

Redefine Fn to be the σ-algebra generated by past data up to n (i.e., Fn measures at

least {θ0, ζj : j < n}). Redefine the bias and “variance” as

(29)
bn = En∆φn −∇φ(θn),

ψn = ∆φn − En∆φn.

In view of (12) and (13),

(30) θn+1 = θn + ε∇φ(θn) + εbn + εψn.

Throughout this section, in lieu of conditions (A1)–(A3), we use the following condi-

tions.

(A4) (A1)–(A3) hold with the following modifications: ∇φ(·) is continuous; the

autonomous ordinary differential equation

(31) θ̇ = ∇φ(θ)

has a unique solution for each initial condition; ∇φ(θ) = 0 has a unique root

θ∗; ∇φ(θ) = A(θ − θ∗) +O(|θ − θ∗|
2), where A < 0.

Theorem 3.3. Under (A4), Theorems 3.1 and 3.2 continue to hold.

The proof of Theorem 3.3 is similar to that of Theorems 3.1 and 3.2. We thus

omit the verbatim argument.

4. Numerics.
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4.1. Stock Liquidation: Comparisons of Stochastic Optimization and

Moving Average Methods. Concerning liquidation of a stock, one of the ap-

proaches used by many investors in practice is a moving average method. One super-

imposes an m-day moving average on the same plot of the daily closes. The investor

buys the stock as soon as its price rises above the m-day moving average, and sells it

as soon as the stock price cross down the m-day moving average.

In our numerical study, we have chosen m = 10. That is, we examine the 10-day

moving average to make a decision on if the stock should be sold. Then we compare

the performance of the selling decisions based on the moving average method with

the stochastic approximation method. Real data from NASDAQ 100 were used for

the numerical comparison. We choose the period of comparison to be the beginning

of 1999 to the end of 2000. Mainly, in this duration, the stock prices vary drastically.

Many of the stocks soared in 1999 and took a downturn from the middle of 2000.

Figure 2 shows the daily closing prices of Cisco from January 1999 to June 2001. The
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Fig. 2. Closing Prices of Cisco: January 1999–June 2001. Horizontal axis–days; Vertical

axis–stock prices

up and down trends are clearly seen from the picture, and are rather pronounced.

To make comparisons of the stochastic approximation method with that of the

moving averaging procedure, we use real data stocks from NASDAQ 100, downloaded

from Yahoo finance web site. We used only 91 stocks from the list because a substan-

tial portion of data are missing for the other 9 stocks. Adjusted daily closing prices

are used taking into consideration of stock splits and dividend payments. The pur-

chase date of each stock is determined by the moving averaging method. As soon as
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the stock price is higher than the past 10-day average, a buying decision is rendered.

Then, to compare the liquidation rules, we first use the moving average method to

determine the right time to sell a stock, and then we figure out the time to sell using

stochastic approximation method for each of the 91 stocks individually. For compar-

ison purposes, we only consider one transaction for each stock during three different

periods (beginning of 1999, 2000 and middle of 2000). We will not consider short

selling either. The percentage of return of each stock using each method is noted.

Average percentage returns of the 91 stocks are computed, the total holding days are

calculated. The computation and comparison results are depicted in Tables 1–3. In

these tables, MA denotes the use of moving average method, whereas SA indicates

stochastic approximation method. In these tables, average percentage return of the 91

stocks, the total number of holding days of 91 stocks, and average return per holding

day are displayed.

Table 1

Comparisons of Stochastic Approximation and Moving Average Method for the Beginning of

1999 Period

Method Average Return Total # of Holding Days Gain per Holding Day

SA 7.22% 4,575 0.0016%

MA 0.40% 747 0.0005%

Table 2

Comparisons of Stochastic Approximation and Moving Average Method for the Beginning of

2000 Period

Method Average Return Total # of Holding Days Gain per Holding Day

SA 14.05% 4,323 0.0033%

MA 1.35% 989 0.0014%

Table 3

Comparisons of Stochastic Approximation and Moving Average Method for the Middle of 2000

Period

Method Average Return Total # of Holding Days Gain per Holding Day

SA −0.30% 3,994 −0.0001%

MA −2.29% 778 −0.0029%

We make the following observations regarding the comparisons.

(a) The stochastic approximation method and the moving averaging method gen-

erate different selling dates.
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(b) Using stochastic approximation method, the holding time appears to be much

longer than that of the moving average counter part.

(c) Overall, stochastic approximation method performs much better. Even in the

bear market case, the stochastic approximation method still perform better

than the moving averaging method.

(d) Since the holding time for each method is different, a fair comparison involves

figure out the gain or loss per holding day. So we computed this for each of the

three period of testing. Again, the stochastic approximation method provides

much better return.

4.2. Stock Liquidation: Comparisons of Stochastic Optimization and

Moving Maximum Methods. This part is inspired by an idea of O’Neil [11].

Starting from a certain day, we check the price of each stock, and make a purchase

decision if it is greater than its maximal price of the last 20 days. Once the stock

is bought, we use both stochastic approximation methods and experiential methods

to determine the optimal threshold values. Then comparisons are made for selling

decision using stochastic approximation methods and that of heuristically selected

upper and lower bounds for profit and stop-loss limits. Denote the closing price of

stock i at the time of sale by Si and its initial price by Si(0). Let hi be the number of

holding days for stock i. To make fair comparisons, we examine several criteria. They

include average (a) profit or loss per stock (obtained by averaging the gain of loss over

82 participating stocks), (b) average rate of return ([
∑82

i=1(Si −Si(0))]/[
∑82

i=1 Si(0)]),

(c) average profit or loss per holding day ([
∑82

i=1(Si − Si(0))]/
∑82

i=1 hi), (d) average

rate of return per holding day (average rate of return / average number of holding

days). Using historical data, O’Neil argued that successful stocks after breaking out,

tend to move up 20% to 25% and then build new base from there, and in some cases

resume their advance. Thus, he suggested that one should sell a stock when it has

already increased by 20% and avoid getting caught in the 20% to 40% corrections,

which occur periodically in market leaders. On the other hand, if the stock decline

below their purchase prices by, e.g. 8%, they should be sold and the loss is taken.

These are mainly heuristic reasonings, but the strategies suggested have been used by

investors. Here we suggest an alternative that is a systematic scheme.

Consider the period of January 1999 to June 2001. Taking averages of the 82

stocks selected, we obtain the following plot in Figure 3. During this period, the

stock market experienced a huge and long up turn and then suffered a sharp down

turn, which serves our purpose of testing well. Then, we picked out four periods for

comparisons with starting date October 1, 1999, January 3, 2000, June 1, 2000, and

February 1, 2001, respectively. For example, suppose that we started on October

1, 1999. by performing the moving maximum purchasing strategy, we would have
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Fig. 3. Average daily closing prices of 82 NASDAQ 100 stocks from Jan. 4 1999 to June 29,

2001

bought the stock of Adobe Systems Inc. (ADBE) on October 4, 1999 with a price of

$29.22; see Figure 4 Using stochastic approximation methods, we obtain the cut-loss
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Fig. 4. Stock prices of and moving-maxima of Adobe from October 1 1999 to October 29, 1999

and profit thresholds should be [23.92, 37.01]. By observing the closing price, the first

time that price of the stock is outside the above interval would be Nov. 12, 1999 with

a closing price of $37.27. The resulting profit would be $8.05 with the total number
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of holding days being 29. These results are summarized in Tables 4–7. They show

that the SA approach outperforms the moving average method.

Table 4

Comparisons of Stochastic Approximation and Moving Maximum Method for the Period

Starting on October 1, 1999. Gain:=profit/loss $ amount, Rate:=average rate of return,

Gain/Day:=average profit/loss per holding day, Rate/Day:=average daily return rate per holding

day, # of Days:=average number of holding days

Strategies Gain Rate Gain/Day Rate/Day # of Days

EM (−7%, 12%) 1.21 4.14% 0.10 0.36% 11.5

EM (−7%, 20%) 2.41 8.23% 0.13 0.45% 18.4

EM (−15%, 20%) 5.15 17.58% 0.18 0.62% 28.2

SA 5.74 19.61% 0.22 0.74% 26.4

Table 5

Comparisons of Stochastic Approximation and Moving Maximum Method for the Period

Starting on January 3, 2000. Gain:=profit/loss $ amount, Rate:=average rate of return,

Gain/Day:=average profit/loss per holding day, Rate/Day:=average daily return rate per holding

day, # of Days:=average number of holding days

Strategies Gain Rate Gain/Day Rate/Day # of Days

EM (−7%, 12%) −1.08 −2.33% −0.15 −0.32% 7.4

EM (−7%, 20%) −0.60 −1.28% −0.06 −0.12% 10.7

EM (−15%, 20%) 1.50 3.24% 0.07 0.14% 22.4

SA 3.58 7.71% 0.11 0.25% 31.4

Table 6

Comparisons of Stochastic Approximation and Moving Maximum Method for the Pe-

riod Starting on June 1, 2000. Gain:=profit/loss $ amount, Rate:=average rate of return,

Gain/Day:=average profit/loss per holding day, Rate/Day:=average daily return rate per holding

day, # of Days:=average number of holding days

Strategies Gain Rate Gain/Day Rate/Day # of Days

EM (−7%, 12%) 0.46 0.97% 0.04 0.09% 11.2

EM (−7%, 20%) 0.55 1.18% 0.03 0.07% 18.0

EM (−15%, 20%) 0.57 1.22% 0.02 0.04% 32.9

SA 1.08 2.30% 0.03 0.07% 34.3

4.3. Pricing American Put Options. Here our numerical experiments were

done using the data derived from Berkeley Options Data Base. First, to get the feeling

of the stock performance, let us plot the following two figures, which are the stock
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Table 7

Comparisons of Stochastic Approximation and Moving Maximum Method for the Period

Starting on February 1, 2001. Gain:=profit/loss $ amount, Rate:=average rate of return,

Gain/Day:=average profit/loss per holding day, Rate/Day:=average daily return rate per holding

day, # of Days:=average number of holding days

Strategies Gain Rate Gain/Day Rate/Day # of Days

EM (−7%, 12%) −0.94 −2.83% −0.10 −0.30% 9.5

EM (−7%, 20%) −0.38 −1.14% −0.03 −0.09% 12.3

EM (−15%, 20%) −0.28 −0.84% −0.01 −0.03% 26.6

SA 1.94 5.87% 0.10 0.30% 19.3
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(b) Stock price vs time: 1989 data

Fig. 5. Stock closing prices of 1988 and 1989

prices in the years of 1988 and 1989 in Figure 5. As can be seen that 1988 was a

more volatile year, whereas in 1989, although there were ups and downs, the stock

price seems to have increasing tendency. From the data of the stock prices, we use

stochastic approximation algorithms to price American put options.

Using the real data, we use both the stochastic approximation (SA) method and

the well-known binomial (BIN) method. The programs are written using C++ to

compare the performance of the algorithms. For SA, we use θ0 = log(250), and

stepsizes εn = 1/n and δn = 1/n
1

6 , respectively. For BIN, the time to maturity is

divided into 2000 periods. The results are displayed in Table 8.

It is easily seen that the results obtained by the two methods are comparable. A

desk top computer with a Pentium 4 processor (2793 Mhz) was used for the compu-

tations. The CPU time for BIN is of the order O(10−2) seconds, whereas for SA, is

of the order O(10−3) seconds. Although only two year’s data have been examined,

the results are promising. It indicates that the stochastic approximation algorithm is

easily implementable. It gives us a good insight on how we would proceed in general.

We remark that the data we examined tend out to be in the “early” years of

option trading. In addition, the strike prices in the data were mostly higher than the



STOCHASTIC OPTIMIZATION METHODS 129

Table 8

Comparisons of SA and BIN for American put options

Date Initial Expiration Strike Volatility Interest SA BIN

Price Date Price Rate

01/05/1988 253.51 02/20/1988 290.00 0.2238 0.0581 36.49 36.49

03/02/1988 256.56 04/16/1988 255.00 0.2805 0.0570 8.52 8.55

04/22/1988 246.57 05/21/1988 270.00 0.2128 0.0591 23.43 23.45

05/05/1988 245.00 05/21/1988 260.00 0.1801 0.0626 15.00 15.00

07/22/1988 251.09 08/20/1988 275.00 0.2088 0.0673 23.91 23.91

04/21/1989 288.87 04/22/1989 290.00 0.0639 0.0865 1.13 1.15

05/04/1989 288.26 05/20/1989 300.00 0.1475 0.0843 11.74 11.77

11/06/1989 311.04 11/18/1989 330.00 0.2018 0.0769 18.96 18.97

12/15/1989 329.06 12/16/1989 330.00 0.0488 0.0763 0.94 0.96

initial stock prices, and there was a tendency of stock price increase in the two year

period. It would be nice if we could get more numerical experiments on different real

data sets in order to gain further insight. Furthermore, it would certainly be desirable

to examine option data of more recent years.

5. Further Remarks. In addition to the projection algorithms studied, we may

consider two variants of the algorithms. The first one is the so-called soft constraint

algorithm, and the second one is a robust algorithm. We describe them below.

5.1. Soft Constraints. The idea of soft constraints is that these constraints

may be violated but cannot be violated too much. Take for instance, the soft con-

straint to be the circle in two-dimensional Euclidean space centered at the origin with

radius r0. B0 = {θ : |θ| ≤ r0}. Define c(θ) = d(θ,B0), the distance from θ to the

sphere B0. Thus

c(θ) =

{
(|θ| − r0)

2 |θ| ≥ r0,

0, otherwise.

The soft constraint algorithm can be written as

(32) θn+1 = θn + εnDφn − εnK0∇c(θn),

where K0 is a sufficiently large positive number. Note that in this case, the mean

limit ordinary differential equation becomes

θ̇ = ∇φ(θ) −K0∇c(θ).

5.2. Robust Algorithm. The motivation comes from a work of [12]. Since the

actual dynamics might be hardly known, one may use the idea in robust statistical
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analysis. Let B̃i(·), i = 1, 2 be bounded real-valued functions. In lieu of (4), consider

(33) θn+1 = θn + εnB̃(Dφn),

where B̃(θ) = (B̃1(θ
1), B̃2(θ

2))′. The function B̃i(·) are monotonically nondecreasing

satisfying B̃i(0) = 0, B̃i(u) = −B̃i(u), and B̃i(u)/u → 0 as u → ∞. A commonly

used function is B̃i(u) = min(Ki, u) for u ≥ 0, where Ki are given constants.

5.3. Concluding Remarks. In this paper, stochastic approximation and opti-

mization algorithms are considered for selling decision making of a stock. Compar-

isons of stochastic approximation methods with heuristic moving average methods

are made. Then convergence rates are studied by taking into consideration of bias,

noise variance, and stepsize of the algorithm. So far, the liquidation of a stock is

done in the following fashion. When one decides to sell it, the entire collection of the

stock will be sold. A worthwhile undertaking is to consider situations that only part

of the stock shares is sold and develop the corresponding stochastic approximation

algorithms. Recent advances in fractional Brownian motion [3] open up new research

avenues; designing the associated stochastic optimization algorithms deserves further

study and investigation.
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