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Abstract. The object of this paper is to introduce the new family of cracked sets which yields

a compactness result in the W 1,p-topology associated with the oriented distance function and to

give an original application to the celebrated image segmentation problem formulated by Mumford

and Shah [21]. The originality of the approach is that it does not require a penalization term on

the length of the segmentation and that, within the set of solutions, there exists one with minimum

density perimeter as defined by Bucur and Zolésio in [3]. This theory can also handle N-dimensional

images. The paper is completed with several variations of the problem with or without a penalization

term on the length of the segmentation. In particular, it revisits and recasts the earlier existence

theorem of Bucur and Zolésio [3] for sets with a uniform bound or a penalization term on the density

perimeter in the W 1,p-framework.

1. Introduction. The object of this paper is to introduce the new family of
cracked sets which yields a compactness theorem in the W 1,p-topology associated with
the oriented distance function1 and to give an original application to the celebrated
image segmentation problem formulated by Mumford and Shah [21]. The originality
of our approach is that it does not require a penalization term on the length of the
segmentation and that, within the set of solutions, there exists one with minimum
density perimeter as defined by Bucur and Zolésio in [3]. The paper is completed
with several variations of the problem with or without a penalization term on the
length of the segmentation. In particular we revisit and recast the earlier existence
theorem of [3] in the W 1,p-framework. The theory is not limited to 2D problems
and can handle N -dimensional images. Cracked sets form a very rich family of sets
with a huge potential that is not fully exploited in the image segmentation problem.
Indeed they can not only be used to partition the frame of an image, but also to
detect isolated cracks and points provided an objective function sharper than the one
of Mumford and Shah be used. For instance, in view of the connection between image
segmentation and fracture theory [1], the theory may have potential applications in
problems related to the detection of fractures or cracks or fracture branching and
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segmentation in geomaterials [2], but this is way beyond the scope of this paper.
Some initial considerations about the numerical approximation of cracked sets can be
found in [13].

In problems where the shape or the geometry is a design, control, or identification
variable, metrics are used to measure the distance between objects, to specify topolo-
gies to make sense of continuity and compactness, and to obtain meaningful optimality
conditions. From the purely theoretical viewpoint it is now becoming clear that the
metric constructed from the W 1,p–norm2 on the oriented distance function (signed
or algebraic distance function) is playing a central and natural role in the analysis of
such problems. For instance, convergence and compactness in that topology imply
the same properties in all other topologies constructed from distance functions to or
characteristic functions of a set, its complement, or its boundary. Earlier compactness
results using the uniform cone property or the density perimeter or more recent ones
using the uniform cusp property also hold in the finer W 1,p-topology (cf. [6, 7, 8] and
the recent book [11] for an extensive analysis of metrics on subsets of the Euclidean
space). In addition, it also plays a key role in other geometric identification problems
and the characterization of the space of solutions of the evolution equation of the
oriented distance function for initial sets with thin boundary evolving in a velocity
field [12].

In § 2 we review the definitions, properties, and the metrics associated with the
oriented distance function. In § 3 we review the sets with finite h-density perimeter
and introduce the new families of cracked sets. We give the associated compactness
theorems in the strong W 1,p-metric topology on the oriented distance function. In § 4
we discuss the formulation (§ 4.1) of the N -dimensional image segmentation problem
and give the main existence theorem for cracked sets without penalization term or
bound on the perimeter (§ 4.2). § 4.3 makes use of the h-density perimeter which
is a relaxation of the (N − 1)-dimensional upper Minkowski content in two ways:
an example of a segmentation whose solution has two open connected parts but an
interface of infinite length; and a complement to the existence theorem of § 4.2 by
proving that among all the solutions there is one with minimum h-density perimeter.
In § 4.4 we go back to the formulation of Bucur and Zolésio with respect to the family
of sets with a bounded h-density perimeter. We give an existence theorem in the
case of a uniform bound and no penalization term and in the case of a penalization
term and no uniform bound on their perimeter. Finally, as a corollary, we give the
existence for those two cases within the family of cracked sets.

In this paper the words set, image, and object will be used equivalently.

Notation 1.1. Given an integer N ≥ 1, mN and HN−1 will denote the N -
dimensional Lebesgue and (N−1)-dimensional Hausdorff measures. The inner product

2This topology was introduced in [9, 10] and further investigated in [11].
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and the norm in RN will be written x ·y and |x|. The complement
{
x ∈ RN : x �= Ω

}
and the boundary Ω ∩ �Ω of a subset Ω of RN will be respectively denoted by �Ω or
RN \Ω and by ∂Ω or Γ. The distance function dA(x) from a point x to a subset
A �= ∅ of RN is defined as inf{|y − x| : y ∈ A}.

2. Oriented distance function and its properties.

2.1. Definitions and properties. Given a subset Ω of RN with boundary
Γ �= ∅, the oriented distance function is defined as

bΩ(x) def= dΩ(x) − d�Ω(x).(2.1)

There is a one-to-one correspondence between bΩ and the equivalence class

[Ω]b
def=

{
Ω′ ⊂ RN : Γ′ = Γ and Ω′ = Ω

}
=

{
Ω′ ⊂ RN : bΩ′ = bΩ

}
.(2.2)

In general

dΩ = dΩ ≤ dintΩ and d� intΩ = d�Ω
= d�Ω ≤ d�Ω,

but we only have

bΩ ≤ bΩ ≤ bintΩ.

where intΩ and Ω are the interior and closure of Ω. For convex sets we have bΩ = bΩ;
for sets verifying the uniform segment property3 we have bΩ = bΩ = bintΩ. When Ω is
a closed submanifold of RN of codimension greater or equal to one, then Ω = Γ and
bΩ = dΩ = dΓ.

The terminology and the notation emphasize the fact that ∇bΩ coincides with
the exterior normal to the boundary (when it exists). The function bΩ offers definite
conceptual and technical advantages over the function dΩ and makes it possible to
simultaneously deal with open N -dimensional subsets and embedded submanifolds of
RN in the same framework. In the literature, it usually appears as the distance to
the boundary dΓ with a change of sign across the boundary and is referred to as the
algebraic or signed distance function. Definition (2.1) and the associated equivalence
classes seem to have been first introduced in 1994 in [9]. The function bΩ captures
many of the geometric properties of the set Ω. For instance, in 1994 it was showed
in [9, 11] that the property that Ω is convex if and only if dΩ is convex remains true
with bΩ in place of dΩ.

The function bΩ is Lipschitz continuous of constant 1, and ∇bΩ exists and |∇bΩ| ≤
1 almost everywhere in RN. Thus bΩ ∈ W 1,p

loc (RN) for all p, 1 ≤ p ≤ ∞. The points

3Ω is said to satisfy the uniform segment property if

∃r > 0, ∃λ > 0 such that ∀x ∈ Γ, ∃d ∈ RN, |d| = 1,

for which for all y ∈ Br(x) ∩ Ω, (y, y + λd) ⊂ intΩ.
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of RN where the gradient of bΩ does not exist can be divided into two categories: the
ones on the boundary Γ and the ones outside of Γ.

Definition 2.1. The set of projections of a point x ∈ RN onto the boundary Γ
of a set Ω, Γ �= ∅,

ΠΓ(x) def=
{
p ∈ RN : |bΩ(x)| = |p − x|}

since |bΩ(x)| = dΓ(x); the skeleton of Ω

Sk(Ω) def=
{
x ∈ RN : ΠΓ(x) is not a singleton

}
(2.3)

(by definition Sk(Ω) ⊂ RN \Γ); the set of cracks of Ω

C(Ω) def=
{
x ∈ RN : ∇b2

Ω(x) exists but ∇bΩ(x) does not exist
}

.

The terminology crack is used here in a very broad sense. C(Ω) can contain
subsets of arbitrary co-dimension. In dimension N = 2 the corners along a piecewise
smooth boundary belong to C(Ω). We recall basic properties.

Theorem 2.1. Let Ω be a subset of RN with Γ �= ∅.
(i) For all x ∈ Γ, ∇b2

Ω(x) exists and ∇b2
Ω(x) = 0; for all x /∈ Γ

∇b2
Ω(x) exists ⇐⇒ ∇bΩ(x) exists .

Hence ∇bΩ(x) exists if and only if x /∈ Sk(Ω) ∪ C(Ω). Moreover

Sk(Ω) =
{
x ∈ RN : ∇b2

Ω(x) does not exist
}

and Sk(Ω) ⊂ RN \Γ and C(Ω) ⊂ Γ have zero mN -measure.
(ii) The projection pΓ(x) of a point x /∈ Sk(Ω) onto the boundary Γ of Ω is given

in terms of bΩ

pΓ(x) = x − 1
2
∇b2

Ω(x) = x − bΩ(x)∇bΩ(x).(2.4)

(iii) The Hadamard semi-derivative4 of b2
Ω always exists

∀v ∈ RN, dHb2
Ω(x; v) = 2 min

p∈ΠΓ(x)
(x − p) · v.(2.5)

(iv) For all points x /∈ Γ, the Hadamard semiderivative of bΩ exists and

∀v ∈ RN, dHbΩ(x; v) =
1

bΩ(x)
min

p∈ΠΓ(x)
(x − p) · v.(2.6)

For all points x ∈ Γ, dHbΩ(x; v) exists if and only if

∀v ∈ RN, lim
t↘0

bΩ(x + tv)
t

exists.(2.7)

Proof. (i) and (ii) Cf. [11], Chapter 5, Theorem 4.4 and Chapter 8 § 5, § 2, § 3,
and p. 369). (iii) Cf. [11], Theorem 3.1 (iii), p. 164. (iv) Obvious.

4A function f : RN → R has a Hadamard semi-derivative in x in the direction v if

dHf(x; v)
def
= lim

t↘0
w→v

f(x + tw) − f(x)

t
exists

(cf [11], Chapter 8, Definition 2.1 (ii)).
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2.2. Strong, weak, and uniform metric topologies.

2.2.1. Definitions and sets with thin boundary. Definition 2.2.

(i) The boundary Γ of a subset Ω of RN is said to be thin5 if mN (Γ) = 0;
otherwise it is said to be thick.

(ii) Given a nonempty subset D of RN, define the families

Cb(D) def=
{
bΩ : Ω ⊂ D and Γ �= ∅

}
(2.8)

C0
b (D) def= {bΩ ∈ Cb(D) : mN (Γ) = 0} .(2.9)

The space C0
b (D) corresponds to the subfamily of subsets of RN with a thin

boundary that is a more natural family than the family Cb(D) in applications.

2.2.2. Strong metric topologies. In this paper we specialize to the following
complete metrics6 associated with bΩ over the subsets of a bounded open hold-all D

ρC(D)([Ω′], [Ω]) def= ‖bΩ′ − bΩ‖C(D) = max
x∈D

|bΩ′(x) − bΩ(x)|(2.10)

ρW 1,p(D)([Ω′], [Ω]) def= ‖bΩ′ − bΩ‖W 1,p(D)

=
{∫

D

|bΩ′ − bΩ|p + |∇bΩ′ −∇bΩ|p dx

}1/p

.
(2.11)

The space Cb(D) is a complete metric space for the metrics (2.10) and (2.11), but the
space C0

b (D) is complete only with respect to the metric (2.11) (e.g. [11], Chapter 5)7.
The metric (2.10) is the analogue with bΩ of the Hausdorff metric defined from dΩ. For
the purpose of the paper we shall use the convenient terminology Hausdorff metric,
but it should be remembered that this metric with bΩ is different from the classical
Hausdorff metric with dΩ. The W 1,p-topologies are all equivalent for 1 ≤ p < ∞ (cf.
[11] Theorem 5.1, Chapter 5, p. 226).

2.2.3. Weak W 1,p and Hausdorff metric topologies. Cb(D) is also com-
plete for the weak W 1,p-topologies which are also all equivalent for 1 ≤ p < ∞. The
weak W 1,p-convergence of sequences of oriented distance functions is equivalent to
the strong convergence in the C(D)-topology of uniform convergence (cf. [11] Theo-
rem 5.2 (i)-(ii), Chapter 5, p. 228).

For sets with thin boundaries the strong and weak W 1,p(D)-convergences of ele-
ments of C0

b (D) to an element of C0
b (D) are equivalent.

Lemma 2.1. Given a bounded open subset D of RN, let {Ωn} be a sequence of
subsets of D such that Γn �= ∅ and m(Γn) = 0. Further assume that there exists

5This terminology is not to be confused with the one of thin set in Capacity Theory.
6Other complete metrics can be defined with dΩ, d�Ω, dΓ in place of bΩ.
7The completeness of the metric (2.10) is not a trivial consequence of the classical proof in

[14] of the completeness of the Hausdorff metric associated with dΩ. To our best knowledge the

metrics (2.10) and (2.11) were first introduced by [9] in 1994.



34 MICHEL C. DELFOUR AND JEAN-PAUL ZOLÉSIO

Ω ⊂ D̄ such that Γ �= ∅ and m(Γ) = 0. Then

bΩn ⇀ bΩ in W 1,2(D)-weak ⇒ bΩn → bΩ in W 1,2(D)-strong,

and hence in W 1,p(D)-strong for all p, 1 ≤ p < ∞.

Proof. Same proof as in part (ii) of the proof of Theorem 10.1 in [11]. Since, for
all n ≥ 1, m(Γn) = 0 = m(Γ), |∇bΩ| = 1 = |∇bΩn | almost everywhere in D (cf. [11],
Theorem 3.2, p. 215). As a result∫

D

|∇bΩn −∇bΩ|2 dx =
∫

D

|∇bΩn |2 + |∇bΩ|2 − 2∇bΩn · ∇bΩ dx

= 2
∫

D

(1 −∇bΩn · ∇bΩ) dx → 2
∫

D

(1 − |∇bΩ|2) dx = 2
∫

D

χΓ dx = 0.

Therefore ∇bΩn → ∇bΩ in L2(D)N -strong and bΩn → bΩ in W 1,2(D)-strong, since
the convergence bΩn → bΩ in L2(D)-strong follows from the weak convergence in
W 1,2(D). The convergence in W 1,p(D)-strong follows from the equivalence of the
topologies on Cb(D) (cf. [11]. Chapter 5, Theorem 5.1 (i)).

2.2.4. Other metric topologies. The following theorem is central. It shows
that convergence and compactness in the metric ρW 1,p(D) will imply the same prop-
erties in all other topologies (cf. [11], Theorem 5.1, Chapter 5, p. 226). Recall that
b+
Ω = dΩ, b−Ω = d�Ω, and |bΩ| = dΓ, and that χintΩ = |∇d�Ω|, χint �Ω = |∇dΩ|, and

χΓ = 1 − |∇dΓ| a.e. in RN.

Theorem 2.2. Let D be a bounded open subset of RN. The map

bΩ �→ (b+
Ω , b−Ω , |bΩ|) = (dΩ, d�Ω, d∂Ω) : Cb(D) ⊂ W 1.p(D) → W 1.p(D)3(2.12)

and for all p, 1 ≤ p < ∞, the map

bΩ �→ (χ∂Ω, χintΩ, χint�Ω) : W 1,p(D) → Lp(D)3

are continuous.

3. Some families of sets. In this section we review families of sets and their
properties that will be used in the paper: the sets with a finite density perimeter and
the new cracked sets. We give the main associated compactness theorems to deal with
the existence of minimizing solutions in § 4.

Notation 3.1. Given h > 0 the open and closed tubular neighborhoods of a set
A are defined as

Uh(A) def=
{
x ∈ RN : dA(x) < h

}
Ah

def=
{
x ∈ RN : dA(x) ≤ h

}
.(3.1)

Recalling that dΓ(x) = |bΩ(x)| we also have Uh(Γ) =
{
x ∈ RN : |bΩ(x)| < h

}
.
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3.1. Sets with finite density perimeter. This family of sets introduced in
1996 by Bucur and Zolésio [3] is based on a relaxation of the (N − 1)-dimensional
upper Minkowski content which leads to the compactness Theorem 3.1. We recall
the definition and give the proof of the compactness for the W 1,p-topology under a
uniform bound on the h-density perimeter.

Definition 3.1. Let h > 0 be a fixed real and Ω a subset of RN with nonempty
boundary Γ. Consider the quotient

Ph(Γ) def= sup
0<k<h

mN (Uk(Γ))
2k

.(3.2)

Whenever Ph(Γ) is finite, we say that Ω has a finite h-density perimeter.
It was shown in [3] that, whenever Ph(Γ) is finite, for all 0 < k < h, Γ ⊂

Uk(Γ) and m(Γ) ≤ m(Uk(Γ)) ≤ kc. By letting k go to zero we get m(Γ) = 0. The
compactness result of [3] can now be sharpened and recast in the W 1,p-topology from
which convergence in all other topologies of Theorem 2.2 follows. We also recover the
lower semicontinuity of the h-density perimeter.

Theorem 3.1. Let D �= ∅ be a bounded open subset of RN and {Ωn}, Γn �= ∅,
be a sequence of subsets of D. Assume that

∃h > 0 and c > 0 such that ∀n, Ph(Γn) ≤ c.(3.3)

Then there exist a subsequence {Ωnk
} and a subset Ω, Γ �= ∅, of D such that

Ph(Γ) ≤ lim inf
n→∞ Ph(Γn) ≤ c(3.4)

∀p̄, 1 ≤ p̄ < ∞, bΩnk
→ bΩ in W 1,p̄(Uh(D))-strong.(3.5)

Proof. The proof essentially rests on Lemmas 2.1 and the fact that Ph(Γ) ≤ c

implies mN (Γ) = 0. Since D is bounded, the family of oriented distance functions
Cb(D) is compact in C(D) and W 1,p(D)-weak for all p, 1 ≤ p < ∞ (cf. [11], The-
orem 2.2 (ii), p. 210, and Theorem 5.2 (iii), p. 228). So there exist bΩ ∈ Cb(D)
and a subsequence, still indexed by n, such that bΩn → bΩ in the above topologies.
Moreover, for all k, 0 < k < h, and all ε, 0 < ε < h − k,

∃N(ε) > 0 such that ∀n ≥ N(ε), Uk−ε(Γn) ⊂ Uk(Γ) ⊂ Uk+ε(Γn)

(cf. proof of part (i) of Theorem 9.2 in [11], p. 251). As a result for all n ≥ N(ε),

mN (Uk−ε(Γn))
2(k − ε)

k − ε

k
≤ mN (Uk(Γ))

2k
≤ mN (Uk+ε(Γn))

2(k + ε)
k + ε

k
≤ c

k + ε

k

⇒ mN (Uk(Γ))
2k

≤ mN (Uk+ε(Γn))
2(k + ε)

k + ε

k
≤ Ph(Γn)

k + ε

k

⇒ mN (Uk(Γ))
2k

≤ lim inf
n→∞ Ph(Γn)

k + ε

k
.(3.6)
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Going to the limit as ε goes to zero in the second and fourth terms

∀k, 0 < k < h,
mN (Uk(Γ))

2k
≤ lim inf

n→∞ Ph(Γn) ≤ c

⇒ Ph(Γ) ≤ lim inf
n→∞ Ph(Γn) ≤ c ⇒ mN (Γ) = 0.

The theorem now follows from the fact that mN (Γ) = 0 and Lemma 2.1.

Corollary 3.1. Let D �= ∅ be a bounded open subset of RN and Ω, Γ �= ∅, be
a subset of D such that

∃h > 0 and c > 0 such that Ph(Γ) ≤ c.(3.7)

Then the mapping bΩ′ → Ph(Γ′) : Cb(D) → R∪{+∞} is lower semicontinuous in Ω
for the W 1,p(D)-topology.

Proof. Since we have a metric topology, it is sufficient to prove the property for
W 1,p(D)-converging sequences {bΩn} to bΩ. From that point on the argument is the
same as the one used to get (3.6) in the proof of Theorem 3.1 after the extraction of
the subsequence.

Remark 3.1. It is important to notice that even if {Ωn} is a W 1,p-convergent
sequence of bounded open subsets of RN with a uniformly bounded perimeter, the limit
set Ω need not be an open set or have a nonempty interior intΩ such that bΩ = bintΩ.
It would be tempting to say that bΩn → bΩ implies d�Ωn

→ d�Ω and use the open set
intΩ = ��Ω for which d�Ω = d� intΩ to conclude that bΩ = bintΩ. This is incorrect as
can be seen on the following example shown in Figure 1. Consider a family {Ωn} of

1
n

11

ΩΩn

Fig. 1. W 1,p-convergence of a sequence of open subsets {Ωn : n ≥ 1} of R2 with uniformly

bounded density perimeter to a set with empty interior

open rectangles in R2 of width equal to 1 and height 1/n, n ≥ 1, an integer. Their
density perimeter is bounded by 4 and the bΩn ’s converge to bΩ for Ω equal to the line
of length 1 which has no interior.

3.2. The new families of cracked sets. In this section we introduce new
families of thin sets which are well-suited for image segmentation. They are more
general than sets which are locally the epigraph of a continuous function in the sense
that they include domains with cracks, and sets that can be made up of components
of different co-dimensions. The Hausdorff (N − 1) measure of their boundary is not
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necessarily finite. Yet compact families (in the W 1,p-topology) of such sets can be
constructed.

First recall the following definitions of the liminf and limsup for the following
differential quotient of a function f : V (x) ⊂ RN → R defined in a neighborhood
V (x) of a point x ∈ RN in the direction d ∈ RN

lim inf
t↘0

f(x + td) − f(x)
t

def= lim
δ↘0

inf
0<t<δ

f(x + td) − f(x)
t

lim sup
t↘0

f(x + td) − f(x)
t

def= lim
δ↘0

sup
0<t<δ

f(x + td) − f(x)
t

lim inf
t↘0
w→d

f(x + tw) − f(x)
t

def= lim
δ↘0

inf
0<t<δ

|w−d|
RN<δ

(t,w) �=(0,v)

f(x + tw) − f(x)
t

lim sup
t↘0
w→d

f(x + tw) − f(x)
t

def= lim
δ↘0

sup
0<t<δ

|w−d|RN<δ

(t,w) �=(0,v)

f(x + tw) − f(x)
t

.

They are lower and upper semiderivatives8 of the Dini type. However we shall not
introduce a new notation since the liminf and limsup are more explicit.

Definition 3.2.

(i) A set Ω in RN, Γ �= ∅, is said to be weakly cracked if

∀x ∈ Γ, ∃d ∈ RN, |d| = 1, such that lim sup
t↘0
w→d

dΓ(x + tw)
t

> 0.(3.8)

(ii) A set Ω in RN, Γ �= ∅, is said to be cracked if

∀x ∈ Γ, ∃d ∈ RN, |d| = 1, such that lim inf
t↘0

dΓ(x + td)
t

> 0.(3.9)

(iii) A set Ω in RN, Γ �= ∅, is said to be strongly cracked9 if

∀x ∈ Γ, ∃d ∈ RN, |d| = 1, such that lim inf
t→0

dΓ(x + td)
|t| > 0.(3.10)

Strongly cracked implies cracked, and cracked implies weakly cracked since

lim inf
t↘0
w→d

dΓ(x + tw)
t

≤ lim inf
t↘0

dΓ(x + td)
t

≤ lim sup
t↘0

dΓ(x + td)
t

≤ lim sup
t↘0
w→d

dΓ(x + tw)
t

.

8Note that the (t, d), 0 < t < δ, is allowed in the inf and the sup of the last two definitions and

the constraint (t, w) �= (0, v) can be removed.
9Here the definition is

lim inf
t→0

f(x + td) − f(x)

|t|
def
= lim

δ↘0
inf

0<|t|<δ

f(x + td) − f(x)

t
.
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The special terminology of Definition 3.2 is motivated by the fact that the boundary
of such a set has zero N -dimensional Lebesgue measure (cf. Lemma 3.1) and can be
made up of cusps, points, cracks or hairs as shown in Figure 2. This terminology is

Fig. 2. Example of a two-dimensional strongly cracked set

introduced here to provide an intuitive description of the sets.
The weakly cracked property is verified in any point of the boundary where the

gradient of dΓ does not exist; in boundary points where the gradient exists it is not
identically 0. This is a very large family of sets that includes domains which are
locally the epigraph of a continuous function. There are obvious variations of the
above definitions and the forthcoming compactness Theorem 3.2 by replacing dΓ by
dΩ, d�Ω or bΩ.

Lemma 3.1. Let Ω, Γ �= ∅, be a subset of RN, x ∈ Γ, and d, |d| = 1, be a
direction in RN. If the semiderivative ddΓ(x; d) does not exist then

lim sup
t↘0
w→d

dΓ(x + tw)
t

> 0.

Proof. Since the function dΓ is Lipschitzian, the limit of the quotient

ddΓ(x; d) def= lim
t↘0

dΓ(x + td) − dΓ(x)
t

exists if and only if the limit of the quotient

lim
t↘0
w→d

dΓ(x + tw) − dΓ(x)
t

exists (cf [11], Chapter 8, Theorem 2.1(i)). Moreover, by the Lipschitz continuity,∣∣∣∣dΓ(x + tw) − dΓ(x)
t

∣∣∣∣ ≤
∣∣∣∣ twt

∣∣∣∣ = |w| → |d|

and hence the liminf and the limsup of the quotient exist and are finite.
For x ∈ Γ dΓ(x) = 0. Therefore ddΓ(x; d) does not exists if and only if

lim sup
t↘0
w→d

dΓ(x + tw)
t

> lim inf
t↘0
w→d

dΓ(x + tw)
t

≥ 0
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since the last term is nonnegative. This completes the proof.
Theorem 3.2.

(i) A weakly cracked set Ω is thin, that is m(Γ) = 0, and

Γ ⊂ intΩ ∪ int �Ω.

Moreover in any point x ∈ Γ either ∇bΩ(x) exists and is different from zero
or ∇bΩ(x) does not exists (set of cracks).

(ii) Given a cracked set Ω, for each x ∈ Γ there exists a direction d ∈ RN, |d| = 1,
such that

1 ≥ �(x) def= lim inf
t↘0

dΓ(x + td)
t

> 0

and for all ε, 0 < ε < �(x), there exists δ > 0 such that

∀t, 0 < t < δ, dΓ(x + td) ≥ (�(x) − ε)t

⇒ x + C(δ cosω, ω, d) ⊂ RN \Γ, sin ω = �(x) − ε, 0 < ω ≤ π/2

(C(λ, ω, d) is the open cone in 0 of direction d, height λ and aperture ω).
(iii) Given a strongly cracked set Ω, for each x ∈ Γ there exists a direction d ∈ RN,

|d| = 1, such that

1 ≥ �(x) def= lim inf
t→0

dΓ(x + td)
|t| > 0

and for all ε, 0 < ε < �(x), there exists δ > 0 such that

∀t, 0 < |t| < δ, dΓ(x + td) ≥ (�(x) − ε)|t|
⇒ x ± C(δ cosω, ω, d) ⊂ RN \Γ, sin ω = �(x) − ε, 0 < ω ≤ π/2.

Proof. (i) We already know that ∇dΓ exists almost everywhere in RN and that,
whenever it exists,

|∇dΓ(x)| =

⎧⎨
⎩0, if x ∈ Γ

1, if x /∈ Γ

(cf. [11], Chapter 4, Theorem 3.2 (i)). Therefore if ∇dΓ(x) exists in a point x ∈ Γ,
∇dΓ(x) = 0 and for all d, |d| = 1,

lim sup
t↘0
w→d

dΓ(x + tw)
t

= lim sup
t↘0
w→d

dΓ(x + tw) − dΓ(x)
t

= ∇dΓ(x) · d = 0

which contradicts the weakly cracked property. Hence the points of Γ are points where
∇dΓ(x) does not exist which is itself a set of zero measure. Moreover, if ∇bΩ(x) exists
in a point x ∈ ∂Ω, then bΩ(x) = 0 and for all d, |d| = 1,

lim
t↘0
w→d

bΩ(x + tw)
t

= lim
t↘0
w→d

bΩ(x + tw) − bΩ(x)
t

= ∇bΩ(x) · d.
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If ∇bΩ(x) = 0, then for all d

lim
t↘0
w→d

bΩ(x + tw)
t

= lim
t↘0
w→d

bΩ(x + tw) − bΩ(x)
t

= ∇bΩ(x) · d = 0

⇒ lim
t↘0
w→d

dΓ(x + tw)
t

= lim
t↘0
w→d

∣∣∣∣bΩ(x + tw)
t

∣∣∣∣ = 0

and ∇d∂Ω(x) = 0 which contradicts our assumption. Therefore if ∇bΩ(x) exists in a
point x ∈ ∂Ω, ∇bΩ(x) �= 0. For any x ∈ Γ introduce the notation

�̄(x) def= lim sup
t↘0
w→d

dΓ(x + tw)
t

.

By assumption �̄(x) > 0 and for all δ > 0

�̄(x) ≤ sup
0<t<δ

|w−d|<δ

dΓ(x + tw)
t

.

Hence there exist sequences {tn}, tn → 0, and {wn}, wn → d, such that

0 < �̄(x)/2 ≤ dΓ(x + tnwn)
t

⇒ RN \Γ � xn
def= x + tnwn → x

and necessarily Γ ⊂ intΩ ∪ int �Ω ⊂ intΩ ∪ int �Ω.

(ii) Given a cracked set Ω, for each x ∈ Γ there exists a direction d ∈ RN, |d| = 1,
such that

�(x) def= lim inf
t↘0

dΓ(x + td)
t

> 0

and for all ε, 0 < ε < �(x), there exists δ > 0 such that

∀t, 0 < t < δ, dΓ(x + td) ≥ (�(x) − ε)t.

Recall that since dΓ is Lipschizian of constant one, we necessarily have 1 ≥ �(x) for
|d| = 1. Therefore

x + C(δ cosω, ω, d) ⊂ RN \Γ, sin ω = �(x) − ε, 0 < ω ≤ π/2.

(iii) Similar to the proof of part (ii).

Theorem 3.3. Let D be a bounded open subset of RN and α > 0 and h > 0 be
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real numbers10. Consider the families

F(D, h, α) def=

⎧⎪⎨
⎪⎩Ω ⊂ D̄ :

Γ �= ∅ and ∀x ∈ Γ, ∃d, |d| = 1,

such that inf
0<t<h

dΓ(x + td)
t

≥ α

⎫⎪⎬
⎪⎭

Ch,α
b (D) def= {bΩ : Ω ∈ F(D, h, α)} .

(3.11)

Fs(D, h, α) def=

⎧⎪⎨
⎪⎩Ω ⊂ D̄ :

Γ �= ∅ and ∀x ∈ Γ, ∃d, |d| = 1,

such that inf
0<|t|<h

dΓ(x + td)
|t| ≥ α

⎫⎪⎬
⎪⎭

(Ch,α
b )s(D) def= {bΩ : Ω ∈ Fs(D, h, α)} .

(3.12)

Then Ch,α
b (D) and (Ch,α

b )s(D) are compact in W 1,p(D), 1 ≤ p < ∞.

Proof. (i) The family Ch,α
b (D) is contained in Cb(D) which is compact in the

uniform topology of C(D) and in the weak topology of W 1,p(D), 1 ≤ p < ∞ (cf.
[11], Chapter 4, Theorem 2.2 (ii), p. 210 and Theorem 5.2 (iii). p. 228). Therefore,
given a sequence {bΩn} in Ch,α

b (D), there exist a subsequence, still denoted {bΩn},
and bΩ ∈ Cb(D) such that bΩn → bΩ in W 1,p(D)-weak and C(D). In addition,
by definition of the elements of Ch,α

b (D), condition (3.9) is verified and each Ωn

has thin boundary. We want to show that bΩ ∈ Ch,α
b (D). Once this is proven, from

Theorem 3.2 (i), Ω has a thin boundary. Hence the weak W 1,p(D) convergence implies
the strong W 1,p(D) convergence by Lemma 2.1. In view of the continuity of the map
bΩ → dΓ = |bΩ| : C(D) → C(D), dΓn → dΓ in C(D). From Lemma 10.1 in Chapter 5
of [11], given x ∈ Γ, there exists a subsequence of {bΩn}, still denoted {bΩn}, and for
each n ≥ 1 points xn ∈ Γn ∩ B(x, 1/n). Hence xn → x. By assumption

∀n ≥ 1, ∃dn ∈ RN, |dn| = 1, such that inf
0<t<h

dΓn(xn + tdn)
t

≥ α.

Since the dn’s have norm one, there exist a subsequence, still denoted {dn}, and d,
|d| = 1, such that dn → d. Fix t, 0 < t < δ. Given ε > 0, there exists N such that for
all n ≥ N

|xn − x| < εt, |dn − d| < δn < ε, ‖dΓn − dΓ‖C(D) < εt.

10In view of the fact that the distance function dΓ is Lipschitzian with constant 1, we necessarily

have 0 < α ≤ 1.
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Fix n = N and consider the following estimates

dΓ(x + td)
t

≥dΓn(xn + tdn)
t

− |dΓn(x + tdn) − dΓn(xn + td)|
t

− |dΓ(x + td) − dΓ(xn + td)|
t

− |dΓ(xn + td) − dΓn(xn + td)|
t

≥α − ε − |d − dn| − |x − xn|
t

− ‖dΓ − dΓn‖CD)

t
≥ α − 4ε

⇒ ∀ε > 0, inf
0<t<h

dΓ(x + td)
t

≥ α − 4ε ⇒ inf
0<t<h

dΓ(x + td)
t

≥ α.

Therefore bΩ ∈ Ch,α
b (D) and this completes the proof of the compactness.

(ii) The proof for (Ch,α
b )s(D) is identical with obvious changes.

4. The segmentation of N-dimensional images.

4.1. Problem formulation. Typically the image segmentation functional of
Mumford and Shah [21] aims at identifying two dimensional objects in a two dimen-
sional frame as shown in Figure 3.

frame D

grey level image I open set Ω

Fig. 3. Image I of objects and its segmentation in an open 2-D frame D.

In this section we specialize to the segmentation of N -dimensional images where
the segmentation could potentially be composed of objects of codimension greater or
equal to one. To represent the set of Figure 2 as the boundary of an open set one can
use the unbounded plane R2 minus all the curves and the points in Figure 2. If it is
important that the open set be bounded, a fixed open frame D is introduced. The
open set Ω in Figure 4 is then defined as the interior of the bounded open frame D

minus all the curves and points used to draw the picture.

Definition 4.1. Let D be a bounded open subset of RN with Lipschitzian bound-
ary.

(i) An image in the frame D is specified by a function f ∈ L2(D).
(ii) We say that {Ωi}i∈I is an open partition of D if {Ωi}i∈I is a family of
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open frame D

Fig. 4. The 2-D strongly cracked set of Figure 2 in an open frame D

disjoint connected open subsets of D such that

mN (∪i∈IΩi) = mN (D) and mN (∂ ∪i∈I Ωi) = 0.

Denote by P(D) the family of all such open partitions of D.
Given an open partition {Ωi}i∈I of D, associate with each i ∈ I, a function

ϕi ∈ H1(Ωi). In its intuitive form the problem formulated by Mumford and Shah
[21] aims at finding an open partition P = {Ωi}i∈I in P(D) solution of the following
minimization problem

inf
P∈P(D)

∑
i∈I

inf
ϕi∈H1(Ωi)

∫
Ωi

ε |∇ϕi|2 + |ϕi − f |2 dx(4.1)

for some fixed constant ε > 0. Observe that without the condition mN (∪i∈IΩi) =
mN (D) the empty set would be a solution of the problem or a phenomenon of the
type discussed in Remark 3.1 and the phenomenon of Figure 1 could occur.

The question of existence requires a more specific family of open partitions or a
penalization term which preserves the “length” of the interfaces in some appropriate
sense:

inf
P∈P(D)

∑
i∈I

inf
ϕi∈H1(Ωi)

∫
Ωi

ε |∇ϕi|2 + |ϕi − f |2 dx + c HN−1(∂ ∪i∈I Ωi)(4.2)

for some c > 0. The choice of a relaxation of the (N − 1)-Hausdorff measure HN−1 is
critical. Here the finite perimeter of Caccioppoli reduces to the perimeter of D since
the characteristic function of ∪i∈IΩi is almost everywhere equal to the characteristic
function of D. In that context, the relaxation of the (N − 1)-dimensional upper
Minkowski content by Bucur and Zolésio [3] is much more interesting in view of the
associated compactness Theorem 3.1.

Another way of looking at the problem would be to minimize the number I of
open subsets of the open partition, but this seems more difficult to formalize.

As a final remark, it is clear that the image of Figure 4 is not an L2(D)-function
and that its identification would require a sharper detection functional than the one
of (4.2).
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4.2. Cracked sets without the perimeter. In this section we specialize the
compact family of Theorem 3.3 to get the existence of a solution to the following
minimization problem

inf
Ω∈F(D,h,α)

Ω open ⊂D, mN (Ω)=mN (D)

inf
ϕ∈H1(Ω)

∫
Ω

ε |∇ϕ|2 + |ϕ − f |2 dx.(4.3)

This allows for open sets Ω with HN−1(Γ) = ∞. The pair (h, α) are the control
parameters of the segmentation. Recall the characterization of Theorem 3.2 (ii) which
says that in each point of the boundary there exists a small open cone of uniform height
and aperture which does not intersect the boundary.

Theorem 4.1. Given a bounded open frame D ⊂ RN with a Lipschitzian bound-
ary and real numbers h, α, and ε > 0, there exist an open subset Ω∗ of D in F(D, h, α)
such that mN (Ω∗) = mN (D) and y ∈ H1(Ω∗) solutions of problem (4.3).

4.2.1. Technical lemmas. The proof of the existence theorems will require the
following technical results.

Lemma 4.1. Given a subset A of RN with nonempty boundary ∂A,

∃ an open subset Ω ⊂ RN such that bA = bΩ

if and only if dA = dint A or equivalently Ā = intA.
Proof. By definition for Ω open

bA = bΩ ⇐⇒ dA = dΩ and d�Ω = d�A

which is also equivalent to

Ā = Ω̄ and �Ω = �A ⇐⇒ Ā = Ω̄ and Ω = intA.

Hence the necessary and sufficient condition finally reduces to intA = Ā.
Lemma 4.2. Let D ⊂ RN be bounded open with Lipschitzian boundary. Then

Ω ⊂ D, Γ �= ∅, mN (Γ) = 0, and mN (Ω) = mN (D) ⇒ intΩ = Ω.

Proof. By contradiction. If intΩ � Ω, there exists x ∈ Ω such that dintΩ(x) =
ρ > 0 and hence B(x, ρ) ⊂ �Ω. Therefore Ω ∩ B(x, ρ) ⊂ Γ and mN(Ω ∩ B(x, ρ)) ≤
mN (Γ) = 0. By assumption mN (D) = mN (Ω) = mN (Ω) implies mN (D ∩ B(x, ρ)) =
mN (Ω∩B(x, ρ)) = 0. Since Ω ⊂ D, there exists x ∈ D such that mN (D∩B(x, ρ)) = 0.
But this is a contradiction since D is an open set with Lipschitzian boundary.

4.2.2. Another compactness theorem. The compactness of the following
special family of cracked sets contained in a frame is a corollary to the compactness
Theorem 3.3.
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Theorem 4.2. Let D be a bounded open subset of RN with Lipschitzian boundary
and h > 0 and α > 0 be real numbers. Consider the family

Fc(D, h, α) def=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ω ⊂ D̄ :

Ω open ⊂ D and mN (Ω) = mN (D)

and ∀x ∈ Γ, ∃d, |d| = 1,

such that inf
0<t<h

dΓ(x + td)
t

≥ α

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Cc,h,α
b (D) def= {bΩ : Ω ∈ Fc(D, h, α)} .

(4.4)

Then Cc,h,α
b (D) is compact in W 1,p(D), 1 ≤ p < ∞.

Proof. By standard arguments and Lemma 4.2. The conclusion follows from
Theorem 3.3 by adding the constraint mN(Ωn) = mN (D) which will be verified for
the limit set Ω for which a subsequence of {bΩn} converges to bΩ in W 1,1(D) and
hence {χΩn} converges to χΩ in L1(D).

4.2.3. Proof of Theorem 4.1. Proof. [Proof of Theorem 4.1] (i) For each open
Ω ∈ Fc(D, h, α), the problem

inf
ϕ∈H1(Ω)

F (Ω, ϕ), F (Ω, ϕ) def=
∫

Ω

ε |∇ϕ|2 + |ϕ − f |2 dx

has a unique solution y in H1(Ω) since the objective function F (Ω, ϕ) is continuous
and coercive on H1(Ω). Define

m
def= inf

Ω∈Fc(D,h,α)
inf

ϕ∈H1(Ω)

∫
Ω

ε |∇ϕ|2 + |ϕ − f |2 dx.

(ii) The minimum is finite since the objective function is positive and

∀ open Ω ∈ Fc(D, h, α), inf
ϕ∈H1(Ω)

∫
Ω

ε |∇ϕ|2 + |ϕ − f |2 dx ≤
∫

Ω

|f |2 dx

by choosing ϕ = 0. Let {Ωn} be a minimizing sequence of open subsets of D in
Fc(D, h, α) and for each n let yn ∈ H1(Ωn) be the minimizing element of F (Ωn, ϕ)
over H1(Ωn). Therefore, ∫

Ωn

ε |∇yn|2 + |yn − f |2 dx → m

⇒ ∃c > 0 such that ∀n,

∫
Ωn

ε |∇yn|2 + |yn − f |2 dx ≤ c.

By coercivity the sequence {yn} is uniformly bounded in H1(Ωn), that is there exists
a constant c > 0 such that

∀n, ‖yn‖L2(Ωn) ≤ c and ‖∇yn‖L2(Ωn) ≤ c.

By Theorem 4.2 there exists a subsequence of {Ωn} and an open set Ω ∈ Fc(D, h, α)
such that bΩn → bΩ in H1(D) and C(D). In particular d�Ωn

→ d�Ω in C(D). By the



46 MICHEL C. DELFOUR AND JEAN-PAUL ZOLÉSIO

compactivorous property (cf. [11], Theorem 2.4 (iii), p. 162),

∀K compact ⊂ intΩ, ∃N such that ∀n ≥ N, K ⊂ Ωn.

Moreover,

χΩn → χΩ ∈ L2(D) ⇒ χΩn ⇀ χΩ ∈ L∞(D)-weak∗(4.5)

⇒ fχΩn ⇀ fχΩ ∈ L2(D)-weak.(4.6)

Define the distributions

< ỹn, ϕ >
def=

∫
Ωn

yn ϕdx, ∀ϕ ∈ D(D)

< ∇̃yn, Φ >
def=

∫
Ωn

∇yn · Φ dx, ∀Φ ∈ D(D)N

< ∇ỹn, Φ >= −
∫

D

ỹn div Φ dx, ∀Φ ∈ D(D)N .

It is readily seen that we can identify ỹn and ∇̃yn with the extensions of yn and
∇yn by zero from Ωn to D. As a result there exist subsequences, still denoted {ỹn}
and {∇̃yn}, and ỹ ∈ L2(D) and Y ∈ L2(D)N such that ỹn ⇀ ỹ in L2(D)-weak and
∇̃yn ⇀ Y in L2(D)N -weak.

By the compactivorous property, for all Φ ∈ D(Ω), there exists N such that

∀n > N, supp Φ ⊂ Ωn ⇒ Φ ∈ D(Ωn).

Therefore, for all n > N ,

< ∇ỹn − ∇̃yn, Φ >= −
∫

Ωn

yn div Φ dx −
∫

Ωn

∇yn · Φ dx = 0

since yn ∈ H1(Ωn). But D(Ωn) ⊂ D(D) and by letting n go to infinity,

0 = −
∫

Ωn

yn div Φ dx −
∫

Ωn

∇yn · Φ dx → −
∫

D

ỹ div Φ dx −
∫

D

Y · Φ dx

⇒ ∀Φ ∈ D(Ω),
∫

D

ỹ div Φ dx +
∫

D

Y · Φ dx = 0.

Define the new distribution

< y, ϕ >
def=

∫
Ω

ỹ ϕ dx, ∀ϕ ∈ D(Ω).

It is easy to check that y ∈ L2(Ω) and hence

∀Φ ∈ D(Ω), 0 =
∫

D

ỹ div Φ dx +
∫

D

Y · Φ dx =
∫

Ω

ỹ div Φ dx +
∫

Ω

Y · Φ dx

⇒ ∀Φ ∈ D(Ω), < ∇y, Φ >= −
∫

Ω

ỹ div Φ dx =
∫

Ω

Y · Φ dx

⇒ ∇y = Y |Ω ∈ L2(Ω) ⇒ y ∈ H1(Ω).
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(iv) Coming back to our objective function

inf
ϕ∈H1(Ωn)

∫
Ωn

ε |∇ϕ|2 + |ϕ − f |2 dx =
∫

Ωn

ε |∇yn|2 + |yn − f |2 dx

=
∫

D

ε |∇̃yn|2 + |ỹn − fχΩn |2 dx.

By convexity and continuity of the objective function with respect to the pair (ỹn −
fχΩn , ∇̃yn) in L2(D) × L2(D)N and the fact that, from (4.6), (ỹn − fχΩn , ∇̃yn) ⇀

(ỹ − fχΩ, Y ) in L2(D) × L2(D)N -weak,∫
D

ε |Y |2 + |ỹ − fχΩ|2 dx ≤ lim inf
n→∞

∫
D

ε |∇̃yn|2 + |ỹn − fχΩn |2 dx

= lim inf
n→∞

∫
Ωn

ε |∇yn|2 + |yn − f |2 dx = m

⇒
∫

Ω

ε |∇y|2 + |y − f |2 dx =
∫

D

ε |∇y|2 + |y − fχΩ|2 dx ≤ m.

By definition of the minimum we have the equality and there exist an open set Ω ∈
Fc(D, h, α) and y ∈ H1(Ω) solution of the segmentation problem.

4.3. Existence of a cracked set with minimum density perimeter. The-
orem 4.1 gives an existence result for the family F(D, h, α) of open sets Ω such that
mN (Ω) = mN (D) without constraint on the “perimeter” of Ω. Denote by F∗(D, h, α)
the set of solutions to problem (4.3). In general, the perimeter can be infinite as can
be seen from the following example.

Example 4.1. The function f : D → R is defined as follows

f(x) =

⎧⎨
⎩1, if x ∈ Ω1

0, if x ∈ Ω2

(4.7)

where D = {(x, y) : −2 < x < 3, −1 < y < 3}, Ω = Ω1 ∪ Ω2, Ω2 = D\Ω1, and the
open set Ω1 is constructed below (see Figure 5). The set Ω with y = f is a solution
of problem (4.3) with infinite perimeter.

The set Ω1 is a two-dimensional example constructed by Nicolas Doyon11 of an
open domain satisfying the uniform cusp condition of [11] for the function h(θ) = θα,
0 < α < 1. It can easily be generalized to an N -dimensional example. Consider the
open domain Ω1 in R2

Ω1
def= {(x, y) : −1 < x ≤ 0 and 0 < y < 2}

∩ {(x, y) : 0 < x < 1 and f(x) < y < 2}
∩ {(x, y) : 1 ≤ x < 2 and 0 < y < 2} ,

11Département de Mathématiques et de statistique, Université de Montréal.
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where f : [0, 1] → R is defined as follows

f(x) def=
∞∑

k=0

fk(x), fk :
[
1 − 1

2k
, 1 − 1

2k+1

]
→ R .

Associate with 0 < α < 1 and k ≥ 0 the even integer ηk = 2 [(2k+1)
α

1−α ], where [β] is

Ω1

Ω2

f = 1

f = 0

frame D

Fig. 5. The two open components Ω1 and Ω2 of the open domain Ω for N = 2.

the smallest integer greater or equal to β. Assume that for each k ≥ 0

fk
def=

ηk/2∑
j=1

gk,j gk,j : [xk,j−1, xk,j−1 + δk] → R

xk,j
def= 1 − 1

2k
+ (j − 1)2δk, 1 ≤ j ≤ ηk/2, δk

def=
1

ηk 2k+1

and that the function gk,j is given by the expression

gk,j(x) def=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ x < xk,j−1

(x − xk,j−1)α, xk,j−1 ≤ x ≤ xk,j−1 + δk

(2xk,j−1 − x)α, xk,j−1 + δk ≤ x ≤ xk,j−1 + 2δk

0, x > xk,j−1 + 2δk.

Note that

gk,j(xk,j−1 + δk) = (δk)α

is independent of j and is the maximum of the function gk,j.
The uniform cusp property is verified for ρ = 1/8, λ = h(ρ), and h(θ) = θα. The

boundary of Ω1 is made up of straight lines of total length 9 plus the length of the
curve

C
def= {(x, f(x)) : 0 ≤ x < 1} , C = ∪∞

k=0Ck, Ck = ∪ηk/2
j=1 Ck,j

Ck,j
def= {(x, f(x)) : xk,j−1 ≤ x < xk,j−1 + δk} .
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The length of the curve Ck,j is bounded below by

HN−1(Ck,j) ≥ 2
√

(δk)2 + (δk)2α ≥ 2 (δk)α ⇒ HN−1(Ck) ≥
ηk/2∑
j=1

HN−1(Ck,j)

HN−1(Ck) ≥ ηk

2
2 (δk)α = ηk (δk)α = ηk

(
1

ηk 2k+1

)α

= ηk
1−α

(
1

2k+1

)α

HN−1(Ck) ≥ ηk
1−α

(
1

2k+1

)α

=
(
2[(2k+1)

α
1−α ]

)1−α
(

1
2k+1

)α

≥ 21−α(2k+1)α

(
1

2k+1

)α

= 21−α

⇒ HN−1(C) =
∞∑

k=0

HN−1(Ck) ≥ +∞ 21−α = +∞.

When at least one solution has a bounded perimeter, it is possible to show that
there is one that minimizes the h-density perimeter.

Theorem 4.3. Assume that the assumptions of Theorem 4.1 are verified. There
exists an Ω∗ in F∗(D, h, α) which minimizes the h-density perimeter.

Proof. If for all Ω in F∗(D, h, α) the h-density perimeter is +∞ the theorem is
true. If for some Ω ∈ F∗(D, h, α), Ph(Γ) ≤ c, then there exists a sequence {Ωn} in
F∗(D, h, α) such that

Ph(Γn) → inf
Ω∈F∗(D,h,α)

Ph(Γ).

By the compactness Theorems 3.1 and 4.2, there exist a subsequence and Ω∗, Γ∗ �= ∅,
such that bΩn → bΩ∗ in W 1,p(D), Ω∗ ∈ F(D, h, α), mN (Ω) = mN (D), and

Ph(Γ∗) ≤ lim inf
n→∞ Ph(Γn) ≤ c.

Finally by going back to the proof of Theorem 4.1 and using the fact that all the Ωn’s
are already minimizers in F∗(D, h, α), it can be shown that Ω∗ is indeed one of the
minimizers in the set F∗(D, h, α).

4.4. Uniform bound or penalization term in the objective function on

the density perimeter. To complete the results on the segmentation problem, we
turn to the existence of a segmentation for a family of sets with a uniform bound or
with a penalization term in the objective function on the h-density perimeter.

Theorem 4.4. Given a bounded open frame D ⊂ RN with a Lipschitzian bound-
ary and real numbers h > 0 and c > 012, there exists an open subset Ω∗ of D, Γ∗ �= ∅,

12Note that the constant c must be large enough to take into account the contribution of the

boundary of D.
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with finite h-density parameter such that mN (Ω∗) = mN (D) (Ph(Γ∗) ≤ c for (4.8)),
and y ∈ H1(Ω∗) solutions of the respective problems

inf
Ω open ⊂D, Ph(Γ)≤c

mN (Ω)=mN (D)

inf
ϕ∈H1(Ω)

∫
Ω

ε |∇ϕ|2 + |ϕ − f |2 dx(4.8)

inf
Ω open ⊂D

mN (Ω)=mN (D)

inf
ϕ∈H1(Ω)

∫
Ω

ε |∇ϕ|2 + |ϕ − f |2 dx + c Ph(Γ).(4.9)

Proof. The proof for the objective function (4.8) is exactly the same as the one of
Theorem 4.1. It uses Lemma 4.2 to show that the minimizing set has a thin boundary
and the compactness Theorem 3.1. The proof for the objective function (4.9) uses the
fact that there is a minimizing sequence for which the h-density perimeter is uniformly
bounded and the lower semicontinuity of the density perimeter in the W 1,p-topology
given by Corollary 3.1.

Problem (4.9) was the one originally considered in [3]. The above two identifica-
tion problems can be further specialized to the family of cracked sets F(D, h, α).

Corollary 4.1. Given a bounded open frame D ⊂ RN with a Lipschitzian
boundary and real numbers h > 0, α > 0 and c > 013, there exists an open subset
Ω∗ of D in F(D, h, α) such that mN (Ω∗) = mN (D) (Ph(Γ∗) ≤ c for (4.10)), and
y ∈ H1(Ω∗) solutions of the problem

inf
Ω open ⊂D, Ω∈F(D,h,α)
Ph(Γ)≤c, mN (Ω)=mN (D)

inf
ϕ∈H1(Ω)

∫
Ω

ε |∇ϕ|2 + |ϕ − f |2 dx(4.10)

inf
Ω open ⊂D, Ω∈F(D,h,α)

mN (Ω)=mN (D)

inf
ϕ∈H1(Ω)

∫
Ω

ε |∇ϕ|2 + |ϕ − f |2 dx + c Ph(Γ).(4.11)

Proof. Since the minimizing sequence {bΩn} constructed in the proof of Theo-
rem 4.1 strongly converges to bΩ∗ in W 1,p(D) for all p, 1 ≤ p < ∞, from property (3.4)
in Theorem 3.1, we have

Ph(Γ∗) ≤ lim inf
n→∞ Ph(Γn) ≤ c

and the optimal Ω∗ constructed in the proof of the theorem satisfies the additional
constraint on the density perimeter.

13Note that the constant c must be large enough to take into account the contribution of the

boundary of D.
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