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The nonparametric minimax estimation of an analytic density at a given point, under random

censorship, is considered. Although the problem of estimating density is known to be irregular in a

certain sense, we make some connections relating this problem to the problem of estimating smooth

functionals. Under condition that the censoring is not too severe, we establish the exact limiting

behaviour of the local minimax risk and propose the ef®cient (locally asymptotically minimax)

estimatorÐan integral of some kernel with respect to the Kaplan±Meier estimator.
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1. Introduction

Let (X 1, Y1), . . . , (X n, Yn) be independent identically distributed pairs of random variables

where X1 and Y1 are independent and have the distribution functions F and G, respectively.

We assume also that the distribution of X1 is absolutely continuous with density f. The

following model is known as random censorship model. We observe only the pairs (Zi, Äi),

i � 1, 2, . . . , n, with Zi � min (X i, Yi) and Äi � IfX i < Yig. In survival analysis the X i are

called survival times and the Yi censoring times. Estimation problems with censored

observations arise often in lifetime research. In survival analysis, lifetime data are typically

subject to censoring. We suppose F and G are unknown and our goal is, using the observed

data, to estimate the density f (x) at a given point x.

The problem of density estimation under random censorship has been treated by a

number of authors (see, for example, Mielniczuk (1986), Diehl and Stute (1988), Lo et al.

(1989), Hentzschel (1992), Huang and Wellner (1995), Kulasekera (1995) and Liu (1996)).

Hentzschel (1992) investigated the estimator based on the orthonormal system of the

Laguerre series on the positive line and under some assumptions obtained the rates of the

mean integrated square error and the mean square error. Kulasekera (1995) gave the upper

L1 bounds for the kernel-type estimator for two classes of densities: monotonically

decreasing densities on [0, 1) and densities which are of bounded variation on [0, 1]. For a

decreasing density function, Huang and Wellner (1995) showed that the nonparametric

maximum-likelihood estimator of the density is asymptotically equivalent to the estimator
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obtained by differentiating the least-concave majorant of the Kaplan±Meier estimator and

established the asymptotic distributions of the different estimators at a ®xed point.

However, in all the above-mentioned papers the question of optimality has not been

touched on. In a recent paper, Liu (1996) considered the general problem of estimating

functionals of a distribution F for some nonparametric classes de®ned in terms of the

Hellinger modulus of continuity. With regard to density estimation, minimax Kaplan±Meier-

based kernel procedures were shown, under some conditions, to be of optimal rate and,

moreover, within certain lower and upper bounds.

In the nonparametric minimax estimation context the notion of asymptotic optimality is

usually associated with the optimal rate of convergence of the minimax risk. In order to

derive the exact asymptotics of the minimax risk and to be able to compare the estimators

with the optimal rate of convergence, one may strengthen the optimal rate results by ®nding

optimal constants when they exist. Results about the optimal constants in minimax density

estimation have only been obtained in a limited number of studies for models with

independent identically distributed observations. The majority of workers have considered

the global minimax risk. However, studying the so-called local minimax risk yields more

exact results. We mention the work of Golubev and Levit (1996) whose results motivated

the present study. In the problem of estimation of an analytic density at a given point, with

independent identically distributed observations, they derived the exact limiting behaviour of

the local minimax risk and proposed an ef®cient estimator.

To elucidate the ideas of the results, we give here some heuristic arguments. The unknown

underlying density f is assumed to belong to the class of densities with exponentially

decreasing Fourier transforms (analytic densities). This nonparametric class has the advantage

that one can treat the problem of estimating f (x) as if a smooth functional was to be

estimated. In particular, it turns out that any density from this nonparametric class can be

represented in the following asymptotic form (see Lemma 5 below):

f (x) �
�
ön(xÿ y) f (y) dy� O(nÿ1=2), as n!1,

locally uniformly in f in a proper topology, where ön(y) is some sequence of functions (see the

exact de®nitions in the next section) which we shall call kernel, treating this notion in a broader

sense than is usual in the literature. The local minimax quadratic risk proves to be of order

(log n)=n and therefore the remainder term can be neglected, while the ®rst term resembles

a `̀ smooth'' functional (it is a sequence of functionals because of its dependence on n) to

which one can apply well-developed methods for deriving an optimal estimator and its

asymptotic behaviour. So, in case there is no censoring, one can expect the estimator
~f n(x) � � ön(xÿ y) dFn(y), with the empirical distribution function Fn, to be optimal in some

sense. If for independent identically distributed observations the estimator of the density is some

functional of the empirical distribution function T (Fn), then in the case of censoring one tries

usually to use the estimator T ( ~Fn), with the well-known Kaplan±Meier estimator ~Fn(y) (see

below) instead of the empirical distribution function Fn. Thus, it is natural to propose the

estimator

~f n � ~f n(x) �
�
ön(xÿ y) d ~Fn(y): (1)
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In this paper we establish, under the condition that the censoring is not too severe, the

exact limiting behaviour of the local minimax risk up to a constant and show that the

estimator of the form (1), with a properly chosen kernel, is locally asymptotically ef®cient.

We emphasize here that the choice of nonparametric class (analytic densities) has made it

possible. We propose a wide class of kernels on which the estimator can be based, which

turns out to be important in the estimation problem with censored observations. Using the

martingale approach enables us to derive the exact upper bound for the local minimax risk.

The lower bound for the local minimax risk is based on the elementary van Trees inequality

(Gill and Levit 1995).

2. De®nitions and main results

In this section we summarize the main results. First we de®ne the notion of ef®ciency.

Prior information about an unknown density f is usually formalized by assuming f 2 F ,

for some class of densities F . Suppose now that we have some topology on F . For each

neighbourhood V de®ne the local minimax risk:

rn(V ) � rn(V , x) � inf
~f n

sup
f2V

E f f~f n(x)ÿ f (x)g2, (2)

where the in®mum is taken over all estimators ~f n. The most convenient and natural way to

introduce the notion of ef®ciency is the following: the estimator ~f n is called asymptotically

ef®cient (or just ef®cient) if for each density f 2 F there exists a neighbourhood V0 3 f

such that, for any neighbourhood V, f 2 V � V0 (from now on we shall just say for any

suf®ciently small neighbourhood of f ), for some positive sequence ân,

lim sup
n!1

âÿ2
n sup

f 2V

E f f~f n(x)ÿ f (x)g2 ÿ rn(V )
� �

� 0,

while

lim inf
n!1 âÿ2

n rn(V ) . 0:

The sequence ân is called the minimax rate of convergence. Note also that one can write lim

instead of lim sup. If the limit

lim
V# f0

lim
n!1 âÿ2

n rn(V ) � ó 2( f0)

exists, then ó ( f 0), together with ân, describes the exact behaviour of the local minimax risk

and represents in a way the dif®culty of the estimation problem at the point f 0.

Denote from now on the Fourier transform of an absolutely integrable function f by f̂ :

f̂ (t) �
�

ei ty f (y) dy:

De®ne now the nonparametric class F ä of underlying densities.
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De®nition. For given P, ä. 0, denote

F ä � F ä(P) � f (:): (2ð)ÿ1

�
cosh2(ät)jf̂ (t)j2 dt < P

� �
: (3)

Remark 1. This is a class of analytic functions. Below we describe it more precisely. Let the

class Aä �Aä(P) consist of functions admitting bounded analytic continuation into the strip

fy� iu, juj < äg and
� j f (y� iä)j2 dy < P ,1. In the case where there is no censoring the

nonparametric classes of the type Aä were considered ®rst by Ibragimov and Hasminski

(1983), where the minimax rates of convergence in L p were derived. There is a close

relationship between the classes F ä and Aä; for any â, 0 , â, ä, there exists Q . 0 such

that

Aä(P) � F ä(P) �Aäÿâ(Q):

Indeed, if a density f 2Aä, then, according to Timan (1963, p. 137), the limit

lim
u!ä

Ref f (y� iu)g � g f (y)

exists for almost all y and f (y) can be represented as a convolution:

f (y) � 1

2ä

�
cosh

ð(yÿ u)

2ä

� �� �ÿ1

g f (u) du:

Furthermore, because of the relation (see, for example, Gradshtein and Ryzhik (1980,

equation (3.983.1)))

1

2ä

�
ei tu cosh

ðu

2ä

� �� �ÿ1

du � fcosh(ät)gÿ1,

f̂ (t) � fcosh(ät)gÿ1 ĝ(t):

By the Parseval formula,

1

2ð

�
cosh2(ät) jf̂ (t)j2 dt �

�
g2

f (y) dy < P,

and hence the ®rst inclusion holds. The second inclusion follows immediately from the

Paley±Wiener theorem (see, for example, Katznelson (1976, p. 174)).

Note also that the class F ä is quite broad; the Gauss, Student and Cauchy distributions

are, among many others, for appropriate ä, in this class, as well as their mixtures.

De®nition. Let T ä be the topology on F ä induced by the distance

r( f , g) �
�

cosh2(ät) jf̂ (t)ÿ ĝ(t)j2 dt

� �1=2

�
�
j f (y)ÿ g(y)j dy:

Remark 2. This is a strong topology; closeness with respect to r implies, by the formula for
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the inverse Fourier transform, closeness of all derivatives in the uniform topology: for g,

h 2 F ä,

sup
y

jg(m)(y)ÿ h(m)(y)j < C1

�
t2mjĝ(t)ÿ ĥ(t)j2 dt

� �1=2

< C2r(g, h):

In almost every estimation problem with censored data, one faces the well-known

unstable behaviour of the Kaplan±Meier process n1=2f ~Fn(y)ÿ F(y)g (here ~Fn is the

Kaplan±Meier estimator; see de®nition below) in the right tails of F and G. Therefore, the

lighter the tails of the kernel, the less restrictive conditions on the censoring mechanism are

needed. On the other hand, it turns out that, when constructing an ef®cient estimator, one

has to use observations distant from x as well as those close to x. Roughly speaking, this

corresponds to the fact that, even for y values distant from x, the values f (y) still carry

some information about f (x); analytic functions have a `̀ long memory''. This is formalized

by imposing the following restriction on the nonparametric class F ä.

De®nition. For given á, ô0 . 0, m > 1, denote

~F ä � ~F ä(m) � F ä(P) \ f : inf
y

[eô0 y2 mf1ÿ F(y)gf1ÿ G(y)g] .á
� �

, (4)

where F ä(P) is de®ned by (3) and F is the distribution function corresponding to the density

f.

Remark 3. The restriction on the original class F ä de®ned by (3) expresses the requirement

for the censoring mechanism to allow distant observations with positive probability as the

number of observations tends to in®nity. Indeed, for some 0 , p , 1 let

yn � 1

ô0

log
ÿán

log(1ÿ p)

� �( )1=2m

,

then

PfZ(n) . yng � 1ÿ [1ÿ f1ÿ F(yn)gf1ÿ G(yn)g]n

> 1ÿ (1ÿ á eÿô0 y2 m
n )n

� 1ÿ 1� log(1ÿ p)

n

� �n

> p,

where Z(n) � max1<i<n Zi.

Remark 4. Without loss of generality we suppose that m is integer. Indeed, we shall see later

that both the upper bound and the lower bound for the local minimax risk do not depend on

m, nor on á, P and ô0.
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De®nition. Let ~T ä be the topology induced by T ä on ~F ä.

Let us establish several conventions; sometimes we shall write F 2 ~F ä, meaning actually

that the corresponding density f 2 ~F ä; in the proofs we shall denote generic positive

constants by C1, C2, C3, . . . and they are assumed to be different in the proofs of different

assertions; all symbols O and o correspond to the asymptotics n!1 unless otherwise

speci®ed; if we say that a particular property holds locally uniformly, this means that for

each f 2 ~F ä there exists a neighbourhood V of f such that this property holds uniformly

over V.

We propose the following class of kernels to be used in the construction of the estimator:

ön(y) � ön(y, ô, ä, m) � r(y)s(y), (5)

where

r(y) � r(ô, m, y) � eÿô y2 m

, s(y) � s(ä, n, y) � sin(an y)

ðy
, an � log n

2ä
(6)

and ô is any ®xed number such that ô. 3
2
ô0, where constant ô0 appears in the de®nition of the

class ~F ä.

Let us state some properties of kernels of the form (5) and (6):

ö̂n(t) � 1

2ð
(r̂ � I (ÿan,a n))(t), (7)�

ö2
n(y) dy � an

ð
f1� o(1)g � log n

2ðä
f1� o(1)g, (8)

where � is the convolution operation and I S denotes the indicator function of set S. The ®rst

property is merely application of the standard formula for the Fourier transform of the

product of two functions. To get the second relation, split the integral into two terms: integral

over small neighbourhood of 0 and integral over its complement. Further note that the ®rst

term is asymptotically equivalent to

anð
ÿ2

�
sin y

y

� �2

dy � an

ð

and the second is of order O(1).

Note also that the function r̂(t) is even. The asymptotic behaviour of r̂(t), as jtj ! 1,

has been described by Fedoruk (1977, pp. 213±214, 220). We adapt this result in simpli®ed

form, suitable for our purposes; for some A1, A2 . 0,

jr̂(t)j < A1 exp (ÿA2jtj2m=(2mÿ1)): (9)

The constants A1, A2 depend in general on m and ô.

De®ne now the following estimator:

~f n � ~f n(x) �
�
ön(xÿ y) d ~Fn(y), (10)

where ön(y) is de®ned by (5) and (6) and ~Fn(y) is the Kaplan±Meier estimator, a well-
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known nonparametric ef®cient estimator of the distribution function F(y) (see, for example,

Andersen et al. (1993)):

~Fn(y) � 1ÿ
Y

i: Z(i),y

nÿ i

nÿ i� 1

� �Ä(i)

, (11)

with the convention 00 � 1. Here the Z(i) denote the ordered sequence of Zi and the Ä(i) are

corresponding indicators. A rich literature has been devoted to this estimator and its

properties (see Andersen et al. (1993) and further references therein).

In the next theorem the local asymptotic performance of the estimator ~f n with respect to

the topology ~T ä is established. The proofs of the theorems are given in Section 5.

Theorem 1. Let the distribution function G be continuous at point x. Then the relation

lim sup
n!1

n

log n
E f f~f n(x)ÿ f (x)g2 < ó 2( f )

holds locally uniformly in f 2 ~F ä, where

ó 2( f ) � ó 2( f , x) � f (x)

2ðäf1ÿ G(x)g (12)

and the estimator ~f n(x) is de®ned by (10).

Theorem 1 gives an upper bound for the local minimax risk (2); for a suf®ciently small

neighbourhood V ( f )

lim sup
n!1

n

log n
rn(V ) < sup

f 2V

ó ( f ):

If we can provide a lower bound for the local minimax risk, coinciding asymptotically with

the upper one, then we clearly determine the asymptotic behaviour of the local minimax risk.

The treatment of the lower bound is similar to that in Golubev and Levit (1996), with the

difference that one has to take into account the censoring mechanism. The next theorem

describes the lower bound for the local minimax risk.

Theorem 2. Let the distribution function G be continuous at point x. Then, for each

neighbourhood V � ~F ä,

lim inf
n!1

n

log n
rn(V ) > sup

f 2V

ó 2( f ),

where the local minimax risk rn(V ) and ó 2( f ) are de®ned by (2) and (12), respectively.

In view of Theorems 1 and 2, the estimator ~f n is ef®cient. Indeed, for each f 2 ~F ä and

for any suf®ciently small neighbourhood V ( f ),

lim
n!1

n

log n
sup
f 2V

E f f~f n(x)ÿ f (x)g2 ÿ rn(V )
� �

� 0:
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Moreover, as an immediate consequence of Theorem 1 and Theorem 2, we obtain the

asymptotic behaviour of the local minimax risk.

Corollary 1. Let f 2 ~F ä and let the distribution function G be continuous at point x. Then,

for any suf®ciently small neighbourhood V ( f ),

lim
n!1

n

log n
rn(V ) � sup

f 2V

ó 2( f ):

Since ó 2(�) is a continuous functional, this implies also that

lim
V# f0

lim
n!1

n

log n
rn(V ) � lim

V# f0

sup
f 2V

ó 2( f ) � ó 2( f 0):

Remark 5. Note that, the smaller á and the larger P, m, ô0 in the de®nition of the class ~F ä,

the less restrictive is this class, while the asymptotic behaviour of the local minimax risk in

no way depends on á, P, m and ô0.

Remark 6. Compared with the result of Golubev and Levit (1996), we see that the fact of

censorship does not in¯uence the convergence rate, but it does in¯uence the optimal constant.

Remark 7. Since the Kaplan±Meier estimator is asymptotically normal, it seems plausible

that a central limit theorem for the estimator ~f n(x) can be given (cf. Yang (1994)):

n

log n

� �1=2

f~f n(x)ÿ f (x)g!D N (0, ó 2( f , x)) as n!1,

where ó 2( f , x) is de®ned by (12). For related result, see Yang (1994) where a central limit

theorem for the functional
�
ø d ~Fn is established; however, one cannot apply the methods of

Yang (1994) to our functional ~f n(x) directly because of dependence of the kernel ön on n.

This problem will not be treated here.

3. Preliminaries: the Kaplan±Meier estimator

Our treatment of the upper bound for the minimax risk relies heavily on the martingale

approach to the Kaplan±Meier estimator (Gill 1980). Below we present necessary

preliminaries, beginning with a suitable adaptation from Gill (1980).

Let N n be the process counting observed X i, and Y be the process giving the number at

risk:

Nn(u) � #fi: Zi < u, Äi � 1g,
Yn(u) � #fi: Zi > ug,
J n(u) � IfYn(u) . 0g,
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where the symbol # denotes the number of elements in a set. Let X (uÿ) denote left-hand

limit of X at point u. It is known (see, for example, Gill (1980)) that, for y such that

F(y) , 1 and Yn(y) . 0,

~Fn(y)ÿ F(y) � f1ÿ F(y)g
� y

ÿ1

f1ÿ ~Fn(uÿ)g
f1ÿ F(u)g

J n(u)

Yn(u)
dN n(u)ÿ Yn(u)

dF(u)

1ÿ F(uÿ)

� �

� f1ÿ F(y)g
� y

ÿ1

f1ÿ ~Fn(uÿ)g
f1ÿ F(u)g

J n(u)

Yn(u)
dM n(u), (13)

where M n(u) is a square integrable martingale with the predictable variation process

hM , Mi(y) �
� y

ÿ1
Yn(u)

1ÿ F(u)

f1ÿ F(uÿ)g2
dF(u), (14)

while J n(u), ~Fn(uÿ), Yn(u) are left continuous adapted processes.

We close this section with two technical lemmas which will be needed in the following

section.

For the following result we refer to Weits (1993).

Lemma 1. Let B � B (A, ô) � fF: f1ÿ F(A)gf1ÿ G(A)g > ô. 0g. Then, as n!1, the

relation

E
f1ÿ ~Fn(yÿ)g2

f1ÿ F(yÿ)g2

J n(y)

Yn(y)
� 1

nf1ÿ F(yÿ)gf1ÿ G(yÿ)g � O(nÿ2)

holds uniformly over B and y, y < A:

The proof of this lemma is essentially contained in the proof of Lemma 4 in Weits

(1993). In the paper of Weits, Yn=n corresponds to our Yn.

Lemma 2. For all n > 2,

E
J n(y)

Yn(y)

� �
< p(y)f1ÿ p(y)gnÿ1 � f1ÿ p(y)gn=2

p(y)
� 2

np(y)
,

where p � p(y) � f1ÿ F(yÿ)gf1ÿ G(yÿ)g.

Proof. Denote

ì(n) � ì(n, y) � nE
J n(y)

Yn(y)

� �
�
Xn

l�1

1

l=n

n

l

� �
pl(1ÿ p)nÿ l:

Reasoning as in Weits (1993), we obtain the following recursive equation for ì(n):
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ì(n) � n
Xnÿ1

l�1

1

l

nÿ 1

l ÿ 1

 !
�

nÿ 1

l

 !8<:
9=;pl(1ÿ p)nÿ l � pn

� n
1

n

Xn

l�1

n!

(nÿ l)!l!
pl(1ÿ p)nÿ l � (1ÿ p)

Xnÿ1

l�1

1

l

nÿ 1

l

 !
pl(1ÿ p)nÿ lÿ1

8<:
9=;

� n
1

n
f1ÿ (1ÿ p)ng � (1ÿ p)

1

nÿ 1
ì(nÿ 1)

� �
� 1� (1ÿ p)

n

nÿ 1
ì(nÿ 1)ÿ (1ÿ p)n:

Certainly ì(n) < ë(n), where ë(n) satis®es the recursive equation

ë(n) � 1� (1ÿ p)
n

nÿ 1
ë(nÿ 1), ë(1) � ì(1) � p, n > 2:

Let C(n) be a solution of the corresponding homogeneous equation:

C(n) � (1ÿ p)
n

nÿ 1
C(nÿ 1) C(1) � 1, n > 2:

Thus,

C(n) � (1ÿ p)nÿ1 n:

Let B(n) be such that ë(n) � C(n)B(n). Then B(n) satis®es

B(n) � B(nÿ 1)� nÿ 1

n(1ÿ p)
fC(nÿ 1)gÿ1, B(1) � p, n > 2:

It is easy to see that

B(n) � p�
Xn

k�2

(1ÿ p)1ÿk kÿ1

and

ë(n) � p(1ÿ p)nÿ1 n� n
Xn

k�2

(1ÿ p)nÿk kÿ1:

Denote by bCc the whole part of C.

Now we bound the second term in the last relationXn

k�2

(1ÿ p)nÿk kÿ1 <
Xbn=2c

k�1

(1ÿ p)nÿk � 1

bn=2c � 1

Xn

k�bn=2c�1

(1ÿ p)nÿk

<
(1ÿ p)n=2

p
� 2

np
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and hence the claim follows:

E
J n(y)

Yn(y)

� �
� ì(n)

n
<

ë(n)

n
< p(1ÿ p)nÿ1 � (1ÿ p)n=2

p
� 2

np
: u

4. Auxiliary results

In this section we provide further technical results which we shall need in the proof of

theorems.

Lemma 3. Let ön(y) be de®ned by (5) and h(y) be bounded and continuous at the x

function. Then, as n!1, the relation�
ö2

n(xÿ y)h(y) dF(y) � h(x) f (x)

�
ö2

n(y) dy f1� o(1)g � h(x) f (x) log n

2ðä
f1� o(1)g

holds locally uniformly in F 2 F ä,

Proof. The second relation follows immediately from (8). It remains to prove only the ®rst

identity. Let OE(x) � fy: jxÿ yj, Eg be the open interval around x radius E � En, En ! 0,

(E2
nlog n)ÿ1 � o(1) as n!1. We have obviously�
ö2

n(xÿ y)h(y) dF(y)ÿ h(x) f (x)

�
ö2

n(y) dy �
�

OE(x)

ö2
n(xÿ y)fh(y) f (y)ÿ h(x) f (x)g dy

�
�
fOE(x)gC

ö2
n(xÿ y)fh(y) f (y)ÿ h(x) f (x)g dy:

So it is enough to prove that the right-hand side of the last identity is of order o(log n) locally

uniformly.

One can bound the function ön(xÿ y) outside the interval OE(x) as follows:

ö2
n(xÿ y) <

eÿ2ô(xÿ y)2 m

ð2E2
n

:

Therefore, the inequality�
fOE(x)gC

ö2
n(xÿ y)jh(y) f (y)ÿ h(x) f (x)j dy < C1Eÿ2

n

�
(OE(x))C

eÿ2ô(xÿ y)2 m

dy � o(log n)

holds locally uniformly because our topology is stronger than the topology induced by the

sup norm (see Remark 2). Next, by (8), it is easy to see that
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�
OE(x)

ö2
n(xÿ y)fh(y) f (y)ÿ h(x) f (x)g dy � o(1)

�
ö2

n(y) dy � o(log n)

locally uniformly and the lemma follows. u

Lemma 4. The functional

øn(y) � øn(y, x, F) �
�1

y

ön(xÿ u) dF(u) (15)

is bounded locally uniformly in F 2 ~F ä and uniformly in y.

Proof. Denote D1(y) � OE(x) \ [y, �1) � (b1, b2), D2(y) � fOE(x)gC \ [y, �1), where

OE(x) is the open interval around x of radius E. Then

øn(y) �
�

D1( y)

ön(xÿ u) dF(u)�
�

D2( y)

ön(xÿ u) dF(u):

The second term (integral over D2(y)) is clearly bounded. For the ®rst term, we have

that �����
D1( y)

ön(xÿ u) dF(u)

���� <

���� f (x)

�
D1( y)

ön(xÿ u) du

����
�
�����

D1( y)

f 9(u�)(uÿ x)ön(xÿ u) du

����
< C1 � C2

�
D1( y)

eÿô(xÿu)2 m

du

< C3

locally uniformly because supu2OE(x)j f 9(u)j is bounded locally uniformly (see Remark 2)

and �����
D1( y)

ön(xÿ u) du

���� � �����an(b2ÿx)

an(b1ÿx)

eÿô(u=a n)2 m

sin u

ðu
du

���� < C4: u

Lemma 5. As n!1, the relation

b2
n(x) �

�
ön(xÿ y) dF(y)ÿ f (x)

� �2

� O(nÿ1)

holds uniformly over ~F ä.

Proof. Recalling the de®nition of the class (4), we obtain the following uniform bound:
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�
ön(xÿ y) dF(y)ÿ f (x)

� �2

� 1

2ð

�
eÿi tx fö̂n(t)ÿ 1gf̂ (t) dt

� �2

<
1

2ð

�
cosh2(ät)jf̂ (t)j2 dt

1

2ð

� jö̂n(t)ÿ 1j2
fcosh(ät)g2

dt

< C1

� jö̂n(t)ÿ 1j2
fcosh(ät)g2

dt

< C1

�an

ÿan

jö̂n(t)ÿ 1j2
fcosh(ät)g2

dt � C2

�
j tj>a n

dt

fcosh(ät)g2

� 2C1

�an

0

jö̂n(t)ÿ 1j2
fcosh(ät)g2

dt � O(nÿ1):
(16)

Since the function r̂(u) is even,�
u.t�an

jr̂(u)j du <

�
u,tÿa n

jr̂(u)j du �
�

u.a nÿ t

jr̂(u)j du

for t 2 [0, an]. Now using the last inequality, (7), (9) and the fact that�
r̂(u) du � r(0)2ð � 2ð,

we have that, for t 2 [0, an],

jö̂n(t)ÿ 1j � j(2ð)ÿ1(r̂ � I (ÿa n,an))(t)ÿ 1j

�
����(2ð)ÿ1

�
(I (ÿa n,an))(t ÿ u)ÿ 1)r̂(u) du

����
� (2ð)ÿ1

�����j tÿuj.an

r̂(u) du

����
< 2(2ð)ÿ1

�
u.a nÿ t

jr̂(u)j du

< C3

�
u.a nÿ t

exp (ÿA2u2m=(2mÿ1)) du

< C4 exp fÿA2(an ÿ t)2m=(2mÿ1)g: (17)
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Combining this with (16) completes the proof:�a n

0

jö̂n(t)ÿ 1j2
fcosh(ät)g2

dt < C5

�a n

0

exp fÿ2A2(an ÿ t)2m=(2mÿ1) ÿ 2ätg dt

� C5

�a n

0

exp fÿ2A2 y2m=(2mÿ1) ÿ 2ä(an ÿ y)g dy

< C5 eÿ2äan

�1
0

exp (ÿ2A2 y2m=(2mÿ1) � 2äy) dy

� C6

n
: u

Lemma 6. As n!1, the relations

E
øn(Z(n))

1ÿ F(Z(n))

� �2

� O(nÿ1),

E(øn(Z(n)))
2 � O(nÿ1),

hold locally uniformly in F 2 ~F ä, where øn(y) is de®ned by (15).

Proof. From the de®nition of the nonparametric class (4) it follows that, for each

F 2 ~F ä,

H(y) �def
PfZ1 < yg � 1ÿ f1ÿ F(y)gf1ÿ G(y)g < 1ÿ á eÿô0 y2 m

: (18)

Fix some E. 0 and note that

H(y) < H(x� E) < 1ÿ á eÿô0(x�E)2 m � q , 1 for all y < x� E:

Further, by the de®nition of the kernel function (5), it is easy to see that, with some constant

C1 . 0,

ö2
n(xÿ y) < (ðE)ÿ2 eÿ2ô(xÿ y)2 m

< C1 eÿ3ô0 y2 m

for all y > x� E:

Also, we have obviously that

ö2
n(y) < a2

nð
ÿ2:

Now, using the HoÈlder inequality and all the inequalities above, we obtain the second

relation
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E

�1
Z( n)

ön(xÿ y) dF(y)

 !2

< E

�1
ÿ1

IfZ(n) < ygö2
n(xÿ y) dF(y)

�
�1
ÿ1

H n(y)ö2
n(xÿ y) dF(y)

�
�x�E

ÿ1
H n(y)ö2

n(xÿ y) dF(y)�
�1

x�E
H n(y)ö2

n(xÿ y) dF(y)

< q nðÿ2a2
n F(x� E)� C2

�1
x�E

(1ÿ á eÿô0 y2 m

)nö2
n(xÿ y) dy

< q nðÿ2a2
n � C3

�1
x�E

eÿ3ô0 y2 m

(1ÿ á eÿô0 y2 m

)n dy

< C4 eÿC5 n (log n)2 � C6

�C7

0

(1ÿ u)n du

� O(nÿ1)

locally uniformly because f (y) is bounded locally uniformly and 0 , C7 < 1.

To prove the ®rst relation, note that from (4)

E
øn(Z(n))

1ÿ F(Z(n))

� �2

� E
øn(Z(n))

1ÿ F(Z(n))
(IfZ(n) < x� Eg � IfZ(n) . x� Eg)

� �2

< C8Eføn(Z(n))g2 � 2áÿ2E[exp f2ô0(Z(n))
2mgIfZ(n) . x� Egø2

n(Z(n))]:

Therefore, it remains only to show that the second term in the right-hand side of the last

inequality is of order O(nÿ1) locally uniformly:

E[expf2ô0(Z(n))
2mgIfZ(n) . x� Egø2

n(Z(n))]

� E expf2ô0(Z(n))
2mgIfZ(n) . x� Eg

�1
Z( n)

ön(xÿ y) dF(y)

 !2
8<:

9=;
< E expf2ô0(Z(n))

2mgIfZ(n) . x� Eg
�1

Z( n)

ö2
n(xÿ y) dF(y)

 !

< C9E expf2ô0(Z(n))
2mgIfZ(n) . x� Eg

�1
Z( n)

eÿ3ô0 y2 m

dy

 !
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< C9E

�1
Z( n)

eÿô0 y2 m

dy

 !

� C9

�
H n(y) eÿô0 y2 m

dy

< C9

�
(1ÿ á eÿô0 y2 m

)n eÿô0 y2 m

dy

< C10

�1

0

(1ÿ u)n du

� O(nÿ1)

locally uniformly. u

For brevity, denote from now on

F(y) � 1ÿ F(y):

Lemma 7. Let the distribution function G be continuous at the point x. Then, as n!1, the

relation

n

log n
E

� Z( n)

ÿ1
fön(xÿ y)F(y)ÿ øn(y)g2 f1ÿ ~Fn(yÿ)g2

f1ÿ F(yÿ)g4

J n(y)

Yn(y)
F(y) dF(y)

 !

� ó 2( f )f1� o(1)g (19)

holds locally uniformly in F 2 ~F ä, where ó 2( f ) and øn are de®ned by (12) and (15),

respectively.

Proof. By continuity of F(y), we write the left-hand side of (19), for some positive E, as a

sum of two terms:

I1 � E

� Z( n)

ÿ1
fön(xÿ y)F(y)ÿ øn(y)g2 f1ÿ ~Fn(yÿ)g2

f1ÿ F(yÿ)g3

J n(y)

Yn(y)
IfZ(n) < x� Eg dF(y)

 !

and

I2 � E

� Z( n)

ÿ1
fön(xÿ y)F(y)ÿ øn(y)g2 f1ÿ ~Fn(yÿ)g2

f1ÿ F(yÿ)g3

J n(y)

Yn(y)
IfZ(n) . x� Eg dF(y)

 !
:

To evaluate the ®rst term, observe ®rst that by (18)
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PfZ1 < x� Eg � H(x� E) < 1ÿ á eÿô0(x�E)2 m � q , 1,

fön(xÿ y)F(y)ÿ øn(y)g2 < 2ö2
n(xÿ y)F 2(y)� 2ø2

n(y)

< 4ðÿ2a2
n eÿ2ô(xÿ y)2 m

F 2(y)

� C1(log n)2 eÿ2ô(xÿ y)2 m

F 2(y)

< C2(log n)2 eÿ3ô0 y2 m

F 2(y) (20)

and J n(y)=Yn(y) < 1. Thus, recalling (4), we bound the ®rst term as follows:

I1 < C2(log n)2 H n(x� E)
�1
ÿ1

eÿ3ô0 y2 m

dF(y)

1ÿ F(y)

< C2(log n)2q náÿ1

�1
ÿ1

eÿ3ô0 y2 m�ô0 y2 m

dF(y)

< C3eÿC4 n: (21)

For the second term, we split the integral in I2 into two parts: the integral over

(ÿ1, x� E] and the integral over (x� E, Z(n)]. Since, for y > x� E,

fön(xÿ y)F(y)ÿ øn(y)g2 < 2ö2
n(xÿ y)F 2(y)� 2ø2

n(y)

< 4(ðE)ÿ2 eÿ2ô(xÿ y)2 m

F 2(y)

< C5 eÿ3ô0 y2 m

F 2(y),

we bound the expectation of the integral over (x� E, Z(n)] merely by

C5

�1
x�E

E
J n(y)

Yn(y)

� �
eÿ3ô0 y2 m

dF(y)

1ÿ F(y)
:

Thus,

I2 < E

�x�E

ÿ1
fön(xÿ y)F(y)ÿ øn(y)g2 f1ÿ ~Fn(yÿ)g2

f1ÿ F(yÿ)g3

J n(y)

Yn(y)
dF(y)

 !

� C5

�1
x�E

E
J n(y)

Yn(y)

� �
eÿ3ô0 y2 m

dF(y)

1ÿ F(y)

� S1 � S2,

say.
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To evaluate S2, we make use of Lemma 2 and (4):

S2 � C5

�1
x�E

eÿ3ô0 y2 m

E
J n(y)

Yn(y)

� �
dF(y)

1ÿ F(y)

< 2C5

�1
x�E

eÿ3ô0 y2 m fH n=2(y)� nÿ1g dF(y)

f1ÿ F(y)g2f1ÿ G(y)g

< C6

�1
x�E

eÿ3ô0 y2 m�2ô0 y2 m f(1ÿ á eÿô0 y2 m

)n=2 � nÿ1)g f (y) dy

< C7

�C8

0

(1ÿ u)n=2 du� C6 nÿ1

� O(nÿ1)

locally uniformly because 0 , C8 < 1.

Therefore, to complete the proof, it remains only to prove that the relation

n

log n
S1 � ó 2( f )f1� o(1)g (22)

holds locally uniformly.

Since

f1ÿ F(x� E)gf1ÿ G(x� E)g > á eÿô0(x�E)2 m � ã. 0

uniformly over ~F ä, by (20) and Lemma 1 we have that

S1 � E

�x�E

ÿ1
fön(xÿ y)F(y)ÿ øn(y)g2 f1ÿ ~Fn(yÿ)g2

f1ÿ F(yÿ)g3

J n(y)

Yn(y)
dF(y)

 !

�
�x�E

ÿ1

fön(xÿ y)F(y)ÿ øn(y)g2 dF(y)

nf1ÿ F(y)g2f1ÿ G(yÿ)g � Of(log n)2 nÿ2g

uniformly. Finally, we obtain by Lemmas 3 and 4 that

S1 �
�x�E

ÿ1

ö2
n(xÿ y) dF(y)

nf1ÿ G(yÿ)g � O(nÿ1) � log n

n
ó 2( f )f1� o(1)g

locally uniformly. Thus (22) holds and the proof of Lemma 7 is complete. u

5. Proofs of theorems

Upper bound: proof of Theorem 1. First we provide the necessary preliminaries. By (13) and

integration by parts, we have

536 E. Belitser



� Z( n)

ÿ1
ön(xÿ y) df ~Fn(y)ÿ F(y)g �

� Z( n)

ÿ1
fön(xÿ y)F(y)ÿ øn(y)g 1ÿ ~Fn(yÿ)

1ÿ F(yÿ)

J n(y)

Yn(y)
dM n(y)

�
~Fn(Z(n))ÿ F(Z(n))

1ÿ F(Z(n))
øn(Z(n)): (23)

Since the ®rst term of (23) is the integral of a predictable locally bounded process

(almost all its sample paths are locally bounded) with respect to a square integrable

martingale with the predictable variation process (14) (see, for example, Gill (1980)), one

can represent its second moment as follows:

E

� Z( n)

ÿ1
fön(xÿ y)F(y)ÿ øn(y)g 1ÿ ~Fn(yÿ)

1ÿ F(yÿ)

J n(y)

Yn(y)
dM n(y)

 !2

� E

� Z( n)

ÿ1
fön(xÿ y)F(y)ÿ øn(y)g2 f1ÿ ~Fn(yÿ)g2

f1ÿ F(yÿ)g4

J n(y)

Yn(y)
F(y) dF(y): (24)

Recall that ~Fn(y) is constant on [Z(n), 1). So, using (23), (24) and (twice) the

elementary inequality

(a� b)2 < (1� ã)a2 � (1� ãÿ1)b2, 0 , ã < 1, (25)

we obtain

E

�1
ÿ1

ön(xÿ y) df ~Fn(y)ÿ F(y)g
� �2

< (1� ãn)E

� Z( n)

ÿ1
ön(xÿ y) df ~Fn(y)ÿ F(y)g

 !2

� (1� ãÿ1
n )Eføn(Z(n))g2

< (1� ãn)2E

� Z( n)

ÿ1
fön(xÿ y)F(y)ÿ øn(y)g2 f1ÿ ~Fn(yÿ)g2

f1ÿ F(yÿ)g4

J n(y)

Yn(y)
F(y) dF(y)

 !

� (ãÿ1
n � 2� ãn)E

øn(Z(n))

1ÿ F(Z(n))

� �2

� (1� ãÿ1
n )Eføn(Z(n))g2, (26)

where ãn is to be chosen later.

Now we evaluate the risk of the estimator (10). From the last inequality and again the

elementary inequality (25) it follows that

E f (~f n(x)ÿ f (x))2 � E f
~f n(x)ÿ

�
ön(xÿ y) dF(y)�

�
ön(xÿ y) dF(y)ÿ f (x)

� �2

< (1� ãn)E

�
ön(xÿ y) df ~Fn(y)ÿ F(y)g

� �2
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� (1� ãÿ1
n )

�
ön(xÿ y) dF(y)ÿ f (x)

� �2

< (1� ãn)3E

� Z( n)

ÿ1
fön(xÿ y)F(y)ÿ øn(y)g2 f1ÿ ~Fn(yÿ)g2

f1ÿ F(yÿ)g4

J n(y)

Yn(y)
F(y) dF(y)

� (ãÿ1
n � 3� 3ãn � ã2

n)E
øn(Z(n))

1ÿ F(Z(n))

� �2

� (ãÿ1
n � 2� ãn)Eføn(Z(n))g2

� (1� ãÿ1
n )

�
ön(xÿ y) dF(y)ÿ f (x)

� �2

:

We choose now ãn such that ãn ! 0 and (ãn log n)ÿ1 � o(1) as n!1. Combining the last

relation with Lemmas 5±7 proves the theorem. u

Lower bound: proof of Theorem 2. Let f 0(y) be an arbitrary density from neighbourhood V

and let F0 be the corresponding distribution function. Consider the following family of

functions (cf. Golubev and Levit (1996)):

fè(y) � fè(y, x, ön, f 0) � f 0(y)[1� èfön(xÿ y)ÿ ön(x)g],
where jèj < èn, ön(y) is de®ned by (5) and ön(x) � � ön(xÿ y) f 0(y) dy. Let èn be such that

En < èn < rn, where the positive sequences En and rn satisfy

Eÿ2
n

n log n
� o(1), r2

n n � o(1):

One can choose for example èn � nÿ1=2(log n)ÿ1=4.

The proof of the theorem will proceed via the following two claims.

Proposition 1. For suf®ciently large n, fè 2 V .

Proof. Take E. 0 such that OE( f 0) � V , where

OE( f0) � f f 2 ~F ä: r( f , f 0) , Eg:
We prove now that fè 2 OE( f 0) for suf®ciently large n.

It is easy to check the condition on the nonparametric class (see (4)); for suf®ciently

large n,

inf
y

[eô0 y2 m f1ÿ Fè(y)gf1ÿ G(y)g] � inf
y

[eô0 y2 m f1ÿ F0(y)gf1ÿ G(y)g]f1� o(1)g.á

since F0 2 ~F ä.

Denote

ø(t) � ø(t, x) � f 0(y)ön(xÿ y):

First, by the Minkowski inequality and the de®nition (5) and (6) of the kernel ön,
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r( fè, f 0) � jèj
�

cosh2(ät) jø̂(t, x)ÿ ön(x)f̂ 0(t)j2 dt

� �1=2

� jèj
�
j f0(y)(ön(xÿ y)ÿ ön(x))j dy

< 2èn

�
cosh2 (ät)jø̂(t, x)j2 dt

� �1=2

� 2ènjön(x)j
�

cosh2(ät)jf̂0(t)j2 dt

� �1=2

� èn

�
j f 0(y)fön(xÿ y)ÿ ön(x)gj dy

< 2èn

�
cosh2(ät)jø̂(t, x)j2 dt

� �1=2

� C1èn log n:

So it suf®ces to show that the ®rst term on the right-hand side of the last inequality converges

to zero as n!1. Since

ø̂(t, x) � (2ð)ÿ1

�
eixu f̂ 0(t � u)ö̂n(u) du,

by the generalized Minkowski inequality (Nikol'skii 1975, p. 20), (4), (7) and (9) it follows

that

�
cosh2 (ät)jø̂(t, x)j2 dt

� �1=2

< C2

������eäj tj eixu f̂ 0(t � u)ö̂n(u) du

����2 dt

 !1=2

< C2

� �
jeäj tj eixu f̂ 0(t � u)ö̂n(u)j2 dt

� �1=2

du

< C2

� �
jeäj t�uj f̂0(t � u) eäjuj ö̂n(u)j2 dt

� �1=2

du

< C3

�
cosh2(ät) jf̂0(t)j2 dt

� �1=2�
eäjuj jö̂n(u)j du

< C4

�
eäjuj jö̂n(u)j du

< C4

�
e2äjuj j(r̂ � I (ÿa n,a n))(u)j2 du

� �1=2

� C4

������ eäjuj r̂(uÿ t)I (ÿa n,an)(t) dt

����2 du

 !1=2
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< C4

� �
jeäjuj r̂(uÿ t)I (ÿa n,an)(t)j2 du

� �1=2

dt

< C5

�
e2äj tj jr̂(t)j2 dt

� �1=2�
eäjuj I (ÿan,a n)(u) du

< C6

�
exp (2äjtj ÿ 2A2jtj2m=(2mÿ1)) dt

� �1=2�
eäjuj I (ÿan,an)(u) du

< C7

�
eäjuj I (ÿan,a n)(u) du

< C8 n1=2:

Recalling the condition on the èn, we obtain ®nally that

r( fè, f 0) < C9èn n1=2 � C1èn log n < C9rn n1=2 � C1rn log n � o(1)

as n!1. u

If X i is distributed with density fè(y), then the corresponding observation (Zi, Äi) has

the density

fè(y, ô) � [ fè(y)f1ÿ G(y)g]ô[g(y)f1ÿ Fè(y)g]1ÿô, ô 2 f0, 1g:
The following proposition describes the Fisher information I(è) about è contained in the

observation (Z, Ä).

Proposition 2. As n!1, the relation

I(è) �def
E

@flog fè(Z, Ä)g
@è

� �2

� f 0(x)f1ÿ G(x)g log n

2ðä
f1� o(1)g (27)

holds uniformly in è, jèj, èn.

Proof. By straightforward calculations,

I(è) � E
@flog fè(Z, Ä)g

@è

� �2

�
� fön(xÿ y)ÿ ön(x)g2 f 0(y)f1ÿ G(y)g dy

1� è(ön(xÿ y)ÿ ön(x))

�
� � y

ÿ1
f 0(u)fön(xÿ u)ÿ ön(x)g du

� �2

dG(y)

1ÿ Fè(y)
:

We split the second term on the right-hand side of the last inequality into two parts: the

integral over (ÿ1, x� E] and the integral over (x� E, 1). If we bound the integrands of
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both integrals, then we obtain in fact that the second term in the last inequality is of order

O(1). Since, according to Lemmas 4 and 5,
� y

ÿ1 f 0(z)fön(xÿ z)ÿ ön(x)g dz is bounded and

1ÿ Fè(y) � f1ÿ F0(y)gf1� o(1)g > f1ÿ F0(x� E)gf1� o(1)g
for y 2 (ÿ1, x� E], the integral over (ÿ1, x� E] is bounded. Note that� y

ÿ1
f 0(z)fön(xÿ z)ÿ ön(x)g dz � ÿ

�1
y

f 0(z)fön(xÿ z)ÿ ön(x)g dz

and the function ön(xÿ y) is bounded for y 2 (x� E, 1). Therefore, for suf®ciently large n,

� y

ÿ1
f 0(z)fön(xÿ z)ÿ ön(x)g dz

� �2

1ÿ Fè(y)
�

�1
y

f 0(z)fön(xÿ z)ÿ ön(x)g dz

" #2

1ÿ Fè(y)

<

C1

�1
y

f 0(z) dz

( )2

1ÿ Fè(y)

�
C1

�1
y

f 0(z) dz

( )2

f1ÿ F0(y)gf1� o(1)g
< C2f1ÿ F0(y)g
< C2

for y 2 (x� E, 1). Thus, we obtained that

� � y

ÿ1
f0(z)fön(xÿ z)ÿ ön(x)g dz

� �2

dG(y)

1ÿ Fè(y)
� O(1)

uniformly in è, jèj, èn. According to Lemmas 3 and 4, it is not dif®cult to see that� fön(xÿ y)ÿ ön(x)g2 f 0(y)f1ÿ G(y)g dy

1� èfön(xÿ y)ÿ ön(x)g � f 0(x)f1ÿ G(x)g log n

2ðä
f1� o(1)g

uniformly in è, jèj, èn. Relation (27) is proved. u

Now we proceed to prove the theorem. Introduce

í(x) � ín(x) � èÿ1
n í0(èÿ1

n x),

where í0(x) is a probability density on the interval [ÿ1, 1] with ®nite Fisher information
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I0 �
�1

ÿ1

fí90(x)g2íÿ1
0 (x) dx,

such that í0(ÿ1) � í0(1) � 0 and í0(x) is continuously differentiable for jxj, 1. The

function í(x) is the probability density with support [ÿèn, èn]. It is easy to calculate the

Fisher information of the distribution de®ned by the density í(x):

I(í) � I n(í) � I0è
ÿ2
n :

Applying now the van Trees inequality for the Bayes risk below (van Trees 1968, Gill

and Levit 1995, Golubev and Levit 1996) and Propositions 1 and 2, we obtain that, for

suf®ciently large n,

rn(V ) � inf
~f n

sup
f2V

Ef~f n ÿ f (x)g2

> inf
~f n

sup
jèj<èn

E fèf~f n ÿ fè(x)g2

> inf
~f n

�
E fèf~f n ÿ fè(x)g2í(è) dè

>
[
�f@ fè(x)=@ègí(è) dè]2

n
�

I(è)í(è) dè� I(í)

� f f 0(x)ön(0)g2

n
�

I(è)í(è) dè� I0è
ÿ2
n

>
[f f 0(x) log ng=2äð]2

n([ f 0(x)f1ÿ G(x)g log n]=2ðä)f1� o(1)g � I0Eÿ2
n

>
f 0(x) log nf1� o(1)g

2ðäf1ÿ G(x)gn

or

lim inf
n!1

n

log n
rn(V ) >

f 0(x)

2ðäf1ÿ G(x)g � ó 2( f 0):

The function f 0 was chosen arbitrarily from the neighbourhood V and hence, by the same

reasoning, this relation is valid for any function f 2 V :

lim inf
n!1

n

log n
rn(V ) > ó 2( f ):

Therefore

lim inf
n!1

n

log n
rn(V ) > sup

f 2V

ó 2( f ),

which proves Theorem 2. u
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