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On a product probability space (E X F, P), we give variational characterizations for the existence of a
probability measure Q with given marginals, such that Q is absolutely continuous with respect to P
and its density satisfies some integrability conditions. These characterizations, which are in some sense
the dual formulation of a theorem due to Strassen, are obtained by using large-deviations methods. We
also study the minimal realizations of such Q.
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1. Introduction

Let E and F be two topological spaces equipped with their Borel o-fields, and x4 and v two
probability measures defined on E and F, respectively. We take a probability measure P on
E X F, and ask whether it is possible to find a probability measure Q on E X F, with
marginals u and v, such that Q < P and dQ/dP satisfies some integrability conditions. The
construction of measures on a product space, with given marginals and satisfying convex
constraints, is an old problem. A celebrated result due to Strassen (1965, Theorem 7; see
Theorem 2.1 below) gives a necessary and sufficient variational condition of existence. In
Section 2, we explain how to use Strassen’s result in order to answer our question.

Since the constraint is here implicit (before building Q, one cannot control dQ/dP), the
usual duality results (as in Kellerer 1984) do not hold. However, following Cattiaux and
Léonard (1995a) or Gamboa and Gassiat (1997) — who deal respectively with marginal
flows and moment problems — a kind of dual formulation of Strassen’s result can be
obtained by using large-deviations arguments. This is the aim of Section 3, where we derive
new variational characterizations (Corollary 3.10). We emphasize that the method can be
extended to more general product spaces (for instance C°([0, 1], E) considered as a
subspace of EI%!1). This will be done elsewhere.

In Section 4, we give an alternate set-theoretic characterization (see Theorem 4.5) in the
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spirit of Strassen’s result (Strassen 1965, Theorem 6) and many others (see, for example,
Hansel and Troalllic 1986, Theorem 4.1).

In Sections 5 and 6 the issue of minimal realizations of our problem (minimal for an Orlicz
norm, for instance) is addressed. In Section 5 we show that the minimal element dQ* /dP is
suitably approximated by nice functions (belonging to the subgradient of the related log-
Laplace transform). In Section 6 we discuss the form of this limit. Applying closedness results
of Riischendorf and Thomsen (1994) it is shown (Proposition 6.2) that dO* /dP ‘almost’
belongs to the same set. In the entropic case this leads to a new interpretation of Beurling’s
(1960) result on an old question posed by Schrodinger (1931). We emphasize that Follmer was
the first to link Schrodinger’s question to an entropy minimization problem.

2. Notation and first results

Let £ and F be two topological spaces equipped with their Borel o-fields, .Z(F) and .Z(F),
and two probability measures u and v defined respectively on (E, .Z(E)) and (F, .Z(F)). An
old problem is whether there exists a probability measure @ on the product space
(E X F, B(E)® %(F)), belonging to a certain subset A and with marginals x and v.
Following on from several results in particular cases (see, for example, Kellerer 1961; 1964a;
1964b), Strassen’s (1965) Theorem 7 stated a nice necessary and sufficient variational
condition.

Theorem 2.1. Assume that E and F are Polish spaces, and that A is a non-empty weakly
closed convex subset of .7/ (E X F), the set of probability measures on E X F. Then there
exists a Q in A with marginals u and v if and only if, for all f € Cy(E), g € Cp(F),

[raus |ear = sup [ro ga0

O'eA

where f @ g(x, y) = f(x)+ g(y) on EXF.

Theorem 2.1 was successively extended to completely regular spaces in Hoffmann-
Jorgensen (1977) and to general Hausdorff spaces in Skala (1993), assuming in both cases
that u and v are Radon, and replacing in Skala (1993) the classical weak topology on
Radon bounded measures by the narrow topology, and C, by By, (the set of Borel bounded
functions). In this paper we denote by .Z2°(U) (.7°(U), .7 (U)) the set of all bounded
Radon (positive bounded Radon, probability Radon) measures on (U, . (U)), where U is a
topological Hausdorff space equipped with its Borel o-field. The weak topology on .Z°(U)
is the one induced by the embedding .Z°(U) — C;k (U), where C,f is the topological dual
space of Cp, the space of real-valued bounded functions.

Recall, for a positive measure P, that Radon means

P(A4) = sup { P(K), K compact, K C A}

for all Borel sets 4; and, for a signed measure P, that PT and P~ are Radon (see Dellacherie
and Meyer 1975).
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The special case of interest in this paper is the one where

A{Q:Q<<Pand j—ger}

for a given (Radon) Probability measure P defined on (E X F, Z(E) ® Z(F)) and T a ball
in LY9(P), 1 < g =< 400 or in an Orlicz space related to P We can easily deduce from
Theorem 2.1 and its extensions the following result.

Corollary 2.2. Assume that E and F are completely regular, P belongs to ,/ZT(E X F), K is
a real number, and define Iy x as the closed ball of radius K in LI(P),

T} =Tk N {Z> 0, Jzap: 1}.

Then, for 1 <gq < +oq, there exists Q € .//{(E X F) such that Q < P, dQ/dP € T, x and
with marginals w and v if and only if, for all f € Co(E), g € Co(F),

de/H—Jgdv < sup J(f@ g)ZdP.

1
Zel,

Proof. The set A, x ={0 € .Z{(EXF): Q< P and dQ/dP € T, x} is convex. By the
Dunford—Pettis theorem, any element Q' of the weak closure of A, is absolutely
continuous with respect to P. Furthermore, if Z = dQ’'/dP then Z induces a linear form on
(Co(E X F), |||l4), where ¢’ is the conjugate of g. Since P is inner regular and E X F
completely regular, Cy(E X F) is dense in L9 (P) (since 1 < ¢’ < +0o0), and Z belongs to the
strong dual of L9 (P), i.e. Z € LI(P) with a norm less than or equal to K. This shows that
Ay k is weakly closed (actually weakly compact) and we may apply Theorem 2.1. O

Although the fact that A, g is weakly closed is certainly well known, we included the
above proof in order to extend the result to the larger class of Orlicz spaces, which are less
well known. Let Ly(P) denote the Orlicz space associated with the Young function 6 and
Pe //43 Denote by 6™ the Legendre conjugate function of 6, and by Ey the (Ly) closure
of C, — recall that Eg = Ly once 6 is moderate (i.e. satisfies A,-regularity in Orlicz space
terminology; see Rao and Ren 1991, pp. 22 and 77).

If we replace I'y x by the corresponding I'yx in the previous proof, we immediately
remark that the only difficulty is the appearance of a factor 2 in the Holder—Orlicz
inequality. Indeed, Z belongs to (Ee*)* = Lg (see Rao and Ren 1991, p. 110), but
||Z||>£* < 2K, ie. ||Z|| < 2K. So Ay is not clearly weakly closed, but nevertheless we can
state the following corollary.

Corollary 2.3. With the same assumptions as in Corollary 2.2, denote by I'g g the closed ball
in Lo(P) of radius K. Then if, for all € C,(E), g € Cy,(F),

de/,t+Jgdv$ sup J(f@g)ZdP, 2.1

ZeTy ¢
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then there exists Q € ./ (E X F) such that Q < P and |dQ/dP|g < 2K. (The converse
statement, without the factor 2, is obvious.)

Proof. Denote by Ag x the weak closure of Ag g. Of course, (2.1) implies that

de,u—&-Jgdv < sup J(f@ g)do.

0N,k

But, as in the proof of Corollary 2.2, any Q € Agx satisfies O < P. Hence, we may
conclude using the remark preceding the corollary. O

Remark that, in fact, we really need to show that
Fé’,K = rg,Km {Z JZdP: land Z = O}

induces a weakly closed set Ag x; and in the above derivation we did not use the fact that Z
is a probability density. We do not know whether this additional condition is enough to show
that Ay x is weakly closed in general. But, in the particular (and very important) case of
0(t) = (t + 1)log(t + 1) — ¢, one can modify our request in order to eliminate the factor 2.
Indeed, for Q € .#{(E X F), introduce the Kullback—Leibler information of Q (relative to

P)’
do ( Q) , <d_Q) |
H(O. P) = JdP og ap dP if Q < P and log ap e L'(Q) 22)
+00 otherwise.
It is easy to see that
H—l < HQ, P)+ 1.

But, since Q and P are inner regular (which implies that Cy(E X F) is dense in L' for each),
the following alternative expression of H is known (see Astérisque, 1979, p. 36—37):

H(Q, P)= sup (deQ — logJexp(f) dP). 2.3)
JECWEXF)
The above form shows that
AH,Kz{Qe//él*(EXF): H(Q, P) < K} 2.4)

is weakly closed (actually weakly compact). The convexity follows from (2.2), and we thus
have the following corollary.

Corollary 2.4. Under the conditions of Corollary 2.2, there exists Q € ./ (E X F) such that
H(Q, P) = K, and with marginals u and v, if and only if, for all f € C,(E), g € Cyo(F),

dept—i—Jgdv < sup J(f@ g)dQ'.

0'€Ank
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In all the above examples, the weak closure was actually obtained thanks to the weak
relative compactness criterion due to Dunford and Pettis (see, for example, Dellacherie and
Meyer 1975, p. 38). In the L' case, however, this property is lost, unless we assume some
uniform integrability condition. But la Vallée-Poussin’s theorem (see, for example,
Dellacherie and Meyer 1975, p. 38), implies that any uniformly integrable set of L'(P)
is included in the unit ball of some Ly. So the next corollary seems to be optimal.

Corollary 2.5. Under the conditions of Corollary 2.2, there exists Q € .7/ (E X F) such that
0 < P and with marginals u and v if and only if there exist K € R" and a Young function 6
such that, for all f € Cy(E), g € Cp(F),

de/t+Jgdv < sup JfEBng’.

0'eAgx

As in optimization problems, one should now look for a dual formulation of Strassen’s
condition. Recently, Kellerer (1984) studied in detail this kind of problem, but here the
constraint is implicit (we want the density of an unknown Q to belong to some Ly space)
and cannot be treated by Kellerer’s (1984) method. We shall give such a dual formulation in
the next section, by using large-deviations arguments. But let us finish this section with an
example showing that there are not sufficient controls on x and v alone to obtain a positive
answer to our problem.

Example 2.6. Take E = F = [0, 2]; then
dpP = (%IAC + %h(x)h(y)lA)dxdy,

where A is the unit square and / is any probability density on [0, 1] such that, for all a >0,
the function 1/A% is not integrable and 4 >0 almost surely (for the uniform probability on
[0, 1]). Now, let u, v be the uniformly distributed on [0, 1], and denote by uy and v, the
marginals of P. It is clear that u < yy and

du 4

- <4

dug — 1+h 0
(and similarly for (v, vy)), so that, for all fand g in C{ ([0, 2]), and for all g € [1, +oc],

de,Lt+Jng < 4Jf69 gdP<4|f o g,

But any Q € .7 (E X F) with marginals 4 and v has its support in the unit square. Hence,
if 0= Zdxdy < P and ¢q €]1, +o00], we have:

1z L 74
j dr.

1
1’(y):Jde:J—hde —
o 0 0h o ha~!

So dQ/dP cannot belong to any L7(P) space.
This example shows that even if du/dug and dv/dv, are bounded and P is equivalent to
a product measure on E X F, one cannot necessarily find a Q in ./ (E X F) such that
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dQ/dP € £9(P) for some g>1, and with marginals u and v. Of course, for f € Cy(E),
g€ Cp(F) and 1 <g < o0,
o1 1
sw [(/0 9ZdP=KIf @ gl with =1,
Zel, x q9 49
but in Strassen’s condition we have to take the supremum over T;, x> 1.6. with two additional
constraints (Z = 0 and fZ dP = 1), which makes the difference.

3. Large deviations and new variational characterizations

In order to study the large-deviations problem for the empirical process associated with a
given i.i.d. sample of, say, Brownian motions, Dawson and Gértner (1987) introduced a
variational characterization of the infimum of H(Q, P) (for Wiener measure P) on the set of
QO such that Qo X! = v, is given; see also Féllmer (1988) for the same problem for bridges.
In recent papers, Cattiaux and Léonard (1994; 1995a; 1995b) have extended the results of
Dawson and Gértner (1987) to a large class of Markov processes. In particular, the problem
of finiteness of the infimum (i.e. the existence of such a Q) is tackled in Cattiaux and
Léonard (1995a) by using a direct large-deviations argument. A similar idea can be used in
all Ly cases, replacing the empirical measure by a more sophisticated one introduced by
Dacunha-Castelle and Gamboa (1990), and used by Gamboa and Gassiat in various problems
such as moments problems (Gamboa and Gassiat 1994) or superresolution (Gamboa and
Gassiat 1996). The method now known as the maximum entropy on the mean (MEM) method
is described in terms of large deviations in Gamboa and Gassiat (1997). We cannot directly
use the results in Gamboa and Gassiat (1997) because our framework is different, but we
shall follow the same line of reasoning in Proposition 3.5 below.

Definition 3.1. We say that a sequence (R,) of probability measures on a measurable
Hausdorff space (U, .B(U)) satisfies a large-deviations principle (LDP), with rate function I
(i) I is lower semicontinuous, with values in RT U {+o0};
(ii) for any measurable set A in U,

1 1 —
—I(int(4)) < liminf — log R,(4) < limsup — log R,(4) < —I(A),
n—o0 n

n—oo N
where 1(A) = infec 41(&).
We shall frequently use the following properties (see, for example, Dembo and Zeitouni
1993).

Definition 3.2. If the level sets of the rate function I are compact, we shall call I a good rate
function.

Proposition 3.3 (Contraction principle). If T: U — V is a continuous map, and I controls
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the LDP for a sequence (R,) on U and is good, then I'(v)=inf{I(U): u € T~ '{v}}
controls the LDP for the image measures R, = R, o T~! and I' is also good.

Let us consider the random measure on E X F,
1 n
An = ;; Ziu)» (3.1)

where (Z,),=1 is an i.i.d. sequence of non-negative real random variables, with common
distribution G, and the sequence (z, = (x,, V4))n=1 is chosen such that

1 n
P= k limit of — O(x v 3.2
weak limit o n; (i) 3.2)

Thanks to the Glivenko—Cantelli theorem (z,) can be chosen, for instance, as almost every
all realization of an infinite sample of P. We then define

Ya(r) = log JR exp(7&§)G(dE), 7R, 3.3)

and its Legendre conjugate

Y6(8) = Yi(6) = Su[g(ff = 9P6(2)), §eR, (34
TE
and in what follows we shall make the following assumption:
Assumption 3.4. Domain Y = R and G is not a Dirac mass.

Next define the natural projection operator 7 (equipped with the product topology) as
T: #{(E X F) — /#°(E) X /°(F).

0 (LQ(., @) jEQ(dx, .>>

Our aim will be now to prove an LDP for the law R, of A, and for the laws L, = R, o T, and
then use the contraction principle in order to identify both rate functions, as we did in Cattiaux
and Léonard (1995a). The first results are obtained by using the projective limit approach of
Dawson and Giértner (1987) as explained in Dembo and Zeitouni (1993, Section 4.6).

For a given Hausdorff measurable space U, .7 %(U) will denote the algebraic dual of
Cp(U), equipped with the o(.Z#(U), Cy(U)) topology. .7°(U) is embedded in .7Z#(U)
and T is still continuous from .7, to .Z#(E) X .#%(F). Thus we can state

(3.5)

Proposition 3.5. Assume that E and F are Hausdorff spaces and P € .7/{(E X F).
(i) The laws R, of A, satisfy on /% (E X F) an LDP with good rate function

T6(Q)= sup ((l, Q>—J1/JG(1)dP>-

1€Cy(EXF)
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(i) The laws L, satisfy on .//%(E) X .7#(F) an LDP with good rate function

Io(u, v) = sup (<f, u) +(g v) — Jwe(f ® g) dP)-

SECH(E),geCy(F)

Proof. According to Dembo and Zeitouni (1993, Corollary 4.6.11) we first have to show that
J() = ,}Lrglc% log (J exp(n{!, /'L))R,,(d/l))

exists as an extended real number, for / € C,(E X F). Define

Iy =1 10g (J exp(n(l, A>>Rn(dz>)

l n
=—>_wel(z).
i=1

By Assumption 3.4, 1 is bounded on compact sets (since it is continuous on R), and
Ye ol € Cy. So, according to (3.4),

lim J,(I) = szG(z) dP < +o0.

Furthermore, for all /y, ..., I} € Co(E X F),

k
Hy oouy ty — Jl/l(; (Z l‘,’li>dP
i=1

is everywhere finite, continuous and everywhere differentiable thanks to Assumption 3.4. We
thus can apply Dembo and Zeitouni (1993, Corollary 4.6.11) to conclude (i). The proof of (ii)
is exactly the same. Ol

The rate function expressions in the Proposition 3.5 are interesting if we are able to study
their domains. Indeed, since R, and L, are supported by .//Zi (the set of positive bounded
Radon measures), we know that the LDP holds in this space, with the same rate function
provided this function is infinite for all the other elements of .Z#. We thus study the
finiteness of the large-deviations functional.

Lemma 3.6. If .7 c(Q) (or Ig(u, v)) is finite, then Q (or (u, v)) is a positive continuous
linear form on Cu(E X F) (or Co(E) X Cp(F)).

Proof. Since G is supported by RY, ys(7) < 0 for 7 < 0. If there exists an [ € C,(E X F)
such that / <0 and (I, Q) >0, then, for all >0,

T6(Q)= tl, Q) — ch(tl) dP = (1, Q) 2,00

which proves that O is positive. Continuity is immediate since 3¢ is locally bounded. [
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In order to identify the positive continuous linear form on Cy(£ X F), we need some
topological assumptions.

Proposition 3.7. If E and F are completely regular, and .7 ¢(Q) is finite, Q is identified with a
regular positive bounded measure Q on the Stone—Cech compactification E X F of E X F,
and

76@ =760~ s ([100- [penar)
IEC(EXF)

where P is the corresponding identification of P

Proof. Since E X F is completely regular, £ X F is homeomorphic to a dense subject of

E X F and Cy(E X F) is isomorphic to C(E X F) (see, for example, Jameson 1974). By the

Riesz representation theorem, any continuous positive linear form on E X F is a regular

positive bounded Borel measure. The final equality comes from the identity [1d0 = ﬁ dQ if
[ is the natural extension of [ € Cy(E X F) to E X F, and the continuity of yg. O

Remark. Actually, one could directly prove that Q is a positive measure on £ X F. The main
problem is the regularity of this measure.

We shall now give the key result of our construction.

Proposition 3.8. Assume that U is a Hausdorff space, P a regular bounded positive measure
on U. Then, for any regular bounded positive measure Q, .7 6(Q) = 7 ¢(Q), where

T6(0) = sup (<l, 0) - jwcw dP)

1eCyp(U)
and
76(0) JVG <j—%) dP if Q < P (recall (3.6))
Tc(Q) =
+oo otherwise.

Remark. Similar statements are contained in Rockafellar (1968; 1971); in particular,
Rockafellar (1971, Corollary 4.A) furnishes the above proposition when U is compact (which
is actually sufficient for our purpose). Nevertheless, we prefer to give a complete elementary
proof (without using compactness). The following proof is essentially due to Gamboa and
Gassiat (unpublished).

Proof. For the case of 75(Q) =.7(0Q), it is enough to check the above equality for Q <« P.

But, in this case

leGy(U) [eUR

d d
7o(0) = suw {J (12— yoin) dP} < [sw (192 yot ) ar= 70101
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For the case of 74(0) < .75(Q) again we may assume that .7 (Q) < +oo. Recall the
following facts, which are consequences of (3.4) and Assumption 3.4.

Y is everywhere defined, increasing and continuous, with range ]a, B[

such that J EAG(E) = m € a, Bl.]a, B[ is the convex hull of the support of G. (3.6)
R+

For & € Ja, B[, y6(§) < +o0; whereas for & ¢ ]a, B[, y6(§) = +oo.
Hence, for any & € Ja, B[ there exists 7 € R, with 7 = ;' (€), 3.7)
and in this case ys(&) = tY5(1) — Ye(T).

Let O be a regular positive bounded measure on U, with Lebesgue’s decomposition
O = gP+ S, where g € L'(P) and S is singular with respect to P. O, P and S are regular.
Denote by (4, A°) a pair of disjoint Borel subsets of U such that P(4) = S(4°) =0,
P(A4°) = P(U) =1 and S(4) = S(U).

For any €>0 and 5 >0, define a function % as follows:

o if xe A4
_J o if x€ A4°and g(x)>pP or gx)<a
h(x) = Yo' (gx) ifxedanda+e<gx)sf—c (3.8)
0 otherwise.

h is bounded and measurable, and since P, O, S are regular, one can find a sequence of
equibounded continuous functions (4,),=; such that A, converges to 4, P, QO and S
everywhere. Now

T6(0) = JhndQ - Jl/)g(h,,) dP = 0,(9, ¢).

We want to identify the limit of 6, as n goes to infinity. According to (3.6), (3.7) and
Lebesgue’s dominated convergence theorem,

Jim 6,00, 0 = 35(4) + [ {08 ~ @)1 4=y + 1= 4P+ [6(&) 010 4P
Now let  — oco. On the set {&: g(&) ¢ la, B[}, lims_. 1o (0g(&) — ¥s(d)) = +00. We deduce

that if .7 6(Q) <+o0, S(4) =0 (Q < P) and dQ/dP € ]a, B[, P-almost surely. Hence, for
all €>0,

760 = [rel @)1 imggey 4P
and .7 g(Q) = 7 ¢(0Q) by the monotone convergence theorem. O
We can finally state the following theorem.

Theorem 3.9. Assume that E and F are completely regular and that P € .7/{(E X F). Then:

(i) the laws R, of 1, satisfy on .//éli(E X F) an LDP with good rate function .7 (Q) =
[v6(dQ/dP)dP if Q < P, +oo otherwise;
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(i) the laws L, = R,o T~ satisfy on ./Zi(E)X.//ZE’._(F) an LDP with good rate
function

o= sup (Jf du+ gdv - J%(f o g) dP);

SECy(E),geCo(F)
(iii) for all (u,v) € V/Zi(E) X V//éi(F),

lolu, v) = nf 76(0),

i
€M(uv)

where M(u, v) = {0 € ./Zi(E X F): with marginals u and v}.

Proof. (i) We know (see Proposition 3.5) that the laws R, satisfy an LDP on .Z#(E X F)
with rate function .7 ¢(Q) which is finite if and only if Q can be identified with a regular
element O of .//ZZ(E X F), where E X Fvis the Stone—Cech compactification of E X F (see
Lemma 3.6 and Proposition 3.7), and if Q further satisfies

S do\ . -
O <« Pand J)/G (d%) dP <400 (see Proposition 3.8).

But we cannot immediately identify Q with (dQ/dP)|gxrP (Where |gxr stands for the
restriction to E X F), because of measurability problems. However, since P is regular, one
can find a sequence (/,,),=1 of C(E X F) which converges both in L'(P) and P-almost surely
to dQ/dP. If 1, denotes the restriction of [, to E X F (after identification of Cy(E X F) and
C(E X F)), we also know that for any h € Cy(E X F),

thn dP = th dP,

which proves that [,P is weakly convergent (in ./Z’(E X F)). But the sequence (I,) is
uniformly integrable, so by the proof of la Vallée-Poussin’s theorem in Dellacherie and Meyer
(1975), there exists a continuous Young function 6 such that

sup Je(i,,) dP < +oo.

The natural property of Stone—Cech compactification implies that sup, [ 6(1,) dP < +oo; this
shows that (/,) is uniformly integrable (thus o(L', L) relatively compact by the Dunford—
Pettis theorem), and consequently the weak limit of /,P is of the form Q = hP, with
h € L'(P). 1t is now immediate that the initial Q is associated with the above Q. In order to
prove that | y6(dQ/dP)dP < +o0, it suffices to approximate (dQ/dP)1 (g (<g=<p—} (With a,
defined in (3.6) and (3.7)) by continuous functions, and use Lebesgue’s bounded convergence
theorem, then to pass to the limit via monotonic convergence as in the proof of Proposition 3.8.
Finally, since .7 5(Q) is finite only for QO € .//Z}i(E X F), the LDP holds in this space.

(i1) and (iii) are straightforward applications of the Contraction Principle (Proposition 3.3)
and uniqueness of the rate function. O

We shall use Theorem 3.9 in the following form.
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Corollary 3.10. Let E and F be completely regular topological spaces, u € //Zf’(E),
ve . (F) and P € 7{(EXF). Then there exists Q € .7{(E X F) such that Q has
marginals u and v, and [y(dQ/dP)dP < K if and only if, for all [ € Cy(E), g € Co(F),

de,quJng = Jl/)(;(f@ g)dP + K.

By way of an application, let 6 be a Young function. We can use the above criterion with
0 =y, provided 0* is everywhere defined and exp(f™) is the Laplace transform of a
probability measure on R™. Instead of giving a full description of these 6s, we shall give
some examples.

3.1. The L? case, 1 <g<-+o0

Let us choose for G the distribution of Y¥ for Ya random variable with gamma distribution
Y@ D ie.
q

()

Then ¢ is defined on the whole of R. Furthermore, we have the following lemma.

dG(§) =

exp(—&9) 1o, 1oof(§) d&.

Lemma 3.11. There exist positive constants C,, C, such that:

(i) for Tt — 400 we have Yg(T) ~ Cltq’;
(ii) for & — +oo we have yg(&) ~ CL&9, where 1/q+1/q" = 1.

The proof of (i) is a straightforward application of Laplace’s method, while (ii) follows from
general results about Legendre conjugacy. According to Corollary 3.10 and Lemma 3.11 we
can state the following corollary.

Corollary 3.12. In the situation of Corollary 3.10, there exists Q € .//{(E X F) such that Q
has marginals u and v, which satisfies Q < P and dQ/dP € Li(P) if and only if, for some
K >0,

sup <deﬂ+Jng—J1/JG(f€Bg)dP) < K.

SEeCo(E).geCy(F)

3.2. The entropic case

Let G be the Poisson distribution with mean 1. Then
Ya(v) = exp(r) — 1, TER,

yo(©) = {ilffg_SH’ o
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Thus .76(Q) = H(Q, P) for Q € .7 (E X F) and we have the following corollary.

Corollary 3.13. In the situation of Corollary 3.10, there exists Q € .7 (E X F) such that Q
has marginals u and v, which satisfies H(Q, P) < K (K >0) if and only if

sup (deu—&—Jgdv—Jexp(f@g)dP)sK—l.

JE€C(E),g€Co(F)

3.3. The L™ case

Though we cannot realize ||[(dQ/dP)||. as a yg(dQ/dP), we shall use Corollary 3.10 in the
L*>* framework. Indeed, for K >0 choose for G the Bernoulli distribution

G =1(0 + k) 3.9
then
yom =log - IPED e
3 < S) ( E> < S) . (3.10)
Zlog|{=)+|1—-=)log|l1—-=]) +1og2, if0<E=<K,
ye(® =4 K T \K K K
400, otherwise.

Hence, if & € [0, K], then 0 < y5(§) < log2 and yg(&§) = +oo otherwise. In particular,

do . . dQ>
= = = < )
q H K if and only if JyG (d dP < log2

We thus may apply Corollary 3.16 in order to obtain the following corollary.

Corollary 3.14. In the situation of Corollary 3.10, there exists Q € ./ (E X F) with
marginals u and v, which satisfies Q < P and ||(dQ/dP)|~ < K if and only if, for all
S € G(E), g € Co(F),

deu + Jgdv S Jlog(l +exp K(f @ g))dP.
The last condition is equivalent to the following:
Vf € Cy(E), g € Co(F), de/A + Jgdv < KJ log(1 + exp(f & g))dP. (3.11)
We conclude this section with two remarks.

Remark 3.15. Comment on the L' case. If for G we choose an exponential law with
parameter 1, i.e
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—log(1 — 1), forz<1,
+00, otherwise,

1PG(T)={
V(&) = {E— 1 —1logé&, foré&>0,

400, otherwise,

which does not satisfy Assumption 3.4, then Proposition 3.5 is still available, since ¢ is
essentially smooth. But, all the results later to this proposition can fail to hold. Actually one
can show that .7 (Q) is finite for some measures whose Lebesgue decomposition contains a
singular part (with respect to P); see Gamboa and Gassiat (1997) for a long discussion on
this phenomenon in another context. The above argument indicates that criterion of Corollary
3.16 cannot be easily extended to the L' case.

Remark 3.16. Assume that E and F are topological Hausdorff spaces, which are Borel
isomorphic with some E and F. If any bounded measure on E (or F 7) is regular, we can apply
Corollary 3.10 with the image measures i, 7, P (provided E and F are completely regular).
This yields some Q on E X F, which gives us a Q on E X F satisfying similar requirements
(Q is defined as the inverse image measure). In particular, this holds for Lusin spaces where
E (or F) can be chosen as a compact Polish space.

4. Remarks on a set-theoretic formulation

Let us go back to Corollary 2.2 with ¢ = +o0, i.e. there exists Q such that |[dQ/dP|., < K
and with marginals x4 and v, if and only if

for all £ € Cy(E), g € Cb(F)Jf du + Jg dv < sup J(f @ g)ZdP.
o<z<1<,j ZdP=1

The above inequality extends to f =1, and g =13 for 4 € . B(E), B € .Z(F) and since
IA@ IB =<1+ 1A><Bs we obtain

u(A) +v(B) <1+ KP(A X B). 4.1)
A remarkable fact noticed by Kellerer (1964a), Strassen (1965, Theorem 6) for Polish spaces,
and more recently by Hansel and Troallic (1986, Theorem 4.1) for general measurable spaces,
is that (4.1) is actually a sufficient condition for the existence of a probability measure QO
with marginals x4 and v satisfying Q < KP. This latest condition implies QO < P and

dQ/dP < K, and (4.1) is thus a necessary and sufficient condition for the existence of
0 € Ay x with marginals x# and v.

Remark 4.1. Extending (3.11) to bounded Borel functions, and choosing
S =004—ly), g=0(lp— 1p),
we recover (4.1) by letting 6 go to +oo.
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The discussion above indicates how to try to obtain a set-theoretic characterization in the
general Ly case. Indeed, if we apply the same idea as that which leads to (4.1) we obtain
that if there exists Q € .7 (E X F) such that dQ/dP € Ly and with marginals x and v,
then

w(A) +v(B) < 1 + Ky[P(4 X B)] 4.2)

for some K, with n(u) = 1/0*~'(1/u), 6! being the reciprocal function of 6.
Unfortunately, the above set condition is not sufficient to ensure the existence of Q. Here
is a classical counterexample.

Example 4.2. For E = {0}, F=N* P=CY/22"00n, u=0, v=>3,22""0,
O(x) = x?, and (4.2) reduces to »(B) < K[P({0} X B)]'/? for all B € .Z#(N*).

Let j be the smallest element in B; then »(B)<2-27/ and P[(0, B)] = C27%, ie.
v(B) < /P[0, B)JC/2. But the only Q with marginals u and v is P =3 22"5(.,
which is such that Q < P but dQ/dP ¢ L*(P). (Of course, we only used the fact that
0(A) < K+/P(4) does not imply dQ/dP € L*(P) in general.)

We should therefore ask whether the new characterization of Section 3 leads to
interesting set-theoretic inequalities. The answer here again is negative. Now if we look at
Strassen’s proof (or similarly at Hansel and Troallic’s one), one can easily see why (4.2)
does not furnish a sufficient condition.

Because the computations are tedious in the general Orlicz case, we restrict ourselves to
the L7 case (1 <g<+oo) where the set condition in (4.2) becomes

w(A)+v(B) < 1+ K[P(4 X B)]'~"/4. 4.3)
It easy to prove the following lemma.

Lemma 4.3. For 0 <0 <1, the set function C — [P(C)]° is a capacity (alternating of order
2 in the Choquet terminology used by Strassen).

But in general one cannot find a kernel alternating of order 2 (see Strassen, 1965, p. 429),
say H, such that

[P(A X B)]' 17 = j H(x, Byuo(dv),
A

where uy denotes the first marginal of P. In the case ¢ = +o00, such a kernel is given by a
regular disintegration of P (if, for instance, £ and F are separable metric spaces; see
Dellacherie and Meyer 1975, p. 128), thanks to the additivity of P; i.e. in the L™ case the
situation is linear, and this linearity explains why Strassen’s proof can be used.

In the L7 case (1 <g<+4o0), we shall, however, state a set-theoretic characterization
which is the analogue of (4.1) but is not so beautiful. To this end we first introduce some
definitions.
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Definition 4.4. Let (Q,.7) be a measurable space.

(i) A partition .7 of Q is a finite collection Ay, ..., A, of 7 such that |J}_; A; = Q

(ii) Let .7 and .Z' be two partitions of Q. We say that 2" is finer than .7 if for
any A' € A" there exists A € 4 with A" C A.

(iii) A partition core is a sequence (.%4,),= such that .4, is finer than .2, for all n,
and such that .7 is generated by | .7, (in particular, if a partition core exists then .7 is
separable, and conversely if .7 is separable then a partition core exists.)

(iv) To any partition .4 there corresponds the field o(.7) generated by the elements of
4, and if P is a probability measure on (Q,.7) we define

P(U|.Z)(w) = P(U|4)(w) if o € Ai{(A; € #) and P(4;) #0
=01if w e Ad; and P(4;) = 0.

(P(U|Y) is of course the conditional probability.)
We can now state the following theorem.
Theorem 4.5. Let (E, ©) and (F,.7) be two measurable spaces. u, v, P are probability
measures defined respectively on (E, &), (F, .7 ) and (E X F, & X 7). uy denotes the first
marginal of P Then, there exists a probability measure Q on (E X F, & X.7) such that
0 < P, dQ/dP € LU(P), |[dQ/dP|, < K and with marginals u and v if and only if the
following holds:

Let &' (7") be any separable sub-o-field of & (7). One can find a partition core (.4%,)
((Z) of &' (F') and a family (Z,),=1 of non-negative random variables such that

(i) Z, is o(.#%,) measurable, Z, € L(uo) and | Z,|, < K.
(ii) For all A€ o(4,) and B € o(.7),),

W)+ (8) < 1+ | Z,OLPE X Bl 7, P10
4

(Where P(:|.2, X F) is as per Definition 4.4(iv)).
Corollary 4.6. Assume that E and F are Polish spaces, & = B(E), .7 = .Z(F). Denote by
P(x, -) a regular disintegration of P with respect to B (E) (considered as a sub-o-field of
PB(E) X B(F)), ie.

P(4 X B) = J P(x, B)uy(dx), for A € B(E), Be B(F),

4

such a P(x,-) is called a Markov kernel in Strassen (1965). Then, the necessary and
sufficient condition of Theorem 4.5 is equivalent to

wA) +v(B) <1+ JA Z(X)[P(x, B)]'™9(x)uo(dx)

for some non-negative Z € Li(uo) with || Z||, < K.
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Remark 4.7. If g = o0, the above condition is equivalent to that of Strassen, and the
condition in Theorem 4.5 is also equivalent to (4.1). So we also recover Theorem 6 of
Strassen (1965) or Theorem 4.1 of Hansel and Troallic (1986), but with a different proof for
the latter case.

Proof of Theorem 4.5. For the if part we shall closely follow Strassen’s method; indeed,
consider (E, o(7%,)), (F, 0(%,)) and the restrictions of u, v, P, up to the corresponding
fields. Actually these spaces are Borel isomorphic to finite discrete topological spaces (choose
one point in each 4; (or B)) of .Z, (or %)), which are of course Polish. So, as in the proof
of Theorem 6 of Strassen (1965) we may apply Theorem 4 of Strassen (1965) in (E, o(.%,)),
(E,0(Z,) and (E X F, 0(4%,) ® 0(%,)). To this end, consider

. (to(A4;)
Hn(Ais B) = i <IM(A1)
0

Z,(D[P(E X B|lA; X F)'™Y9, 1) if u(4;) # 0
if u(4;) =0,

for 4, € .Z,, B€ o(#%,) and Z,(i) equal to the value of Z, on 4;.
Let B € 0(%,), and A the set where H,(-, B)<1 (we define H,(x, B) = H,(4;, B) if
x € A;). Condition (ii) in Theorem 4.5 yields

W(B) < u(E — A)+ L ZuLP(E X Bl # X F)]'5(dx)

_ . ‘ 1—1/q Mo(4)
JE_Am(dx) + i;;/; Z,()[P(E X B|4; X F)] ) u(A))

- JHn(x, Byu(dx).

But, according to Lemma 4.3, H,(x, -) is a kernel alternating of order 2 in the sense of
Strassen (1965). Indeed, we have

1 =wF) < JHn(x, Fu(dx) < 1 = JH,,(x, F)u(dx) = 1.

Applying Theorem 4 of Strassen (1965), as we said before, we obtain that there exists a
Markov kernel g,(:, -) defined on o(.Z,) ® 0(.%,) such that v = g,u and g,(x, -) < H,(x, -)
for all x € E (we can choose g, = 0 if x € 4; with u(4;) = 0).

Define Q, =g, X u. Q, is a probability measure on (E X F, o(.7,)® 0(%,)) with
marginals # and v, and for 4, € .2, and B; € 7.

0.(4; X Bj) < Z,(D[P(E X B;|4; X F)]'""Yu(4;)
= Z,(D[P(4; X B)I'™V9(uo(A:)"/4.

Hence, 0, < P in restriction to (E X F, 0(.%,) ® 6(.%,)), and
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N Ou(4; X B)) < .0 >
=Z,= ) ————1 x5 by convention — =0 |.
dP 7" £ P(4; X B)) A4iXB 0

It follows that
JZZ dP <Y (Zu())uo(4) < K9, e |Z,], < K.

Now, consider the sequence (Z,,)nzl as a sequence of random variables on
(EX F,#'®.7"). Since it is a bounded sequence of L7(P) (restricted to &' ®.7 ') one
can use the Dunford—Pettis theorem again (but here in its full power) in order to find a
subsequence of Z, which is o(L', L) convergent to a Z It follows that Z € Li(P),
[Z]l, < K (since L™ is dense in L?) and

n—o0

J ZdP = lim J Z,dP = u(A), for 4 € | ) .7,
AXF AXF

pzl

and

J ZdP = lim J Z,dP = v(B), for Be | ) 7).
EXB EXB

n—00
=1

because (%)) ,=1 is a partition core (the above sequence is stationary for » large enough).
Now, consider the net of separable sub-o-fields ordered by inclusion. To each £’ is associated
Z' as above, and again we may apply the Dunford—Pettis theorem in (E X F, & X.7),
which says that the set of the Z' (indexed by the previous net) is relatively compact in
o(L', L*®). Take any limit point Z of this net. Then Z € L(P) and |Z||, < K. The
Probability measure Q = ZP, of course has marginals ¢ and v.

The only if part is immediate, with Z,(i) = (E[Z9]|4; X FDY4 for A4; €. .7, and
Z = dQ/dP, by using Holder’s conditional inequality. O

Proof of Corollary 4.6. The only if part holds with Z(x) = (| Z%(x, y)P(x, dy))'/¢ as above.
For the if part, it suffices to mimic the proof of Theorem 4.5 without the final argument since
the o-fields are separable (eventually up to negligible sets which are not relevant). O

In order to extend these results to general Orlicz spaces, one essentially needs to check
Lemma 4.3 in the situation of (4.2) (i.e. with 1/ 9*’1(1/ u)). Finally, in the L' case, one can

ask about the following conjecture.

Conjecture 4.8. There exists Q < P with marginals u and v if and only if for all ¢ >0 there
exists an 1 >0 such that u(A) +v(B) — 1 = € implies P(A X B) = 1.

At present we do not have any feeling on the exactness of the above conjecture.
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5. Minimal elements

From now on we assume that £ and F are completely regular. Define
K* = sup (deu—i—Jgdv—Jwg(f@g)dP) (5.1)
SEC(E),geCr(F)
and assume that
K* <+o0. (5.2)

According to Corollary 3.10 and since yg is strictly convex on its domain, there exists
0% e /(E X F) with marginals u and v such that

TH(0")=K*"<75Q)  forall Q+# Q* with the same marginals. (5.3)
We shall call O* the minimal element. Our goal in this section is to describe Q™. The first

main result in this direction is the following

Theorem 5.1. Assume that (5.2) holds and let Q* = Z*P be the minimal element. Then,
there exists a sequence (f,, g,) € Co(E) X Co(F) such that Z, = e(f, ® g,) converges
towards Z* both P-a.s. and in L'(P).

Proof. The idea consists in building a good sequence (f,, g,) which approximates the
supremum in (5.1). Actually, it shall suffice to prove the following lemma.

Lemma 5.2. There exists a sequence (f,, g,) as above such that
TAZuP) = e 8 = [ udut [enty = [path @ g ap
converges towards K*, and Z, = 5(fn ® g,) converges towards Z* weakly in L'(P).

Indeed, according to Pratelli (1992, Theorem 5.1), since Z, — Z* weakly in L!(P) and
T (Z,P) = i(fn, gn) converges towards .7 G(Z* P), Z, — Z* strongly in L'(P). Hence, up
to a subsequence we may also assume that Z, — Z* P-as.

For a given f @ g, consider the function of two real variables

0:(A, ) =A+nz— Jl/}g(/l +n(f @ g)dP, zeR. 5.4

When z=a= [ fdu+ [ gdv, (5.1) implies that 6, is bounded by K*. 6. is smooth and
strictly concave as soon as f & g is not P-a.s. constant. Furthermore, we have the following
lemma.

Lemma 5.3. We assume that [ @ g is not P-as. constant and that there exists
Q € . F(E X F) with marginals u and v such that .7 6(Q) < +oo and

(i) if lim;_. o0 Y5(7) = +00, Q is not concentrated on {f @ g = esssupp(f @ g)} or on
{/ ®g=essinfp(f® g}
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(i) if lim,_, o Ys(r) = M <+o0, Q cannot be written as
(M rog<g) + Myl soe=e)P or (M{oe>g) + Myl{oe=g)P, (5.5

where & € R and y is a measurable function on E X F.
Then, 6, admits a unique maximum 6,(Lo, 1o).

Proof. First, let lim;_, ,, y5(r) = +00. Without loss of generality we may assume that
z0= [(f ® g)dP =0 and a>0. Thus, (i) implies that P(f & g>a + ¢)>0 for some ¢ > 0.
For such ¢, let

- l{og>atqg )

— 1— P, 0<E<I.
0 (§+( E)P(f69g>a+e) ¢

We may choose & such that ¢ = (1 — §)(a + ¢) > a, and we have

il = N
.7G(Q)\VG(§)+VG<§+PU®g>a+6)) < +o0.

Hence,
30 € . #{(E X F) with .7 6(Q) < 400 and ¢ = J(f ® g)d0>a. (5.6)

Now let lim;_, . ¥6(r) = M <+oo. Here we may assume that f @ g =0 P-as. and
zo = 1. We only consider the case where a = 1 (the case a <1 can be treated using the
same kind of arguments replacing f@®g by (M—f®g)/(M—-1) and a by
(M — a)/(M — 1)). Consider the statistical test Hy: P versus H;: (f @ g)P at level 1/M.
Then, the Neyman—Pearson lemma (Lehmann, 1959, Theorem 1, p. 65) says that setting

DF = 10 g<ey + 11 {yeg-8)> (5.7)
where

1
P& g <9 +E(l{rae—s) =, (GRS

(§ is essentially unique and y satisfies E(yl{;qg-g)) =1 /M P(f ® g<§)), any test
® +# ®* having the same level satisfies:

Jfb(f@g)dP<Jfb*(f@g)dP. (5.9)

Applied to ® = (I/M)/(dQ/dP) (5.9) gives a<j(f69 M®D*dP = b. Let 0<r<1 with
c=r+(1—-rb>a and Q= (r+ (1 — r)MP*)P. Since by construction 0 <y <1 we
have yo(r + (1 — PYMP™) < max(ys(r), yo(r + (1 — M) <+oo and .76(Q) < +o0, so
(5.6) holds.

For any z € R the Contraction Principle (Proposition 3.3) gives

inf T 6(0) = sup 0,(4, n). (5.10)
Qe /[ (EXF),[(fog) d0=z Ay
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Indeed, by the Ellis—Gértner theorem on R? (Dembo and Zeitouni, 1993, Theorem 2.3.6, p.
45), the dual function of [yg(A+n(f @ g))dP is the large-deviations functional for the
sequence of random vectors (A,(E X F), [(f @ g)dA,). A direct evaluation gives
sup;,0:,(4, n) = 0.,(p5 (1), 0). As 6. is strictly concave this equality implies

lim  6.,(4, ) = —c. (5.11)
|2l —-+o0

Now, there exists 0 <7 <1 with a = 7zy + (1 — F)c so
Oa(4, 1) = 70,(A, ) + (1 — PB4, 7).
From (5.11) and (5.15), 6.(4, 1) is bounded so that (5.11) implies

lim  6,(4,n) = -
@mll—+oo

which gives the result. O

According to Lemma 5.3, 0, admits a maximum at (4g, 179) and V@,(4o, 79) = 0. It
follows that

1= [yt + (s @ g)ar (5.12)

[raus [ear = [ @ owito + mir @ enar. (5.12b)
So if we replace f @® g by (Ao +1n0f) ©nog = f © T, we have
1= [y @ 2ar
|Feozar|Feomwrenar
7.9 = i(/, 9

Take a sequence (f,, g,) such that lim, .. i(f,, g,) = K* =.7(Z* P). Without loss of
generality, we may assume that f,, g, and Z*P satisfy the assumptions of Lemma 5.3.
Indeed, if this is not the case take a small perturbation of f,, g,. This means in view of
(5.13) that we can assume that Z, = ys(f» © g») is a probability density and

(5.13)

T ZnP) = [76(W6(fu ® gn))dP

= {2 @ g)¥6(fn ® gn) — Y(fn & gn)} dP (5.14)

= (fn@gn)z*dp_JwG(fn@gn)dP:i(fm gn)$K*.

Accordingly, thanks again to the Dunford—Pettis theorem, one can find a subsequence of Z,
which converges towards Z weakly in L!, and
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Jyg(Z) dP < K*. (5.15)

In order to prove that Z = Z* we have to prove that Z has marginals x and v and use the
minimality property of Z*.

Suppose that Z and Z* do not have same marginals. Since they are both probability
measures, one can find a non-negative f @ g(€ Cp(E) & Cp(F)) such that f( foeNZ* —
Z)dP = a<0. In the following we write h = f ® g and h, = f, ® g,, as well as i(h)
instead of i(f, g).

For & € R, consider

Fu(&) = i(hy + Eh) = J(hn L ERZFdP - Jw(hn L EhydP.

We may apply the Taylor—Lagrange formula in order to obtain that for £ <0, there exists
&, € ], O[ such that

Fu(8) = Fu(0) + EF,(0) + &(Fu(En) — F(0))
(5.16)
= i(h,) + Ejh(Z* — Zy)dP + th(w’c(hn) —Y6(hy +E,h))dP.

The key point now is that £,4 < 0, hence 0 < yg(h, + &,h) < yYg(h,). Since (Yg(hy)) is a
uniformly integrable sequence, so is (yg(h, + §,4)). In particular, one can find a >0 such
that for all »

Wi(hy)dP < ﬁ and J Wi(hn + Enh)dP <

—a
Jhn><w'c)'<a> ha>(W6)(a) 4 Al

Finally, we can write
Fo(§) =i(hy) + &a + &Jh(Z — Z,)dP + &7 + IY).
with

= snj hpo(hy + Exh) P for some &) € 16, O]
ha<(p&)~'(a)

I = h(6(hn) — Y(hy + Enh)) dP.

Jhn>(¢b)l(a)

But on the interval ]— oo, ¥ '(a)], % is bounded (it is easy to see that
lim;_,_ ¥'6(r) = 0), and so there exists a constant C such that, for all n,

a

gy + il = e+ .

But K* = F,(&) = i(h,) + —CE* + Ea/2 + & [WZ — Z,)dP for all n which yields a
contradiction since —CE&? + Ea/2 is strictly positive for |E| small enough.

It follows that Z* = Z and Lemma 5.2 is proved so is Theorem 5.1. O
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Remark 5.4. One cannot use the Taylor—Lagrange formula of order 2 directly, because in the
case lim; ., 9G(T) = +oo one cannot, in general, control [vG(h,+ &,h)dP, even if
&, <0. Also, remark that it is crucial to know that Z is a probability density in order to
choose a non-negative / and obtain a negative a.

In view of the nature of ¢, one should expect to improve the L! strong convergence in
Theorem 5.1, and get strong convergence for the Orlicz norm associated with ys. Actually,
this stronger result is an easy consequence of a Vitali-like theorem in Orlicz space, and we
can state the following corollary.

Corollary 5.5. In addition to the hypotheses of Theorem 5.1, assume that v is moderate (i.e.
satisfies Ay-regularity in Orlicz space terminology). Then (a subsequence of) Z, converges
towards Z* strongly in the Orlicz space L, associated with yg.

Proof. According to Theorem 12(b) of Rao and Ren (1991, p. 83), and since (a subsequence)
of Z, almost surely converges towards Z*, we only need to check that

lim JyG(Z,,) dP = JyG(Z*)dP. (5.17)
n—0o0
On the one hand, (5.14) proves the upper bound. On the other hand, lower semicontinuity
implies the lower bound, which achieves the proof. ]
Remark 5.6.

(1) In the entropic case (Section 3.2), setting O, = Z,P, we have that

H(Q", 0,) = H(Q", P) ~ i(fn, &)

goes to 0 as n goes to infinity. (Recall that H denotes the Kullback—Leibler information (see
(2.2)).) Indeed, since Q, and P are equivalent, 0* < 0, and the following holds:

H(Q¥, 0,) = H(Q¥, P) — Ey:[log Z,].
But

EQ*[IOg Zn] = J(_fn 52 gn)Z* dP = J(_fn 2] gn)Z* dP — JU)G(fn 2] gn) dP = i(fns gn)

since Yg(7) = e’ — 1, Yg(r) = e’ and Ys(f, ® g,) is a probability density thanks to (5.17).

(i1)) A similar statement with another approximating sequence f, ® g, is contained in
Borwein et al. (1994), Csiszar (1975) and Follmer (1988). Actually, Csiszars (1975) I-
projection yields a sequence f, ® g,, solving a finite number (n) of moment problems,
which approximate the marginal problem. The advantage of Remark 5.6(i) is that it gives
the exact error H(Q*, O,).

(iii) In the entropic case, one can easily see that lim;_,1,.0,(4, 1) = —c0, so that we
can replace in the maximization procedure of Lemma 5.3 the two variables (4, ) by only
one (A). Easy computations yield the following alternative expression for K™:
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K* = sup (de,u—&-Jgdv—logJexp(f@g)dP).
SECo(E),geCo(F)
This expression is more familiar to aficionados of large deviations, and can be derived by
using Sanov’s theorem and the contraction principle instead of MEM; see Cattiaux and
Léonard (1995a; 1995b) for the method for marginal flows.
(iv) In the general case, Theorem 5.1 is connected with recent results of Csiszar (1995)
generalizing the entropic case, with the help of Bregman distances.

6. More on minimal elements and applications

Theorem 5.1 says that the minimal Z* can be approached by some y&(f, ® g,) P-as. It
follows that f, ® g, = ¥ '(Z,) converges P-a.s. to some measurable F* taking values in
[—o00, +00] and Z* = yG(F*). The last question we shall address is the splitting
F* = f* @ g* and some of its consequences. It is known (see Lindenstrauss, 1965) that
this splitting is not always true. Many results, however, are known (see Borwein and Lewis,
1992; Borwein et al., 1994; Donsker and Varadhan, 1974; Follmer, 1988), but the most
satisfactory one for our purpose is the following one due to Riischendorff and Thomsen
(1994). Let iy (vg) be a probability measure on E (F). Observe that these probability
measures are not necessarily the marginals of P.

Proposition 6.1 (see Riischendorff and Thomsen 1994, Proposition 2). If P < jig ® vy and
fu @ gn converges P-a.s. towards F*, then one can find measurable functions f* and g*
such that F* = * @ g* on the set {—oo < F* <+oc}. (Actually, to get this statement just
replace A by AN{—oo<F*<4oc} in the proof of Riischendorff and Thomsen's
proposition.)

As an immediate consequence we obtain

Proposition 6.2. If (5.2) holds and P < jiy ® ¥y, there exists a pair (f*, g*) of measurable
functions such that

(i) if limg o Yi(0) = 400, Z* = pi(f* & g*)1 o P-as;
(i) if lim,_ o Y6(7) = M <400, Z* = Ps(f* © ) yyoprao + M1 4«_,, P-as.

Before we give applications of Proposition 6.2 in the entropic case, we shall say a few
words about the L™ case. Assume that Q* = Z*P has marginals x and v and that
| Z*||c = K* is minimal. Then if P < jiy ® ¥, a remarkable result due to Kellerer (1984)
tells us that one can always find a subset 4 of E X F such that K*1,P has the same
marginals as Q" provided jiy and ¥, have no atom. Notice that taking K = K* in (3.9) we
have for the homothetic of a characteristic function of a measurable set 4 (that is for
K*14), y6(K*1,4) = log2 everywhere, hence as ys < log2, .7 ¢(-P) hits its maximum on
each homothetic of a characteristic function of a measurable set which lies in the convex
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compact subset M., of probability measures @ with marginals x4 and v such that
|[dQ/dP|ls = K* (convexity follows from the minimality of K™). It is an open question
whether all extremal points (in the sense of Krein and Milman) of M., are homothetic of
characteristic functions (i.e. maximize yg) or not.

Our construction furnishes another candidate (for the minimization of ||-||), of the form
(see Proposition 6.2)

¥k p K*I{K*>Z**>0}
1 +exp(f* & g*)

+ K*l{Z**_K*}>P.

We next discuss the entropic case. Because of its importance for large deviations theory,
the entropic case has been extensively studied. As remarked by Follmer (Follmer, 1988;
Follmer and Gantert, 1995) the split decomposition of Z* is strongly related to an old
Schrodinger question as we shall state below. Actually, our approach allows us to improve
various results on the subject in the literature.

In the following we assume that

P = kjig ® ¥, for some non-negative k € L'(jty @ ¥). (6.1)
For K* to be finite it is necessary (but not sufficient) that
H(u, jty) <+oo, H, vy) <4o0. (6.2)
A particular property of entropy is that H(u ® v, ito ® vo) = H(u, fto) + H(v, vo). Hence,
because

H(u®v, P) = Hu® v, jio ® ) — leog kd(u ® ), 63)

it follows that
if logk € £'(u®w), then H(u ® v, P) < +oo (i.e. K* is finite) and the
minimal element Z* satisfies Z* = exp(f™ @ g™) P-a.s. on the set {Z* >0}. (6.4)

Q* is supported by the cross product E’ X F’ = {du/diio>0} X {dv/diy>0}. Indeed,
U<y, v<vy and u ® v is equivalent to fip ® vy on the set £’ X F'. But, as Q* has
marginals x4 and v, Q*(E’ X F') = 1. Thus, 0" < P < u®v on E' X F'. Hence, as (6.6)
holds, condition (EQ) in Borwein ef al. (1994) is satisfied. Thus, Theorem 2.7 of Borwein et
al. (1994) shows that Z*>0 P-as. on E' X F'. We have thus proved the following
proposition.

Proposition 6.3. Assume that H(u, jty) and H(v, vy) are finite and that logk € L'(u ® v).
Then, there exists a pair (f*, g*) of measurable functions taking values in [—oco, +oo[ such

that Z*(x, y) = exp(f*(x)) exp(g*(»)) P-as.

Indeed, take f™ and g* as in Proposition 6.2 on E’ X F' and put f* = —oco on E\E’
(g* = —oc0 on F\F').
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Remark 6.4. On the unit square [0, 1] X [0, 1] take dP = exp(—1/x)exp(—1/y)dxdy up to a
normalization constant, 4 and v being Lebesgue measure. It is easily seen as in Example 2.6,
that there is no @ with marginals x# and v such that H(Q, P)<+oo. Of course
logk¢ L'(u®v). But, if we replace P by dP =exp{—1/(x*>+ »*)*}dxdy (up to a
normalization constant), log k ¢ L'(u ® v) and it is easy to build a Q with uniform marginals
such that H(Q, P)<+oo (for instance, with support in [0, 1] X [3, 1JU[3, 1] X [0, 3]). The
global condition of integrability can thus be improved using a local one. Instead of discussing
this point further, we shall now link Proposition 6.3 to Schrédinger’s problem.

If we denote by (a, B) the pair (du/ditg, dv/dv,), Proposition 6.3 shows that the pair
(a*, B*) = (exp [, exp g¥) solves the following system

a*(X)J k(x, B (0)vo(dy) = alx)  j@g-as.
g (6.5)
ﬁ*(y)JEk(x, ya* (®)ig(dx) = f(y)  o-as.

(by convention the left-hand side is equal to 0 whenever a™® (8%) is equal to 0). This system
was introduced by Schrodinger (1931) in the Gaussian real case, as a consequence of a
strange behaviour of Brownian motion. The strange and highly improbable behaviour has a
natural explanation in terms of large deviations (see Follmer, 1988; Cattiaux and Léonard,
1994; 1995a). But the solvability of (6.5) was left open by Schrédinger. Following on from
work by Bernstein and Fortet, Beurling (1960) studied this problem in a slightly more general
formulation:

Let k be a non-negative measurable function on E X F. For each pair

(4, v) € M°(E) X /% (F), does there exist a pair (g, ) € ./Z°(E) X /5 (F)

such that the marginals of k(7y ® 7p) are exactly u and v? (6.6)
In our notation Beurling’s main result is the following (see Beurling 1960, Theorem III,

p. 118).

Theorem 6.5 (Beurling’s theorem). Let E and F be locally compact Hausdorff spaces and k
be a bounded continuous positive function on E X F such that logk € L'(u ® v) or, more
generally,

sup (de;H—Jgdv— Jexp(f@ g)kd(,u®v)) < 4o00.
SEC(E),geCo(F)

Then, there exists a unmique product measure o*u ® B*v such that the marginals of

k(a*u ® B*v) are u and v.

Beurling’s proof is variational, but in a different spirit than that of Remark 5.6(i). Remark
5.6(i) and Proposition 6.3 throw light on the probabilistic nature of Beurling’s result.
Notice, in particular, that when £ and F are compact spaces and k is continuous and
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positive, the answer to (6.6) is yes, and furthermore the mapping (u, v) — (7tg, 77) is one
to one. Conversely, for (6.6) to hold, it is necessary for & to be positive everywhere.

Problem (6.6) is a key point in the study of the Markov property for reciprocal processes
(Jamison, 1974), also called Schrédinger processes (see, for example, Follmer and Gantert,
1995), which are basic processes in the Euclidean approach of quantum mechanics
developed by Zambrini (1989) and others. However, in their recent paper, Follmer and
Gantert (1995) have shown that for infinite-dimensional state spaces, (6.6) is not fully
satisfactory for the study of these Schrddinger processes.
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