
Large deviations and variational theorems

for marginal problems

PAT R I C K C AT T I AU X 1 and FABRICE GAMBOA2�
1Ecole Polytechnique, CMAP, F-91128 Palaiseau Cedex, France. e-mail:

cattiaux@paris.polytechnique.fr
2Laboratoire de Statistiques UniversiteÂ Paris Sud, F-91405 Orsay, France. e-mail:

Fabrice.Gamboa@math.u-psud.fr

On a product probability space (E 3 F, P), we give variational characterizations for the existence of a

probability measure Q with given marginals, such that Q is absolutely continuous with respect to P

and its density satis®es some integrability conditions. These characterizations, which are in some sense

the dual formulation of a theorem due to Strassen, are obtained by using large-deviations methods. We

also study the minimal realizations of such Q.
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1. Introduction

Let E and F be two topological spaces equipped with their Borel ó-®elds, and ì and í two

probability measures de®ned on E and F, respectively. We take a probability measure P on

E 3 F, and ask whether it is possible to ®nd a probability measure Q on E 3 F, with

marginals ì and í, such that Q� P and dQ=dP satis®es some integrability conditions. The

construction of measures on a product space, with given marginals and satisfying convex

constraints, is an old problem. A celebrated result due to Strassen (1965, Theorem 7; see

Theorem 2.1 below) gives a necessary and suf®cient variational condition of existence. In

Section 2, we explain how to use Strassen's result in order to answer our question.

Since the constraint is here implicit (before building Q, one cannot control dQ=dP), the

usual duality results (as in Kellerer 1984) do not hold. However, following Cattiaux and

LeÂonard (1995a) or Gamboa and Gassiat (1997) ± who deal respectively with marginal

¯ows and moment problems ± a kind of dual formulation of Strassen's result can be

obtained by using large-deviations arguments. This is the aim of Section 3, where we derive

new variational characterizations (Corollary 3.10). We emphasize that the method can be

extended to more general product spaces (for instance C0([0, 1], E) considered as a

subspace of E[0,1]). This will be done elsewhere.

In Section 4, we give an alternate set-theoretic characterization (see Theorem 4.5) in the
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spirit of Strassen's result (Strassen 1965, Theorem 6) and many others (see, for example,

Hansel and Troalllic 1986, Theorem 4.1).

In Sections 5 and 6 the issue of minimal realizations of our problem (minimal for an Orlicz

norm, for instance) is addressed. In Section 5 we show that the minimal element dQ�=dP is

suitably approximated by nice functions (belonging to the subgradient of the related log-

Laplace transform). In Section 6 we discuss the form of this limit. Applying closedness results

of RuÈschendorf and Thomsen (1994) it is shown (Proposition 6.2) that dQ�=dP `almost'

belongs to the same set. In the entropic case this leads to a new interpretation of Beurling's

(1960) result on an old question posed by SchroÈdinger (1931). We emphasize that FoÈllmer was

the ®rst to link SchroÈdinger's question to an entropy minimization problem.

2. Notation and ®rst results

Let E and F be two topological spaces equipped with their Borel ó-®elds, B (E) and B (F),

and two probability measures ì and í de®ned respectively on (E, B (E)) and (F, B (F)). An

old problem is whether there exists a probability measure Q on the product space

(E 3 F, B (E)
B (F)), belonging to a certain subset Ë and with marginals ì and í.

Following on from several results in particular cases (see, for example, Kellerer 1961; 1964a;

1964b), Strassen's (1965) Theorem 7 stated a nice necessary and suf®cient variational

condition.

Theorem 2.1. Assume that E and F are Polish spaces, and that Ë is a non-empty weakly

closed convex subset of M�
1 (E 3 F), the set of probability measures on E 3 F. Then there

exists a Q in Ë with marginals ì and í if and only if, for all f 2 Cb(E), g 2 Cb(F),�
f dì�

�
g dí < sup

Q92Ë

�
f � g dQ9,

where f � g(x, y) � f (x)� g(y) on E 3 F.

Theorem 2.1 was successively extended to completely regular spaces in Hoffmann-

Jùrgensen (1977) and to general Hausdorff spaces in Skala (1993), assuming in both cases

that ì and í are Radon, and replacing in Skala (1993) the classical weak topology on

Radon bounded measures by the narrow topology, and Cb by Bb (the set of Borel bounded

functions). In this paper we denote by M b(U ) (Mb
�(U ), M�

1 (U )) the set of all bounded

Radon (positive bounded Radon, probability Radon) measures on (U , B (U )), where U is a

topological Hausdorff space equipped with its Borel ó-®eld. The weak topology on M b(U )

is the one induced by the embedding M b(U )! C�b (U ), where C�b is the topological dual

space of Cb, the space of real-valued bounded functions.

Recall, for a positive measure P, that Radon means

P(A) � sup fP(K), K compact, K � Ag
for all Borel sets A; and, for a signed measure P, that P� and Pÿ are Radon (see Dellacherie

and Meyer 1975).
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The special case of interest in this paper is the one where

Ë � Q: Q� P and
dQ

dP
2 Ã

� �
for a given (Radon) Probability measure P de®ned on (E 3 F, B (E)
B (F)) and Ã a ball

in Lq(P), 1 < q < �1 or in an Orlicz space related to P. We can easily deduce from

Theorem 2.1 and its extensions the following result.

Corollary 2.2. Assume that E and F are completely regular, P belongs to M�
1 (E 3 F), K is

a real number, and de®ne Ãq,K as the closed ball of radius K in Lq(P),

Ã1
q,K � Ãq,K \ Z > 0,

�
Z dP � 1

� �
:

Then, for 1 , q < �1, there exists Q 2M�
1 (E 3 F) such that Q� P, dQ=dP 2 Ãq,K and

with marginals ì and í if and only if, for all f 2 Cb(E), g 2 Cb(F),�
f dì�

�
g dí < sup

Z2Ã1
q, K

�
( f � g)Z dP:

Proof. The set Ëq,K � fQ 2M�
1 (E 3 F): Q� P and dQ=dP 2 Ãq,Kg is convex. By the

Dunford±Pettis theorem, any element Q9 of the weak closure of Ëq,K is absolutely

continuous with respect to P. Furthermore, if Z � dQ9=dP then Z induces a linear form on

(Cb(E 3 F), i iq9), where q9 is the conjugate of q. Since P is inner regular and E 3 F

completely regular, Cb(E 3 F) is dense in Lq9(P) (since 1 < q9 ,�1), and Z belongs to the

strong dual of Lq9(P), i.e. Z 2 Lq(P) with a norm less than or equal to K. This shows that

Ëq,K is weakly closed (actually weakly compact) and we may apply Theorem 2.1. u

Although the fact that Ëq,K is weakly closed is certainly well known, we included the

above proof in order to extend the result to the larger class of Orlicz spaces, which are less

well known. Let Lè(P) denote the Orlicz space associated with the Young function è and

P 2Mb
�. Denote by è� the Legendre conjugate function of è, and by Eè the (Lè) closure

of Cb ± recall that Eè � Lè once è is moderate (i.e. satis®es Ä2-regularity in Orlicz space

terminology; see Rao and Ren 1991, pp. 22 and 77).

If we replace Ãq,K by the corresponding Ãè,K in the previous proof, we immediately

remark that the only dif®culty is the appearance of a factor 2 in the HoÈlder±Orlicz

inequality. Indeed, Z belongs to (Eè� )
� � Lè (see Rao and Ren 1991, p. 110), but

i Z i�è� < 2K, i.e. i Z i < 2K. So Ëè,K is not clearly weakly closed, but nevertheless we can

state the following corollary.

Corollary 2.3. With the same assumptions as in Corollary 2.2, denote by Ãè,K the closed ball

in Lè(P) of radius K. Then if, for all f 2 Cb(E), g 2 Cb(F),�
f dì�

�
g dí < sup

Z2Ã1
è, K

�
( f � g)Z dP, (2:1)
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then there exists Q 2M�
1 (E 3 F) such that Q� P and idQ=dPiè < 2K. (The converse

statement, without the factor 2, is obvious.)

Proof. Denote by Ëè,K the weak closure of Ëè,K . Of course, (2.1) implies that�
f dì�

�
g dí < sup

Q2Ëè, K

�
( f � g) dQ:

But, as in the proof of Corollary 2.2, any Q 2 Ëè,K satis®es Q� P. Hence, we may

conclude using the remark preceding the corollary. u

Remark that, in fact, we really need to show that

Ã1
è,K � Ãè,K \ Z:

�
Z dP � 1 and Z > 0

� �
induces a weakly closed set Ëè,K ; and in the above derivation we did not use the fact that Z

is a probability density. We do not know whether this additional condition is enough to show

that Ëè,K is weakly closed in general. But, in the particular (and very important) case of

è(t) � (t � 1) log(t � 1)ÿ t, one can modify our request in order to eliminate the factor 2.

Indeed, for Q 2M�
1 (E 3 F), introduce the Kullback±Leibler information of Q (relative to

P),

H(Q, P) �

�
dQ

dP
log

dQ

dP

� �
dP if Q� P and log

dQ

dP

� �
2 L1(Q)

�1 otherwise:

8><>: (2:2)

It is easy to see that �������� dQ

dP
ÿ 1

��������
è

< H(Q, P)� 1:

But, since Q and P are inner regular (which implies that Cb(E 3 F) is dense in L1 for each),

the following alternative expression of H is known (see AsteÂrisque, 1979, p. 36±37):

H(Q, P) � sup
f 2Cb(E3F)

�
f dQÿ log

�
exp( f ) dP

� �
: (2:3)

The above form shows that

ËH ,K � fQ 2M�
1 (E 3 F): H(Q, P) < Kg (2:4)

is weakly closed (actually weakly compact). The convexity follows from (2.2), and we thus

have the following corollary.

Corollary 2.4. Under the conditions of Corollary 2.2, there exists Q 2M�
1 (E 3 F) such that

H(Q, P) < K, and with marginals ì and í, if and only if, for all f 2 Cb(E), g 2 Cb(F),�
f dì�

�
g dí < sup

Q92Ë H , K

�
( f � g) dQ9:
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In all the above examples, the weak closure was actually obtained thanks to the weak

relative compactness criterion due to Dunford and Pettis (see, for example, Dellacherie and

Meyer 1975, p. 38). In the L1 case, however, this property is lost, unless we assume some

uniform integrability condition. But la ValleÂe-Poussin's theorem (see, for example,

Dellacherie and Meyer 1975, p. 38), implies that any uniformly integrable set of L1(P)

is included in the unit ball of some Lè. So the next corollary seems to be optimal.

Corollary 2.5. Under the conditions of Corollary 2.2, there exists Q 2M�
1 (E 3 F) such that

Q� P and with marginals ì and í if and only if there exist K 2 R� and a Young function è
such that, for all f 2 Cb(E), g 2 Cb(F),�

f dì�
�

g dí < sup
Q92Ëè, K

�
f � g dQ9:

As in optimization problems, one should now look for a dual formulation of Strassen's

condition. Recently, Kellerer (1984) studied in detail this kind of problem, but here the

constraint is implicit (we want the density of an unknown Q to belong to some Lè space)

and cannot be treated by Kellerer's (1984) method. We shall give such a dual formulation in

the next section, by using large-deviations arguments. But let us ®nish this section with an

example showing that there are not suf®cient controls on ì and í alone to obtain a positive

answer to our problem.

Example 2.6. Take E � F � [0, 2]; then

dP � (1
4
1Ac � 1

4
h(x)h(y)1A) dx dy,

where A is the unit square and h is any probability density on [0, 1] such that, for all á. 0,

the function 1=há is not integrable and h . 0 almost surely (for the uniform probability on

[0, 1]). Now, let ì, í be the uniformly distributed on [0, 1], and denote by ì0 and í0 the

marginals of P. It is clear that ì� ì0 and

dì

dì0

� 4

1� h
1[0,1] < 4

(and similarly for (í, í0)), so that, for all f and g in C�b ([0, 2]), and for all q 2 [1, �1],�
f dì�

�
g dí < 4

�
f � g dP < 4i f � giq:

But any Q 2M�
1 (E 3 F) with marginals ì and í has its support in the unit square. Hence,

if Q � Z dx dy� P and q 2]1, �1], we have:

1[0,1](y) �
�1

0

Z dx �
�1

0

Z

h
h dx <

�1

0

Z q

hqÿ1
dx:

So dQ=dP cannot belong to any Lq(P) space.

This example shows that even if dì=dì0 and dí=dí0 are bounded and P is equivalent to

a product measure on E 3 F, one cannot necessarily ®nd a Q in M�
1 (E 3 F) such that
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dQ=dP 2 èq(P) for some q . 1, and with marginals ì and í. Of course, for f 2 Cb(E),

g 2 Cb(F) and 1 , q < �1,

sup
Z2Ãq, K

�
( f � g)Z dP � K i f � giq9, with

1

q
� 1

q9
� 1,

but in Strassen's condition we have to take the supremum over Ã1
q,K, i.e. with two additional

constraints (Z > 0 and
�

Z dP � 1), which makes the difference.

3. Large deviations and new variational characterizations

In order to study the large-deviations problem for the empirical process associated with a

given i.i.d. sample of, say, Brownian motions, Dawson and GaÈrtner (1987) introduced a

variational characterization of the in®mum of H(Q, P) (for Wiener measure P) on the set of

Q such that Q � Xÿ1
t � í t is given; see also FoÈllmer (1988) for the same problem for bridges.

In recent papers, Cattiaux and LeÂonard (1994; 1995a; 1995b) have extended the results of

Dawson and GaÈrtner (1987) to a large class of Markov processes. In particular, the problem

of ®niteness of the in®mum (i.e. the existence of such a Q) is tackled in Cattiaux and

LeÂonard (1995a) by using a direct large-deviations argument. A similar idea can be used in

all Lè cases, replacing the empirical measure by a more sophisticated one introduced by

Dacunha-Castelle and Gamboa (1990), and used by Gamboa and Gassiat in various problems

such as moments problems (Gamboa and Gassiat 1994) or superresolution (Gamboa and

Gassiat 1996). The method now known as the maximum entropy on the mean (MEM) method

is described in terms of large deviations in Gamboa and Gassiat (1997). We cannot directly

use the results in Gamboa and Gassiat (1997) because our framework is different, but we

shall follow the same line of reasoning in Proposition 3.5 below.

De®nition 3.1. We say that a sequence (Rn) of probability measures on a measurable

Hausdorff space (U , B (U )) satis®es a large-deviations principle (LDP), with rate function I

if:

(i) I is lower semicontinuous, with values in R� [ f�1g;
(ii) for any measurable set A in U,

ÿI(int(A)) < lim inf
n!1

1

n
log Rn(A) < lim sup

n!1
1

n
log Rn(A) < ÿI(A),

where I(A) � infî2A I(î).

We shall frequently use the following properties (see, for example, Dembo and Zeitouni

1993).

De®nition 3.2. If the level sets of the rate function I are compact, we shall call I a good rate

function.

Proposition 3.3 (Contraction principle). If T : U ! V is a continuous map, and I controls
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the LDP for a sequence (Rn) on U and is good, then I9(v) � inf fI(U ): u 2 Tÿ1fvgg
controls the LDP for the image measures R9n � Rn � Tÿ1 and I 9 is also good.

Let us consider the random measure on E 3 F,

ën � 1

n

Xn

i�1

Ziä(xi, yi), (3:1)

where (Z n)n>1 is an i.i.d. sequence of non-negative real random variables, with common

distribution G, and the sequence (zn � (xn, yn))n>1 is chosen such that

P � weak limit of
1

n

Xn

i�1

ä(xi, yi): (3:2)

Thanks to the Glivenko±Cantelli theorem (zn) can be chosen, for instance, as almost every

all realization of an in®nite sample of P. We then de®ne

øG(ô) � log

�
R�

exp(ôî)G(dî), ô 2 R, (3:3)

and its Legendre conjugate

ãG(î) � ø�G(î) � sup
ô2R

(ôîÿ øG(ô)), î 2 R, (3:4)

and in what follows we shall make the following assumption:

Assumption 3.4. Domain øG � R and G is not a Dirac mass.

Next de®ne the natural projection operator T (equipped with the product topology) as

T : M�
1 (E 3 F)!M b(E) 3 M b(F):

Q!
�

F

Q(:, dy),

�
E

Q(dx, :)

� �
(3:5)

Our aim will be now to prove an LDP for the law Rn of ën, and for the laws Ln � Rn � Tÿ1, and

then use the contraction principle in order to identify both rate functions, as we did in Cattiaux

and LeÂonard (1995a). The ®rst results are obtained by using the projective limit approach of

Dawson and GaÈrtner (1987) as explained in Dembo and Zeitouni (1993, Section 4.6).

For a given Hausdorff measurable space U, M #(U ) will denote the algebraic dual of

Cb(U ), equipped with the ó (M #(U ), Cb(U )) topology. M b(U ) is embedded in M #(U )

and T is still continuous from M�
1 to M #(E) 3 M #(F). Thus we can state

Proposition 3.5. Assume that E and F are Hausdorff spaces and P 2M�
1 (E 3 F).

(i) The laws Rn of ën satisfy on M #(E 3 F) an LDP with good rate function

I G(Q) � sup
l2Cb(E3F)

hl, Qi ÿ
�
øG(l) dP

� �
:
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(ii) The laws Ln satisfy on M #(E) 3 M #(F) an LDP with good rate function

IG(ì, í) � sup
f 2Cb(E), g2Cb(F)

h f , ìi � hg, íi ÿ
�
øG( f � g) dP

� �
:

Proof. According to Dembo and Zeitouni (1993, Corollary 4.6.11) we ®rst have to show that

J (l) � lim
n!1

1

n
log

�
exp(nhl, ëi)Rn(dë)

� �
exists as an extended real number, for l 2 Cb(E 3 F). De®ne

J n(l) � 1

n
log

�
exp(nhl, ëi)Rn(dë)

� �

� 1

n

Xn

i�1

øG(l(zi)):

By Assumption 3.4, øG is bounded on compact sets (since it is continuous on R), and

øG � l 2 Cb. So, according to (3.4),

lim
n!1 J n(l) �

�
øG(l) dP ,�1:

Furthermore, for all l1, . . . , l k 2 Cb(E 3 F),

t1, . . . , t k !
�
øG

Xk

i�1

ti li

 !
dP

is everywhere ®nite, continuous and everywhere differentiable thanks to Assumption 3.4. We

thus can apply Dembo and Zeitouni (1993, Corollary 4.6.11) to conclude (i). The proof of (ii)

is exactly the same. u

The rate function expressions in the Proposition 3.5 are interesting if we are able to study

their domains. Indeed, since Rn and Ln are supported by Mb
� (the set of positive bounded

Radon measures), we know that the LDP holds in this space, with the same rate function

provided this function is in®nite for all the other elements of M #. We thus study the

®niteness of the large-deviations functional.

Lemma 3.6. If I G(Q) (or IG(ì, í)) is ®nite, then Q (or (ì, í)) is a positive continuous

linear form on Cb(E 3 F) (or Cb(E) 3 Cb(F)).

Proof. Since G is supported by R�, øG(ô) < 0 for ô < 0. If there exists an l 2 Cb(E 3 F)

such that l < 0 and hl, Qi. 0, then, for all t . 0,

I G(Q) > thl, Qi ÿ
�
øG(tl) dP > thl, Qi !

t!11,

which proves that Q is positive. Continuity is immediate since øG is locally bounded. u
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In order to identify the positive continuous linear form on Cb(E 3 F), we need some

topological assumptions.

Proposition 3.7. If E and F are completely regular, and I G(Q) is ®nite, Q is identi®ed with a

regular positive bounded measure �Q on the Stone±Cech compacti®cation E �3 F of E 3 F,

and

I G(Q) � I G( �Q) � sup
l2C(E �3F)

�
l d �Qÿ

�
øG(l) d �P

� �
where �P is the corresponding identi®cation of P.

Proof. Since E 3 F is completely regular, E 3 F is homeomorphic to a dense subject of

E �3 F and Cb(E 3 F) is isomorphic to C(E �3 F) (see, for example, Jameson 1974). By the

Riesz representation theorem, any continuous positive linear form on E �3 F is a regular

positive bounded Borel measure. The ®nal equality comes from the identity
�

l dQ � � �l d �Q if
�l is the natural extension of l 2 Cb(E 3 F) to E �3 F, and the continuity of øG. u

Remark. Actually, one could directly prove that Q is a positive measure on E 3 F. The main

problem is the regularity of this measure.

We shall now give the key result of our construction.

Proposition 3.8. Assume that U is a Hausdorff space, P a regular bounded positive measure

on U. Then, for any regular bounded positive measure Q, I G(Q) � J G(Q), where

I G(Q) � sup
l2Cb(U )

hl, Qi ÿ
�
øG(l) dP

� �
and

J G(Q) �

�
ãG

dQ

dP

� �
dP if Q� P (recall (3:6))

�1 otherwise:

8><>:
Remark. Similar statements are contained in Rockafellar (1968; 1971); in particular,

Rockafellar (1971, Corollary 4.A) furnishes the above proposition when U is compact (which

is actually suf®cient for our purpose). Nevertheless, we prefer to give a complete elementary

proof (without using compactness). The following proof is essentially due to Gamboa and

Gassiat (unpublished).

Proof. For the case of J G(Q) > I G(Q), it is enough to check the above equality for Q� P.

But, in this case

I G(Q) � sup
l2Cb(U )

�
l
dQ

dP
ÿ øG(l)

� �
dP

( )
<

�
sup
l2U R

l
dQ

dP
ÿ øG(l)

� �
dP � J G(Q):
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For the case of J G(Q) < I G(Q) again we may assume that I G(Q) ,�1. Recall the

following facts, which are consequences of (3.4) and Assumption 3.4.

ø9G is everywhere defined, increasing and continuous, with range ]á, â[

such that

�
R�
î dG(î) � m 2 ]á, â[:]á, â[ is the convex hull of the support of G: (3:6)

For î 2 ]á, â[, ãG(î) ,�1; whereas for î =2 ]á, â[, ãG(î) � �1:
Hence, for any î 2 ]á, â[ there exists ô 2 R, with ô � ø9G

ÿ1(î), (3:7)

and in this case ãG(î) � ôø9G(ô)ÿ øG(ô):

Let Q be a regular positive bounded measure on U, with Lebesgue's decomposition

Q � gP� S, where g 2 L1(P) and S is singular with respect to P. Q, P and S are regular.

Denote by (A, Ac) a pair of disjoint Borel subsets of U such that P(A) � S(Ac) � 0,

P(Ac) � P(U ) � 1 and S(A) � S(U ).

For any E. 0 and ç. 0, de®ne a function h as follows:

h(x) �
ä if x 2 A

ä if x 2 Ac and g(x) . â or g(x) ,á
ø9G
ÿ1(g(x)) if x 2 Ac and á� E < g(x) < âÿ E

0 otherwise:

8>><>>: (3:8)

h is bounded and measurable, and since P, Q, S are regular, one can ®nd a sequence of

equibounded continuous functions (hn)n>1 such that hn converges to h, P, Q and S

everywhere. Now

I G(Q) >

�
hndQÿ

�
øG(hn) dP � èn(ä, E):

We want to identify the limit of èn as n goes to in®nity. According to (3.6), (3.7) and

Lebesgue's dominated convergence theorem,

lim
n!1 èn(ä, E) � äS(A)�

�
fäg ÿ øG(ä)g(1f g ,ág � 1f g . âg) dP�

�
ãG(g)1fá�E< g<âÿEg dP:

Now let ä!1. On the set fî: g(î) =2 ]á, â[g, limä!�1(äg(î)ÿ øG(ä)) � �1. We deduce

that if I G(Q) ,�1, S(A) � 0 (Q� P) and dQ=dP 2 ]á, â[, P-almost surely. Hence, for

all E. 0,

I G(Q) >

�
ãG(g)1fá�E<dQ

d P
<âÿEgdP,

and I G(Q) > J G(Q) by the monotone convergence theorem. u

We can ®nally state the following theorem.

Theorem 3.9. Assume that E and F are completely regular and that P 2M�
1 (E 3 F). Then:

(i) the laws Rn of ën satisfy on Mb
�(E 3 F) an LDP with good rate function I G(Q) ��

ãG(dQ=dP) dP if Q� P, �1 otherwise;
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(ii) the laws Ln � Rn � Tÿ1 satisfy on Mb
�(E) 3 Mb

�(F) an LDP with good rate

function

IG(ì, í) � sup
f2Cb(E), g2Cb(F)

�
f dì� g díÿ

�
øG( f � g) dP

� �
;

(iii) for all (ì, í) 2Mb
�(E) 3 Mb

�(F),

IG(ì, í) � inf
Q2M(ì,í)

I G(Q),

where M(ì, í) � fQ 2Mb
�(E 3 F): with marginals ì and íg.

Proof. (i) We know (see Proposition 3.5) that the laws Rn satisfy an LDP on M #(E 3 F)

with rate function I G(Q) which is ®nite if and only if Q can be identi®ed with a regular

element �Q of Mb
�(E �3 F), where E �3 F is the Stone±Cech compacti®cation of E 3 F (see

Lemma 3.6 and Proposition 3.7), and if �Q further satis®es

�Q� �P and

�
ãG

d �Q

d �P

� �
d �P ,�1 (see Proposition 3:8):

But we cannot immediately identify Q with (d �Q=d �P)jE3F P (where jE3F stands for the

restriction to E 3 F), because of measurability problems. However, since �P is regular, one

can ®nd a sequence (�l n)n>1 of C(E �3 F) which converges both in L1( �P) and �P-almost surely

to d �Q=d �P. If l n denotes the restriction of �ln to E 3 F (after identi®cation of Cb(E 3 F) and

C(E �3 F)), we also know that for any h 2 Cb(E 3 F),�
hln dP �

�
�h�ln d �P,

which proves that l n P is weakly convergent (in M b(E 3 F)). But the sequence (�ln) is

uniformly integrable, so by the proof of la ValleÂe-Poussin's theorem in Dellacherie and Meyer

(1975), there exists a continuous Young function è such that

sup
n

�
è(�ln) d �P ,�1:

The natural property of Stone±Cech compacti®cation implies that supn

�
è(l n) dP ,�1; this

shows that (l n) is uniformly integrable (thus ó(L1, L1) relatively compact by the Dunford±

Pettis theorem), and consequently the weak limit of ln P is of the form Q � hP, with

h 2 L1(P). It is now immediate that the initial �Q is associated with the above Q. In order to

prove that
�
ãG(dQ=dP) dP ,�1, it suf®ces to approximate (dQ=dP)1fá�E< g<âÿEg (with á, â

de®ned in (3.6) and (3.7)) by continuous functions, and use Lebesgue's bounded convergence

theorem, then to pass to the limit via monotonic convergence as in the proof of Proposition 3.8.

Finally, since I G(Q) is ®nite only for Q 2Mb
�(E 3 F), the LDP holds in this space.

(ii) and (iii) are straightforward applications of the Contraction Principle (Proposition 3.3)

and uniqueness of the rate function. u

We shall use Theorem 3.9 in the following form.
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Corollary 3.10. Let E and F be completely regular topological spaces, ì 2M�
1 (E),

í 2M�
1 (F) and P 2M�

1 (E 3 F). Then there exists Q 2M�
1 (E 3 F) such that Q has

marginals ì and í, and
�
ãG(dQ=dP) dP < K if and only if, for all f 2 Cb(E), g 2 Cb(F),�

f dì�
�

g dí <

�
øG( f � g) dP� K:

By way of an application, let è be a Young function. We can use the above criterion with

è � ãG, provided è� is everywhere de®ned and exp(è�) is the Laplace transform of a

probability measure on R�. Instead of giving a full description of these ès, we shall give

some examples.

3.1. The Lq case, 1 , q ,�1
Let us choose for G the distribution of Y

1
q for Y a random variable with gamma distribution

ã(1
q
, 1), i.e.

dG(î) � q

Ã
1

q

� � exp(ÿîq)1[0,�1[(î) dî:

Then øG is de®ned on the whole of R. Furthermore, we have the following lemma.

Lemma 3.11. There exist positive constants C1, C2 such that:

(i) for ô! �1 we have øG(ô) � C1ôq9;

(ii) for î! �1 we have ãG(î) � C2îq, where 1=q� 1=q9 � 1.

The proof of (i) is a straightforward application of Laplace's method, while (ii) follows from

general results about Legendre conjugacy. According to Corollary 3.10 and Lemma 3.11 we

can state the following corollary.

Corollary 3.12. In the situation of Corollary 3.10, there exists Q 2M�
1 (E 3 F) such that Q

has marginals ì and í, which satis®es Q� P and dQ=dP 2 Lq(P) if and only if, for some

K . 0,

sup
f 2Cb(E), g2Cb(F)

�
f dì�

�
g díÿ

�
øG( f � g) dP

� �
< K:

3.2. The entropic case

Let G be the Poisson distribution with mean 1. Then

øG(ô) � exp(ô)ÿ 1, ô 2 R,

ãG(î) � î log îÿ î� 1, î > 0,

�1 î, 0:

�
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Thus I G(Q) � H(Q, P) for Q 2M�
1 (E 3 F) and we have the following corollary.

Corollary 3.13. In the situation of Corollary 3.10, there exists Q 2M�
1 (E 3 F) such that Q

has marginals ì and í, which satis®es H(Q, P) < K (K . 0) if and only if

sup
f2Cb(E), g2Cb(F)

�
f dì�

�
g díÿ

�
exp( f � g) dP

� �
< K ÿ 1:

3.3. The L1 case

Though we cannot realize i(dQ=dP)i1 as a ãG(dQ=dP), we shall use Corollary 3.10 in the

L1 framework. Indeed, for K . 0 choose for G the Bernoulli distribution

G � 1
2
(ä0 � äK ) (3:9)

then

øG(ô) � log
1� exp(Kô)

2
, î 2 R,

ãG(î) �
î

K
log

î

K

� �
� 1ÿ î

K

� �
log 1ÿ î

K

� �
� log 2, if 0 < î < K,

�1, otherwise:

8><>:
(3:10)

Hence, if î 2 [0, K], then 0 < ãG(î) < log 2 and ãG(î) � �1 otherwise. In particular,�������� dQ

dP

��������
1

< K if and only if

�
ãG

dQ

dP

� �
dP < log 2:

We thus may apply Corollary 3.16 in order to obtain the following corollary.

Corollary 3.14. In the situation of Corollary 3.10, there exists Q 2M�
1 (E 3 F) with

marginals ì and í, which satis®es Q� P and i(dQ=dP)i1 < K if and only if, for all

f 2 Cb(E), g 2 Cb(F),�
f dì�

�
g dí <

�
log(1� exp K( f � g)) dP:

The last condition is equivalent to the following:

8 f 2 Cb(E), g 2 Cb(F),

�
f dì�

�
g dí < K

�
log(1� exp( f � g)) dP: (3:11)

We conclude this section with two remarks.

Remark 3.15. Comment on the L1 case. If for G we choose an exponential law with

parameter 1, i.e
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øG(ô) � ÿlog(1ÿ ô), for ô, 1,

�1, otherwise,

�
ãG(î) � îÿ 1ÿ log î, for î. 0,

�1, otherwise,

�
which does not satisfy Assumption 3.4, then Proposition 3.5 is still available, since øG is

essentially smooth. But, all the results later to this proposition can fail to hold. Actually one

can show that I G(Q) is ®nite for some measures whose Lebesgue decomposition contains a

singular part (with respect to P); see Gamboa and Gassiat (1997) for a long discussion on

this phenomenon in another context. The above argument indicates that criterion of Corollary

3.16 cannot be easily extended to the L1 case.

Remark 3.16. Assume that E and F are topological Hausdorff spaces, which are Borel

isomorphic with some ~E and ~F. If any bounded measure on ~E (or ~F) is regular, we can apply

Corollary 3.10 with the image measures ~ì, ~í, ~P (provided ~E and ~F are completely regular).

This yields some ~Q on ~E 3 ~F, which gives us a Q on E 3 F satisfying similar requirements

(Q is de®ned as the inverse image measure). In particular, this holds for Lusin spaces where
~E (or ~F) can be chosen as a compact Polish space.

4. Remarks on a set-theoretic formulation

Let us go back to Corollary 2.2 with q � �1, i.e. there exists Q such that idQ=dPi1 < K

and with marginals ì and í, if and only if

for all f 2 Cb(E), g 2 Cb(F)

�
f dì�

�
g dí < sup

0< Z<K,
�

ZdP�1

�
( f � g)Z dP:

The above inequality extends to f � 1A and g � 1B for A 2 B (E), B 2 B (F) and since

1A � 1B < 1� 1A3B, we obtain

ì(A)� í(B) < 1� KP(A 3 B): (4:1)

A remarkable fact noticed by Kellerer (1964a), Strassen (1965, Theorem 6) for Polish spaces,

and more recently by Hansel and Troallic (1986, Theorem 4.1) for general measurable spaces,

is that (4.1) is actually a suf®cient condition for the existence of a probability measure Q

with marginals ì and í satisfying Q < KP. This latest condition implies Q� P and

dQ=dP < K, and (4.1) is thus a necessary and suf®cient condition for the existence of

Q 2 Ë1,K with marginals ì and í.

Remark 4.1. Extending (3.11) to bounded Borel functions, and choosing

f � ä(1A ÿ 1Ac ), g � ä(1B ÿ 1Bc ),

we recover (4.1) by letting ä go to �1.
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The discussion above indicates how to try to obtain a set-theoretic characterization in the

general Lè case. Indeed, if we apply the same idea as that which leads to (4.1) we obtain

that if there exists Q 2M�
1 (E 3 F) such that dQ=dP 2 Lè and with marginals ì and í,

then

ì(A)� í(B) < 1� Kç[P(A 3 B)] (4:2)

for some K, with ç(u) � 1=è�ÿ1(1=u), è�ÿ1 being the reciprocal function of è.

Unfortunately, the above set condition is not suf®cient to ensure the existence of Q. Here

is a classical counterexample.

Example 4.2. For E � f0g, F � N�, P � C
P�1

n�12ÿ2nä(0,n), ì � ä0, í �P�1n�12ÿnän,

è(x) � x2, and (4.2) reduces to í(B) < K[P(f0g3 B)]1=2 for all B 2 B (N�):
Let j be the smallest element in B; then í(B) < 2 . 2ÿ j and P[(0, B)] > C2ÿ2 j, i.e.

í(B) <
����������������������
P[(0, B)]C
p

=2: But the only Q with marginals ì and í is P �P�1n�12ÿnä(0,n)

which is such that Q� P but dQ=dP =2 L2(P). (Of course, we only used the fact that

Q(A) < K
����������
P(A)
p

does not imply dQ=dP 2 L2(P) in general.)

We should therefore ask whether the new characterization of Section 3 leads to

interesting set-theoretic inequalities. The answer here again is negative. Now if we look at

Strassen's proof (or similarly at Hansel and Troallic's one), one can easily see why (4.2)

does not furnish a suf®cient condition.

Because the computations are tedious in the general Orlicz case, we restrict ourselves to

the Lq case (1 , q ,�1) where the set condition in (4.2) becomes

ì(A)� í(B) < 1� K[P(A 3 B)]1ÿ1=q: (4:3)

It easy to prove the following lemma.

Lemma 4.3. For 0 , ä, 1, the set function C ! [P(C)]ä is a capacity (alternating of order

2 in the Choquet terminology used by Strassen).

But in general one cannot ®nd a kernel alternating of order 2 (see Strassen, 1965, p. 429),

say H, such that

[P(A 3 B)]1ÿ1=q �
�

A

H(x, B)ì0(dx),

where ì0 denotes the ®rst marginal of P. In the case q � �1, such a kernel is given by a

regular disintegration of P (if, for instance, E and F are separable metric spaces; see

Dellacherie and Meyer 1975, p. 128), thanks to the additivity of P; i.e. in the L1 case the

situation is linear, and this linearity explains why Strassen's proof can be used.

In the Lq case (1 , q ,�1), we shall, however, state a set-theoretic characterization

which is the analogue of (4.1) but is not so beautiful. To this end we ®rst introduce some

de®nitions.
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De®nition 4.4. Let (Ù, F ) be a measurable space.

(i) A partition A of Ù is a ®nite collection A1, . . . , An of F such that
Sn

i�1 Ai � Ù
and Ai \ A j � Æ if i 6� j.

(ii) Let A and A 9 be two partitions of Ù. We say that A 9 is ®ner than A if for

any A9 2A9 there exists A 2A with A9 � A.

(iii) A partition core is a sequence (An)n>1 such that An�1 is ®ner than An for all n,

and such that F is generated by
S

nAn. (in particular, if a partition core exists then F is

separable, and conversely if F is separable then a partition core exists.)

(iv) To any partition A there corresponds the ®eld ó (A) generated by the elements of

A , and if P is a probability measure on (Ù, F ) we de®ne

P(U jA)(ù) � P(U jAi)(ù) if ù 2 Ai(Ai 2A) and P(Ai) 6� 0

� 0 if ù 2 Ai and P(Ai) � 0:

(P(U jV ) is of course the conditional probability.)

We can now state the following theorem.

Theorem 4.5. Let (E, E ) and (F, F ) be two measurable spaces. ì, í, P are probability

measures de®ned respectively on (E, E ), (F, F ) and (E 3 F, E 3 F ). ì0 denotes the ®rst

marginal of P. Then, there exists a probability measure Q on (E 3 F, E 3 F ) such that

Q� P, dQ=dP 2 Lq(P), idQ=dPiq < K and with marginals ì and í if and only if the

following holds:

Let E 9 (F 9) be any separable sub-ó- ®eld of E (F ). One can ®nd a partition core (An)

((B n)) of E 9 (F 9) and a family (Z n)n>1 of non-negative random variables such that

(i) Z n is ó (An) measurable, Z n 2 Lq(ì0) and i Z n iq < K.

(ii) For all A 2 ó (An) and B 2 ó (B n),

ì(A)� í(B) < 1�
�

A

Z n(x)[P(E 3 BjAn 3 F)]1ÿ1=q(x)ì0(dx),

(where P(:jAn 3 F) is as per De®nition 4.4(iv)).

Corollary 4.6. Assume that E and F are Polish spaces, E � B (E), F � B (F). Denote by

P(x, :) a regular disintegration of P with respect to B (E) (considered as a sub-ó- ®eld of

B (E) 3 B (F)), i.e.

P(A 3 B) �
�

A

P(x, B)ì0(dx), for A 2 B (E), B 2 B (F);

such a P(x, :) is called a Markov kernel in Strassen (1965). Then, the necessary and

suf®cient condition of Theorem 4.5 is equivalent to

ì(A)� í(B) < 1�
�

A

Z(x)[P(x, B)]1ÿ1=q(x)ì0(dx)

for some non-negative Z 2 Lq(ì0) with i Z iq < K.
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Remark 4.7. If q � �1, the above condition is equivalent to that of Strassen, and the

condition in Theorem 4.5 is also equivalent to (4.1). So we also recover Theorem 6 of

Strassen (1965) or Theorem 4.1 of Hansel and Troallic (1986), but with a different proof for

the latter case.

Proof of Theorem 4.5. For the if part we shall closely follow Strassen's method; indeed,

consider (E, ó (An)), (F, ó (B n)) and the restrictions of ì, í, P, ì0 to the corresponding

®elds. Actually these spaces are Borel isomorphic to ®nite discrete topological spaces (choose

one point in each Ai (or Bj) of An (or B n)), which are of course Polish. So, as in the proof

of Theorem 6 of Strassen (1965) we may apply Theorem 4 of Strassen (1965) in (E, ó (An)),

(E, ó (B n)) and (E 3 F, ó (An)
 ó (B n)). To this end, consider

H n(Ai, B) � min
ì0(Ai)

ì(Ai)
Z n(i)[P(E 3 BjAi 3 F)]1ÿ1=q, 1

� �
if ì(Ai) 6� 0

0 if ì(Ai) � 0,

8<:
for Ai 2An, B 2 ó (B n) and Z n(i) equal to the value of Z n on Ai.

Let B 2 ó (B n), and A the set where H n(:, B) , 1 (we de®ne H n(x, B) � H n(Ai, B) if

x 2 Ai). Condition (ii) in Theorem 4.5 yields

í(B) < ì(E ÿ A)�
�

A

Z n(x)[P(E 3 BjAn 3 F)]1ÿ1=qì0(dx)

�
�

EÿA

1ì(dx)�
X

i:Ai�A

Z n(i)[P(E 3 BjAi 3 F)]1ÿ1=q ì0(Ai)

ì(Ai)
ì(Ai)

�
�

H n(x, B)ì(dx):

But, according to Lemma 4.3, H n(x, :) is a kernel alternating of order 2 in the sense of

Strassen (1965). Indeed, we have

1 � í(F) <

�
H n(x, F)ì(dx) < 1)

�
H n(x, F)ì(dx) � 1:

Applying Theorem 4 of Strassen (1965), as we said before, we obtain that there exists a

Markov kernel qn(:, :) de®ned on ó (An)
 ó (B n) such that í � qnì and qn(x, :) < H n(x, :)
for all x 2 E (we can choose qn � 0 if x 2 Ai with ì(Ai) � 0).

De®ne Qn � qn 3 ì. Qn is a probability measure on (E 3 F, ó (An)
 ó (B n)) with

marginals ì and í, and for Ai 2An and Bj 2 B n:

Qn(Ai 3 Bj) < Z n(i)[P(E 3 BjjAi 3 F)]1ÿ1=qì0(Ai)

� Z n(i)[P(Ai 3 Bj)]
1ÿ1=q(ì0(Ai))

1=q:

Hence, Qn � P in restriction to (E 3 F, ó (An)
 ó (B n)), and
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dQn

dP
� ~Z n �

X
ij

Qn(Ai 3 Bj)

P(Ai 3 Bj)
1Ai3B j

by convention
0

0
� 0

� �
:

It follows that �
~Zq

n dP <
X

i

(Z n(i))qì0(Ai) < K q, i:e: i ~Z n iq < K:

Now, consider the sequence (~Z n)n>1 as a sequence of random variables on

(E 3 F, E 9
 F 9). Since it is a bounded sequence of Lq(P) (restricted to E 9
 F 9) one

can use the Dunford±Pettis theorem again (but here in its full power) in order to ®nd a

subsequence of ~Z n which is ó (L1, L1) convergent to a Z. It follows that Z 2 Lq(P),

i Z iq < K (since L1 is dense in Lq9) and�
A3F

Z dP � lim
n!1

�
A3F

~Z ndP � ì(A), for A 2
[
p>1

A p,

and �
E3B

Z dP � lim
n!1

�
E3B

~Z ndP � í(B), for B 2
[
p>1

B p,

because (B p) p>1 is a partition core (the above sequence is stationary for n large enough).

Now, consider the net of separable sub-ó-®elds ordered by inclusion. To each E 9 is associated

Z9 as above, and again we may apply the Dunford±Pettis theorem in (E 3 F, E 3 F ),

which says that the set of the Z9 (indexed by the previous net) is relatively compact in

ó (L1, L1). Take any limit point Z of this net. Then Z 2 Lq(P) and i Z iq < K. The

Probability measure Q � ZP, of course has marginals ì and í.

The only if part is immediate, with Z n(i) � (E[Z qjAi 3 F])1=q for Ai 2An and

Z � dQ=dP, by using HoÈlder's conditional inequality. u

Proof of Corollary 4.6. The only if part holds with Z(x) � (
�

Z q(x, y)P(x, dy))1=q as above.

For the if part, it suf®ces to mimic the proof of Theorem 4.5 without the ®nal argument since

the ó-®elds are separable (eventually up to negligible sets which are not relevant). u

In order to extend these results to general Orlicz spaces, one essentially needs to check

Lemma 4.3 in the situation of (4.2) (i.e. with 1=è�ÿ1(1=u)). Finally, in the L1 case, one can

ask about the following conjecture.

Conjecture 4.8. There exists Q� P with marginals ì and í if and only if for all E. 0 there

exists an ç. 0 such that ì(A)� í(B)ÿ 1 > E implies P(A 3 B) > ç.

At present we do not have any feeling on the exactness of the above conjecture.
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5. Minimal elements

From now on we assume that E and F are completely regular. De®ne

K� � sup
f 2Cb(E), g2Cb(F)

�
f dì�

�
g díÿ

�
øG( f � g) dP

� �
(5:1)

and assume that

K�,�1: (5:2)

According to Corollary 3.10 and since ãG is strictly convex on its domain, there exists

Q� 2M�
1 (E 3 F) with marginals ì and í such that

I G(Q�) � K�, I G(Q) for all Q 6� Q� with the same marginals. (5:3)

We shall call Q� the minimal element. Our goal in this section is to describe Q�. The ®rst

main result in this direction is the following

Theorem 5.1. Assume that (5.2) holds and let Q� � Z�P be the minimal element. Then,

there exists a sequence ( f n, gn) 2 Cb(E) 3 Cb(F) such that Z n � ø9G( f n � g n) converges

towards Z� both P-a.s. and in L1(P).

Proof. The idea consists in building a good sequence ( f n, g n) which approximates the

supremum in (5.1). Actually, it shall suf®ce to prove the following lemma.

Lemma 5.2. There exists a sequence ( f n, gn) as above such that

I G(Z n P) � i( f n, gn) �
�

f n dì�
�

gn díÿ
�
øG( f n � gn) dP

converges towards K�, and Z n � ø9G( f n � gn) converges towards Z� weakly in L1(P).

Indeed, according to Pratelli (1992, Theorem 5.1), since Z n ! Z� weakly in L1(P) and

I G(Z n P) � i( f n, gn) converges towards I G(Z�P), Z n ! Z� strongly in L1(P). Hence, up

to a subsequence we may also assume that Z n ! Z� P-a.s.

For a given f � g, consider the function of two real variables

èz(ë, ç) � ë� çzÿ
�
øG(ë� ç( f � g)) dP, z 2 R: (5:4)

When z � a � � f dì� � g dí, (5.1) implies that èa is bounded by K�. èz is smooth and

strictly concave as soon as f � g is not P-a.s. constant. Furthermore, we have the following

lemma.

Lemma 5.3. We assume that f � g is not P-a.s. constant and that there exists
~Q 2M�

1 (E 3 F) with marginals ì and í such that I G( ~Q) ,�1 and

(i) if limô!�1 ø9G(ô) � �1, ~Q is not concentrated on f f � g � esssupP( f � g)g or on

f f � g � essin f P( f � g)g;
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(ii) if limô!�1 ø9G(ô) � M ,�1, ~Q cannot be written as

(M1f f� g,îg � M÷1f f� g�îg)P or (M1f f� g.îg � M÷1f f� g�îg)P, (5:5)

where î 2 R and ÷ is a measurable function on E 3 F.

Then, èa admits a unique maximum èa(ë0, ç0).

Proof. First, let limô!�1 ø9G(ô) � �1. Without loss of generality we may assume that

z0 �
�

( f � g) dP � 0 and a . 0. Thus, (i) implies that P( f � g . a� E) . 0 for some E. 0.

For such E, let

�Q � î� (1ÿ î)
1f f� g . a�Eg

P( f � g . a� E)

� �
P, 0 , î, 1:

We may choose î such that c � (1ÿ î)(a� E) . a, and we have

I G( �Q) < ãG(î)� ãG î� (1ÿ î)

P( f � g . a� E)

� �
,�1:

Hence,

9 �Q 2M�
1 (E 3 F) with I G( �Q) ,�1 and c �

�
( f � g) d �Q . a: (5:6)

Now let limô!�1 ø9G(ô) � M ,�1. Here we may assume that f � g > 0 P-a.s. and

z0 � 1. We only consider the case where a > 1 (the case a , 1 can be treated using the

same kind of arguments replacing f � g by (M ÿ f � g)=(M ÿ 1) and a by

(M ÿ a)=(M ÿ 1)). Consider the statistical test H0: P versus H1: ( f � g)P at level 1=M .

Then, the Neyman±Pearson lemma (Lehmann, 1959, Theorem 1, p. 65) says that setting

Ö� � 1f f� g,îg � ÷1f f� g�îg, (5:7)

where

P( f � g , î)� E(÷1f f� g�îg) � 1

M
(5:8)

(î is essentially unique and ÷ satis®es E(÷1f f� g�îg) � 1=M ÿ P( f � g , î)), any test

Ö 6� Ö� having the same level satis®es:�
Ö( f � g) dP ,

�
Ö�( f � g) dP: (5:9)

Applied to Ö � (1=M)=(d ~Q=dP), (5.9) gives a ,
�

( f � g)MÖ� dP � b. Let 0 , r , 1 with

c � r � (1ÿ r)b . a and �Q � (r � (1ÿ r)MÖ�)P. Since by construction 0 < ÷ < 1 we

have ãG(r � (1ÿ r)MÖ�) < max(ãG(r), ãG(r � (1ÿ r)M)) ,�1 and I G( �Q) ,�1, so

(5.6) holds.

For any z 2 R, the Contraction Principle (Proposition 3.3) gives

inf
Q2M�

1 (E3F),
�

( f� g) dQ�z

I G(Q) � sup
ë,ç

èz(ë, ç): (5:10)
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Indeed, by the Ellis±GaÈrtner theorem on R2 (Dembo and Zeitouni, 1993, Theorem 2.3.6, p.

45), the dual function of
�
øG(ë� ç( f � g)) dP is the large-deviations functional for the

sequence of random vectors (ën(E 3 F),
�

( f � g) dën). A direct evaluation gives

supë,çèz0
(ë, ç) � èz0

(ø9G
ÿ1(1), 0). As èz is strictly concave this equality implies

lim
i(ë,ç)i!�1

èz0
(ë, ç) � ÿ1: (5:11)

Now, there exists 0 , ~r , 1 with a � ~rz0 � (1ÿ ~r)c so

èa(ë, ç) � ~rèz0
(ë, ç)� (1ÿ ~r)èc(ë, ç):

From (5.11) and (5.15), èc(ë, ç) is bounded so that (5.11) implies

lim
i(ë,ç)i!�1

èa(ë, ç) � ÿ1

which gives the result. u

According to Lemma 5.3, èa admits a maximum at (ë0, ç0) and =èa(ë0, ç0) � 0. It

follows that

1 �
�
ø9G(ë0 � ç0( f � g)) dP (5:12a)�

f dì�
�

g dí �
�

( f � g)ø9G(ë0 � ç0( f � g)) dP: (5:12b)

So if we replace f � g by (ë0 � ç0 f )� ç0 g � f � g, we have

1 �
�
ø9G( f � g) dP�

( f � g)Z� dP �
�

( f � g)ø9G( f � g) dP

i( f , g) > i( f , g):

8>>>><>>>>: (5:13)

Take a sequence ( f n, g n) such that limn!1 i( f n, gn) � K� � I G(Z�P). Without loss of

generality, we may assume that f n, gn and Z�P satisfy the assumptions of Lemma 5.3.

Indeed, if this is not the case take a small perturbation of f n, gn. This means in view of

(5.13) that we can assume that Z n � ø9G( f n � gn) is a probability density and

I G(Z n P) �
�
ãG(ø9G( f n � gn)) dP

�
�
f( f n � gn)ø9G( f n � g n)ÿ øG( f n � gn)g dP

�
�

( f n � gn)Z� dPÿ
�
øG( f n � gn) dP � i( f n, g n) < K�:

(5:14)

Accordingly, thanks again to the Dunford±Pettis theorem, one can ®nd a subsequence of Z n

which converges towards Z weakly in L1, and
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�
ãG(Z) dP < K�: (5:15)

In order to prove that Z � Z� we have to prove that Z has marginals ì and í and use the

minimality property of Z�.
Suppose that Z and Z� do not have same marginals. Since they are both probability

measures, one can ®nd a non-negative f � g(2 Cb(E)� Cb(F)) such that
�

( f � g)(Z� ÿ
Z) dP � á, 0. In the following we write h � f � g and hn � f n � g n, as well as i(h)

instead of i( f , g).

For î 2 R, consider

Fn(î) � i(hn � îh) �
�

(hn � îh)Z� dPÿ
�
øG(hn � îh) dP:

We may apply the Taylor±Lagrange formula in order to obtain that for î, 0, there exists

în 2 ]î, 0[ such that

Fn(î) � Fn(0)� îF9n(0)� î(F9n(în)ÿ F9n(0))

� i(hn)� î

�
h(Z� ÿ Z n) dP� î

�
h(ø9G(hn)ÿ ø9G(hn � în h)) dP:

(5:16)

The key point now is that în h < 0, hence 0 < ø9G(hn � în h) < ø9G(hn). Since (ø9G(hn)) is a

uniformly integrable sequence, so is (ø9G(hn � în h)). In particular, one can ®nd a . 0 such

that for all n�
h n.(ø9G)ÿ1(a)

ø9G(hn) dP <
ÿá

4i hi1
and

�
h n.(ø9G)ÿ1(a)

ø9G(hn � în h) dP <
ÿá

4i hi1
:

Finally, we can write

Fn(î) � i(hn)� îá� î

�
h(Z ÿ Z n) dP� î(I n

1 � I n
2 ):

with

I n
1 � în

�
h n<(ø9G)ÿ1(a)

hø 0G(hn � î9n h) dP for some î9n 2 ]în, 0[

I n
2 �

�
h n.(ø9G)ÿ1(a)

h(ø9G(hn)ÿ ø9G(hn � în h)) dP:

But on the interval ]ÿ1, ø9G
ÿ1(a)], ø 0G is bounded (it is easy to see that

limô!ÿ1 ø 0G(ô) � 0), and so there exists a constant C such that, for all n,

jî(I n
1 � I n

2 )j < Cî2 � îá

2
:

But K� > Fn(î) > i(hn)�ÿCî2 � îá=2� î
�

h(Z ÿ Z n) dP for all n which yields a

contradiction since ÿCî2 � îá=2 is strictly positive for |î| small enough.

It follows that Z� � Z and Lemma 5.2 is proved so is Theorem 5.1. u
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Remark 5.4. One cannot use the Taylor±Lagrange formula of order 2 directly, because in the

case limô!�1 ø9G(ô) � �1 one cannot, in general, control
�
ø 0G(hn � în h) dP, even if

în , 0. Also, remark that it is crucial to know that Z is a probability density in order to

choose a non-negative h and obtain a negative á.

In view of the nature of ãG, one should expect to improve the L1 strong convergence in

Theorem 5.1, and get strong convergence for the Orlicz norm associated with ãG. Actually,

this stronger result is an easy consequence of a Vitali-like theorem in Orlicz space, and we

can state the following corollary.

Corollary 5.5. In addition to the hypotheses of Theorem 5.1, assume that ãG is moderate (i.e.

satis®es Ä2-regularity in Orlicz space terminology). Then (a subsequence of) Zn converges

towards Z� strongly in the Orlicz space LãG
associated with ãG.

Proof. According to Theorem 12(b) of Rao and Ren (1991, p. 83), and since (a subsequence)

of Z n almost surely converges towards Z�, we only need to check that

lim
n!1

�
ãG(Z n) dP �

�
ãG(Z�) dP: (5:17)

On the one hand, (5.14) proves the upper bound. On the other hand, lower semicontinuity

implies the lower bound, which achieves the proof. u

Remark 5.6.

(i) In the entropic case (Section 3.2), setting Qn � Z n P, we have that

H(Q�, Qn) � H(Q�, P)ÿ i( f n, gn)

goes to 0 as n goes to in®nity. (Recall that H denotes the Kullback±Leibler information (see

(2.2)).) Indeed, since Qn and P are equivalent, Q� � Qn and the following holds:

H(Q�, Qn) � H(Q�, P)ÿ EQ�[log Z n]:

But

EQ�[log Z n] �
�

( f n � gn)Z� dP �
�

( f n � gn)Z� dPÿ
�
øG( f n � g n) dP � i( f n, gn)

since øG(ô) � eô ÿ 1, ø9G(ô) � eô and ø9G( f n � gn) is a probability density thanks to (5.17).

(ii) A similar statement with another approximating sequence f n � gn is contained in

Borwein et al. (1994), CsiszaÂr (1975) and FoÈllmer (1988). Actually, CsiszaÂr's (1975) I-

projection yields a sequence f n � g n, solving a ®nite number (n) of moment problems,

which approximate the marginal problem. The advantage of Remark 5.6(i) is that it gives

the exact error H(Q�, Qn).

(iii) In the entropic case, one can easily see that limë!�1èa(ë, 1) � ÿ1, so that we

can replace in the maximization procedure of Lemma 5.3 the two variables (ë, ç) by only

one (ë). Easy computations yield the following alternative expression for K�:
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K� � sup
f 2Cb(E), g2Cb(F)

�
f dì�

�
g díÿ log

�
exp( f � g) dP

� �
:

This expression is more familiar to a®cionados of large deviations, and can be derived by

using Sanov's theorem and the contraction principle instead of MEM; see Cattiaux and

LeÂonard (1995a; 1995b) for the method for marginal ¯ows.

(iv) In the general case, Theorem 5.1 is connected with recent results of CsiszaÂr (1995)

generalizing the entropic case, with the help of Bregman distances.

6. More on minimal elements and applications

Theorem 5.1 says that the minimal Z� can be approached by some ø9G( f n � gn) P-a.s. It

follows that f n � gn � ø9G
ÿ1(Z n) converges P-a.s. to some measurable F� taking values in

[ÿ1, �1] and Z� � ø9G(F�). The last question we shall address is the splitting

F� � f � � g� and some of its consequences. It is known (see Lindenstrauss, 1965) that

this splitting is not always true. Many results, however, are known (see Borwein and Lewis,

1992; Borwein et al., 1994; Donsker and Varadhan, 1974; FoÈllmer, 1988), but the most

satisfactory one for our purpose is the following one due to RuÈschendorff and Thomsen

(1994). Let ~ì0 (~í0) be a probability measure on E (F). Observe that these probability

measures are not necessarily the marginals of P.

Proposition 6.1 (see RuÈschendorff and Thomsen 1994, Proposition 2). If P� ~ì0 
 ~í0 and

f n � gn converges P-a.s. towards F�, then one can ®nd measurable functions f � and g�
such that F� � f � � g� on the set fÿ1, F�,�1g. (Actually, to get this statement just

replace A by A \ fÿ1, F�,�1g in the proof of RuÈschendorff and Thomsen's

proposition.)

As an immediate consequence we obtain

Proposition 6.2. If (5.2) holds and P� ~ì0 
 ~í0, there exists a pair ( f �, g�) of measurable

functions such that

(i) if limô!�1 ø9G(ô) � �1, Z� � ø9G( f � � g�)1 Z�.0 P-a.s.;

(ii) if limô!�1 ø9G(ô) � M ,�1, Z� � ø9G( f � � g�)1M.Z�.0 � M1 Z��M P-a.s.

Before we give applications of Proposition 6.2 in the entropic case, we shall say a few

words about the L1 case. Assume that Q� � Z�P has marginals ì and í and that

i Z� i1 � K� is minimal. Then if P� ~ì0 
 ~í0, a remarkable result due to Kellerer (1984)

tells us that one can always ®nd a subset A of E 3 F such that K�1A P has the same

marginals as Q� provided ~ì0 and ~í0 have no atom. Notice that taking K � K� in (3.9) we

have for the homothetic of a characteristic function of a measurable set A (that is for

K�1A), ãG(K�1A) � log 2 everywhere, hence as ãG < log 2, I G(:P) hits its maximum on

each homothetic of a characteristic function of a measurable set which lies in the convex
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compact subset M1 of probability measures Q with marginals ì and í such that

idQ=dPi1 � K� (convexity follows from the minimality of K�). It is an open question

whether all extremal points (in the sense of Krein and Milman) of M1 are homothetic of

characteristic functions (i.e. maximize ãG) or not.

Our construction furnishes another candidate (for the minimization of i:i1), of the form

(see Proposition 6.2)

Z��P � K�1fK�.Z��.0g
1� exp( f � � g�)� K�1f Z���K�g

 !
P:

We next discuss the entropic case. Because of its importance for large deviations theory,

the entropic case has been extensively studied. As remarked by FoÈllmer (FoÈllmer, 1988;

FoÈllmer and Gantert, 1995) the split decomposition of Z� is strongly related to an old

SchroÈdinger question as we shall state below. Actually, our approach allows us to improve

various results on the subject in the literature.

In the following we assume that

P � k~ì0 
 ~í0, for some non-negative k 2 L1(~ì0 
 ~í0): (6:1)

For K� to be ®nite it is necessary (but not suf®cient) that

H(ì, ~ì0) ,�1, H(í, ~í0) ,�1: (6:2)

A particular property of entropy is that H(ì
 í, ~ì0 
 ~í0) � H(ì, ~ì0)� H(í, ~í0). Hence,

because

H(ì
 í, P) � H(ì
 í, ~ì0 
 ~í0)ÿ
��

log kd(ì
 í), (6:3)

it follows that

if log k 2 è1( ì
 í), then H( ì
 í, P) ,�1 ( i:e: K� is finite) and the

minimal element Z� satisfies Z� � exp( f � � g�) P-a:s: on the set fZ�. 0g: (6:4)

Q� is supported by the cross product E9 3 F9 � fdì=d~ì0 . 0g3 fdí=d~í0 . 0g. Indeed,

ì� ~ì0, í� ~í0 and ì
 í is equivalent to ~ì0 
 ~í0 on the set E9 3 F9. But, as Q� has

marginals ì and í, Q�(E9 3 F9) � 1. Thus, Q� � P� ì
 í on E9 3 F9. Hence, as (6.6)

holds, condition (EQ) in Borwein et al. (1994) is satis®ed. Thus, Theorem 2.7 of Borwein et

al. (1994) shows that Z�. 0 P-a.s. on E9 3 F9. We have thus proved the following

proposition.

Proposition 6.3. Assume that H(ì, ~ì0) and H(í, ~í0) are ®nite and that log k 2 L1(ì
 í).

Then, there exists a pair ( f �, g�) of measurable functions taking values in [ÿ1, �1[ such

that Z�(x, y) � exp( f �(x)) exp(g�(y)) P-a.s.

Indeed, take f � and g� as in Proposition 6.2 on E9 3 F9 and put f � � ÿ1 on EnE9
(g� � ÿ1 on FnF9).
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Remark 6.4. On the unit square [0, 1] 3 [0, 1] take dP � exp(ÿ1=x) exp(ÿ1=y) dx dy up to a

normalization constant, ì and í being Lebesgue measure. It is easily seen as in Example 2.6,

that there is no Q with marginals ì and í such that H(Q, P) ,�1. Of course

log k =2 L1(ì
 í). But, if we replace P by dP � exp fÿ1=(x2 � y2)2g dx dy (up to a

normalization constant), log k =2 L1(ì
 í) and it is easy to build a Q with uniform marginals

such that H(Q, P) ,�1 (for instance, with support in [0, 1
2
] 3 [1

2
, 1] [ [1

2
, 1] 3 [0, 1

2
]). The

global condition of integrability can thus be improved using a local one. Instead of discussing

this point further, we shall now link Proposition 6.3 to SchroÈdinger's problem.

If we denote by (á, â) the pair (dì=d~ì0, dí=d~í0), Proposition 6.3 shows that the pair

(á�, â�) � (exp f �, exp g�) solves the following system

á�(x)

�
F

k(x, y)â�(y)~í0(dy) � á(x) ~ì0-a:s:

â�(y)

�
E

k(x, y)á�(x)~ì0(dx) � â(y) ~í0-a:s:

(6:5)

(by convention the left-hand side is equal to 0 whenever á� (â�) is equal to 0). This system

was introduced by SchroÈdinger (1931) in the Gaussian real case, as a consequence of a

strange behaviour of Brownian motion. The strange and highly improbable behaviour has a

natural explanation in terms of large deviations (see FoÈllmer, 1988; Cattiaux and LeÂonard,

1994; 1995a). But the solvability of (6.5) was left open by SchroÈdinger. Following on from

work by Bernstein and Fortet, Beurling (1960) studied this problem in a slightly more general

formulation:

Let k be a non-negative measurable function on E 3 F: For each pair

(ì, í) 2Mb
�(E) 3 Mb

�(F), does there exist a pair (ðE, ðF) 2Mb
�(E) 3 Mb

�(F)

such that the marginals of k(ðE 
 ðF) are exactly ì and í? (6:6)

In our notation Beurling's main result is the following (see Beurling 1960, Theorem III,

p. 118).

Theorem 6.5 (Beurling's theorem). Let E and F be locally compact Hausdorff spaces and k

be a bounded continuous positive function on E 3 F such that log k 2 L1(ì
 í) or, more

generally,

sup
f 2Cb(E), g2Cb(F)

�
f dì�

�
g díÿ

�
exp( f � g)kd(ì
 í)

� �
,�1:

Then, there exists a unique product measure á�ì
 â�í such that the marginals of

k(á�ì
 â�í) are ì and í.

Beurling's proof is variational, but in a different spirit than that of Remark 5.6(i). Remark

5.6(i) and Proposition 6.3 throw light on the probabilistic nature of Beurling's result.

Notice, in particular, that when E and F are compact spaces and k is continuous and
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positive, the answer to (6.6) is yes, and furthermore the mapping (ì, í)! (ðE, ðF) is one

to one. Conversely, for (6.6) to hold, it is necessary for k to be positive everywhere.

Problem (6.6) is a key point in the study of the Markov property for reciprocal processes

(Jamison, 1974), also called SchroÈdinger processes (see, for example, FoÈllmer and Gantert,

1995), which are basic processes in the Euclidean approach of quantum mechanics

developed by Zambrini (1989) and others. However, in their recent paper, FoÈllmer and

Gantert (1995) have shown that for in®nite-dimensional state spaces, (6.6) is not fully

satisfactory for the study of these SchroÈdinger processes.
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