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1. Introduction

Throughout this paper, we denote by (Z t) t>0 a normalized fractional Brownian motion

(FBM) with self-similarity parameter H 2 (0, 1), characterized by the following properties.

(i) Z t has stationary increments.

(ii) Z0 � 0, and EZ t � 0 for all t.

(iii) EZ2
t � jtj2 H for all t.

(iv) Z t is Gaussian.

(v) Z t has continuous sample paths.

We assume that Z is de®ned on a probability space (Ù, F , P) and denote by (F t) t>0

the ®ltration (history) generated by Z.

This process was originally de®ned and studied by Kolmogorov (1940) within a Hilbert

space framework. In another pioneering paper on FBM, Mandelbrot and Van Ness (1968)

de®ned the process more constructively as the integral

Z t ÿ Zs � c H

� t

s

(t ÿ u) Hÿ1=2 dWu �
� s

ÿ1
f(t ÿ u) Hÿ1=2 ÿ (sÿ u) Hÿ1=2g dWu

� �
, (1:1)
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where W t is the standard Brownian motion. The normalization EZ2
1 � 1 is achieved with the

choice

c H �
2HÃ(3

2
ÿ H)

Ã(H � 1
2
)Ã(2ÿ 2H)

 !1=2

,

where B denotes the beta function

B(ì, í) �
�1

0

xìÿ1(1ÿ x)íÿ1 dx � Ã(ì)Ã(í)

Ã(ì� í)
:

Note that the choice H � 1=2 gives a standard Brownian motion, and another special case

H � 1 gives a deterministic process with linear paths. In all cases, FBMs are self-similar

processes. The sample path assumption (v) above can be strengthened to HoÈlder continuity

(this follows from Kolmogorov's criterion for the continuity of sample paths; see Revuz and

Yor (1991)).

Theorem 1.1. The sample paths of a continuous fractional Brownian motion with parameter

H are, outside a negligible event, HoÈlder continuous with every exponent â, H.

When H =2 f1=2, 1g, the FBM is neither a Markov process nor a semimartingale (see, for

example, Liptser and Shiryaev (1986, Section 4.9.13, Example 2)). It is, however, a process

with a simple structure, and several interesting objects related to it have explicit

expressions. For example, a formula for the conditional expectation E[ZT jZs:

s 2 [0, t]], 0 , t , T , was found by Gripenberg and Norros (1996) (cf. Molchan (1969);

see Section 5.3 below). The aim of this work was to ®nd a counterpart to the Girsanov

theorem for Brownian motion, which states, in its simplest form, the following. Let W be

the standard Brownian motion, de®ned on some probability space (Ù, F , P), and let

(F t) t>0 be the ®ltration generated by W. Then, for any ®xed number a, Lt � eaW tÿa2 t=2 is a

martingale with expectation 1 such that, for any T . 0, with respect to the measure

dPa,T �: LT dP, (W t) t2[0,T ] is a standard Brownian motion with drift a. Since a Radon±

Nikodym derivative process is always a martingale, a central problem is how to construct an

appropriate martingale which generates the same ®ltration as the non-semimartingale Z,

called here a fundamental martingale.

A classical technique to study the absolute continuity of Gaussian distributions in

function spaces is based on reproducing kernel Hilbert space methods. Within this

framework, Molchan (1969) and Molchan and Golosov (1969) obtained results on FBM.

Recently, stochastic analysis for FBM has been developed by Decreusefond and UÈ stuÈnel

(1997) using Malliavin calculus. In the present paper, we show that many basic results can

be obtained more directly with rather elementary arguments and computations.

The paper is organized as follows. In Section 2, heuristic insight is obtained from a

discrete-time consideration, and some simple technical tools are reviewed. The process M is

de®ned and shown to be a fundamental martingale in Section 3. In Section 4, the desired

Girsanov formula is found to be of the same form as in the classical case, with M taking

the role of W. Four applications of the theory are discussed in Section 5. We note that the

572 I. Norros et al.



study of the fundamental martingale M yields a maximum-likelihood estimator of the drift,

a representation of Z in terms of standard Brownian motion on a ®nite interval, a new

derivation of the prediction formula of Gripenberg and Norros (1996), and a simple

diffusion approximation of the FBM.

2. Preliminaries

2.1. Heuristics from the discrete-time case

Let X n, n � 1, 2, . . . , be a centred Gaussian sequence de®ned on a probability space

(Ù, F , P). Assume that the covariance matrix Rn � cov(X 1, . . . , X n) is invertible for every

n. The vector X n � (X1, . . . , X n) has the probability density function f n(x) �
exp(ÿ1=2xTRÿ1

n x)=f(2ð)n det(Rn)g1=2. Let a be an arbitrary real number. Denote by

1n 2 Rn a vector of ones. Then for any n, the random variable

L(a)
n �

f n(X n ÿ a1n)

f n(X n)
� exp a1T

nRÿ1
n X n ÿ a2

2
1T

nRÿ1
n 1n

� �
has mean 1, and with respect to the probability dP(a)

n � L(a)
n dP, the random variables

X1, . . . , X n have their original covariances but mean a. By a general property of Radon±

Nikodym derivatives, L is a martingale. Moreover, the same holds for the sequence

M n � 1T
nRÿ1

n X n appearing in the de®nition of L. Indeed, using the notation

Rn�1 � Rn Rn1

R1n rn�1

� �
, Rÿ1

n�1 �
Bn Bn1

B1n bn�1

� �
,

we have the relations

Bn � Bn1R1nRÿ1
n � Rÿ1

n , B1n � bn�1R1nRÿ1
n � 0: (2:1)

The martingale condition E[M n�1jX1, . . . , X n] � M n follows using (2.1) and the identity

E[X n�1jX 1, . . . , X n] � R1nRÿ1
n Xn:

Since M is a Gaussian sequence, the martingale property implies that M has independent

increments. (Note that this orthogonalization of the sequence X is not identical to the Gram±

Schmidt orthogonalization.) Hence we can write

Ln � exp aM n ÿ a2

2
hM , Min

� �
,

where hM , Min is the angular bracket process of the martingale M.

M n can be interpreted as the integral of the deterministic function wn(i) � [1T
nRÿ1

n ]i with

respect to the cumulative process Z k �
Pk

1 X i. Plotting the points (i, wn(i)) for a discrete

process can be used for guessing the expression for the corresponding weight function for a

related continuous time process. In the case of fractional Brownian motion Z with H . 1=2,

the discrete time weight function wn(i) for X i � Zi ÿ Ziÿ1 is seen to have the form of the

letter U. This suggests that in the continuous time, the process M t �
� t

0
w(t, s) dZs, where
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w(t, s) � constant 3 sÿá(t ÿ s)ÿá, would be a martingale with certain á. Further, the

representation (1.1) suggests that á � H ÿ 1
2
. Having guessed the result, it remains to prove

it and to compute the constant. Tools for doing this in an elementary way are identi®ed in

the following sections.

2.2. Remarks on integration

Integration with respect to Z plays a central role below. Since Z is not a semimartingale, we

refer to the integration theory of Gaussian processes (see, for example, Huang and Cambanis

(1978)) instead of the more usual martingale approach. In fact, we need to consider

deterministic integrands only, and the technical framework can be described brie¯y. Both L2

and pathwise approaches are possible.

For H . 1=2, let Ã denote the integral operator

Ã f (t) � H(2H ÿ 1)

�1
0

f (s)jsÿ tj2 Hÿ2 ds,

and de®ne the inner product

hh f , giiÃ � hh f , Ãgii � H(2H ÿ 1)

�1
0

�1
0

f (s)g(t)jsÿ tj2 Hÿ2 ds dt,

where hh´ii denotes the usual inner product of L2[0, 1). Denote by L2
Ã the space of

equivalence classes of measurable functions f such that hh f , f iiÃ ,1. Now, it is easy to

check that the association

Z t 7! 1[0, t)

can be extended to an isometry between the Gaussian space generated by the random

variables Z t, t > 0, as the smallest closed linear subspace of L2(Ù, F , P) containing them,

and the function space L2
Ã. For f 2 L2

Ã, the integral
�1

0
f (t) dZ t can now be de®ned as the

image of f in this isometry.

For H , 1
2
, the integral in the above de®nition of Ã diverges, and we have to de®ne the

operator in another way. In this case, an appropriate de®nition of Ã is

Ã f (t) � H

�1
0

jt ÿ sj2 Hÿ1 sgn(t ÿ s) d f (s):

We interpret f (0ÿ) � 0 so that, for example, the indicator function 1[0, t) is identi®ed with the

signed measure ä0 ÿ ä t. It is again easy to check that Z t 7! 1[0, t) de®nes an isometry. Below

we apply Ã only to explicitly given functions f.

If f has bounded variation, the integral
� T

0
f (t) dZ t(ù) can be de®ned ù by ù as a limit

of Riemann sums, and it is easy to see that the integral obtained coincides with the L2

integral almost surely. The convergence of these Riemann sums is equivalent to that of the

usual Riemann±Stieltjes integral appearing on the right-hand side of the integration by parts

formula
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�T

0

f (t) dZ t(ù) � f (T )ZT (ù)ÿ f (0)Z0(ù)ÿ
�T

0

Z t(ù) d f (t), (2:2)

and is thus guaranteed by the continuity of the sample paths of Z.

Much stronger results can be obtained using the HoÈlder continuity of most sample paths

of Z (Theorem 1.1). In fact, all processes considered in this paper, obtained from each other

by integrating fractional powers or a little more complicated integrands with respect to a

Gaussian process, can be de®ned by pathwise integration outside a set of measure zero. The

basic idea why this is possible is presented in the following elementary lemma.

Lemma 2.1. Assume that the function f : [0, T ]! R with f (0) � 0 is HoÈlder continuous

with exponent â 2 (0, 1). Let ã 2 (ÿâ, ÿâ� 1). Then the function

g(t) �
� t

0

(t ÿ u)ã d f (u)

�: lim
E!0

Eãf f (t ÿ E)ÿ f (t)g � tã f (t)� ã

� tÿE

0

f f (u)ÿ f (t)g(t ÿ u)ãÿ1 du

� �
is well de®ned, ®nite and HoÈlder continuous with exponent â� ã.

Proof. By assumption, there is a number K . 0 such that j f (t)ÿ f (s)j < Kjt ÿ sjâ for

t, s 2 [0, T ]. Note ®rst that for a , b , v and for any á we have�����b

a

(vÿ u)á d f (u)

���� < K �
���� á

á� â

����
 !

f(vÿ a)á�â � (vÿ b)á�âg: (2:3)

It is easy to see that the limit in the de®nition of g(t) exists and is ®nite. To show the HoÈlder

continuity, write for s , t the difference g(t)ÿ g(s) as

g(t)ÿ g(s) �
� t

s

(t ÿ u)ã d f (u)�
� s

0

f(t ÿ u)ã ÿ (sÿ u)ãg d f (u)

�
� t

s

(t ÿ u)ã d f (u)�
� s

0

ã

� t

s

(vÿ u)ãÿ1 dv

� �
d f (u)

�
� t

s

(t ÿ u)ã d f (u)� lim
E!0

� sÿE

0

ã

� t

s

(vÿ u)ãÿ1 dv

� �
d f (u)

�
� t

s

(t ÿ u)ã d f (u)� lim
E!0

� t

s

ã

� sÿE

0

(vÿ u)ãÿ1 d f (u)

� �
dv

�
� t

s

(t ÿ u)ã d f (u)�
� t

s

ã

� s

0

(vÿ u)ãÿ1 d f (u)

� �
dv,

where the change in the order of integration is easily justi®ed since the integrand is bounded.

Taking the limit under the integration sign is allowed by the dominated convergence theorem,
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using (2.3) with á � ãÿ 1. Finally, apply (2.3) to the both terms to obtain the desired

inequality

jg(t)ÿ g(s)j < K9jt ÿ sjâ�ã
with a certain constant K9. u

It is straightforward to extend the above arguments to the somewhat more complicated

integrands with fractional power singularities which appear throughout this paper. For more

general theory, we refer to the recent paper by Feyel and de La Pradelle (1996) and the

references therein.

2.3. Equations for integrals of fractional powers

The following relations between integrals of fractional powers play a central role in this

paper.

Lemma 2.2.

(i) For ì, í. 0, c . 1, we have�1

0

tìÿ1(1ÿ t)íÿ1(cÿ t)ÿìÿí dt � cÿí(cÿ 1)ÿìB(ì, í):

(ii) For ì 2 R, v .ÿ1, c . 1, we have�c

1

tì(t ÿ 1)í dt �
�1ÿ1=c

0

sí(1ÿ s)ÿìÿíÿ2 ds:

(iii) Assume that ì, í. 0 and c . 1. Then�1

0

tìÿ1(1ÿ t)íÿ1(cÿ t)ÿìÿí�1 dt

� B(ì, 1ÿ ì)ÿ (ì� íÿ 1)B(ì, í)

�1ÿ1=c

0

sÿì(1ÿ s)ì�íÿ2 ds

� (ì� íÿ 1)B(ì, í)cÿí�1

�1

0

sì�íÿ2(cÿ s)ÿì ds,

where the second form requires additionally that ì, 1 and the third that ì� í. 1.

(iv) For ì 2 (0, 1), x 2 (0, 1), we have

�1

0

tÿì(1ÿ t)ÿìjxÿ tj2ìÿ1 dt � B(ì, 1ÿ ì):

Proof. Assertions (i) and (ii) follow with the substitutions t � cs=(cÿ 1� s) and t �
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1=(1ÿ s) respectively. (iii) is a little more tricky. Assume that ì, 1 Ð this can be relaxed

for the equality between the ®rst and last form since both are analytic in ì for ì. 0. Now,�1

0

tìÿ1(1ÿ t)íÿ1(cÿ t)ÿìÿí�1 dt

�
�1

0

tìÿ1(1ÿ t)íÿ1 (1ÿ t)ÿìÿí�1 � (ÿìÿ í� 1)

�c

1

(vÿ t)ÿìÿí dv

� �
dt

� B(ì, 1ÿ ì)ÿ (ì� íÿ 1)

�c

1

�1

0

tìÿ1(1ÿ t)íÿ1(vÿ t)ÿìÿí dt

 !
dv

�(i) B(ì, 1ÿ ì)ÿ (ì� íÿ 1)B(ì, í)

�c

1

vÿí(vÿ 1)ÿì dv

�(ii) B(ì, 1ÿ ì)ÿ (ì� íÿ 1)B(ì, í)

�1ÿ1=c

0

sÿì(1ÿ s)ì�íÿ2 ds

� B(ì, 1ÿ ì)ÿ (ì� íÿ 1)B(ì, í) B(1ÿ ì, ì� íÿ 1)ÿ
�1=c

0

sì�íÿ2(1ÿ s)ÿì ds

 !

� (ì� íÿ 1)B(ì, í)

�1=c

0

sì�íÿ2(1ÿ s)ÿì ds,

where the last step follows from the identity

(ì� íÿ 1)B(ì, í)B(1ÿ ì, ì� íÿ 1) � B(ì, 1ÿ ì): (2:4)

Finally, (iv) follows easily from (iii) and (2.4). u

Many results below are proved very simply using the following fact.

Proposition 2.1. Let w(t, s) be the function

w(t, s) � c1s1=2ÿH (t ÿ s)1=2ÿH , for s 2 (0, t),

0, for s =2 (0, t),

�
where

c1 � f2HB(3
2
ÿ H , H � 1

2
)gÿ1:

Then

Ãw(t, :)(s) �
1, for s 2 [0, t),

(H ÿ 1
2
)s Hÿ1=2

(3
2
ÿ H)B(H � 1

2
, 2ÿ 2H)

� t

0

u1ÿ2 H (sÿ u) Hÿ3=2 du, for s . t:

8<: (2:5)
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Proof. Consider ®rst the case H . 1
2
. For s 2 [0, t], the assertion is a direct consequence of

item (iv) of Lemma 2.2, with the choice ì � H ÿ 1
2
. For s . t, the result is obtained using

item (iii) of the same lemma.

For H , 1
2
, we have to evaluate

Ãw(t, :)(s) � H(1
2
ÿ H)c1

� t

0

jsÿ uj2 Hÿ1 sgn(sÿ u)uÿ1=2ÿH (t ÿ u)ÿ1=2ÿH (t ÿ 2u) du:

For s 2 [0, t), this expression is divided into four integrals which are then computed with

item (i) and with the both forms given in item (iii) of Lemma 2.2. Finally, the result for s . t

is obtained applying ®rst items (i) and (iii) of Lemma 2.2 and then the identity

(1ÿ 2H)st Hÿ1=2

� t

0

uÿ2 H (sÿ u) Hÿ3=2 du � sÿ t

t

� �Hÿ1=2

ÿ (H ÿ 1
2
)t Hÿ1=2

� t

0

u1ÿ2 H (sÿ u) Hÿ3=2 du:

The latter can be derived using item (ii) of Lemma 2.2 once in both directions, integrating by

parts between. u

Note that for H , 1=2, the function Ãw(t, :) has a singularity at t.

3. The fundamental martingale M

As noted in the introduction, the fractional Brownian motion is not a semimartingale unless

H 2 f1=2, 1g. Its paths are continuous with locally unbounded variation but with zero (resp.

in®nite) quadratic variation for H . 1=2 (resp. H , 1=2). However, we can prove the

following. Let w(t, s) be the function appearing in Proposition 2.1.

Theorem 3.1. The centred Gaussian process

M t �
� t

0

w(t, s) dZs

has independent increments and variance function

EM2
t � c2

2 t2ÿ2 H ,

where

c2 � c H

2H(2ÿ 2H)1=2
:

In particular, M is a martingale.

Proof. By Proposition 2.1, we have, for s , t,
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cov(M s, M t) � hhw(s, :), Ãw(t, :)ii
� hhw(s, :), 1[0, t]ii

�
� s

0

w(s, u) du

� c1 B(3
2
ÿ H , 3

2
ÿ H)s2ÿ2 H

� c2
2s2ÿ2 H :

The end result is independent of t which shows that M has uncorrelated and thus, since it is a

Gaussian process, independent increments. u

Note that the process

W t � 2H

c H

� t

0

s Hÿ1=2 dM s (3:1)

is a standard Brownian motion.

The covariance cov(Zs, M t) has a particularly simple expression when s < t.

Proposition 3.1. For all 0 < s < t, we have

cov(Zs, M t) � s:

As a consequence, the increment M t ÿ M s is independent of F s.

Proof. By Proposition 2.1, cov(Zs, M t) � hh1[0,s], Ãw(t, :)ii � hh1[0,s], 1[0, t]ii � s. u

It turns out, however, that the covariance cov(Zs, M t) does not have a nice expression for

s . t, and it is easier to proceed by considering, instead of Z, the process

Yt �:
� t

0

s
1
2
ÿH dZs: (3:2)

It is obvious that we have the inverse relationship Z t �
� t

0
s Hÿ1=2 dYs; in particular, Y

generates the same ®ltration (F t) as Z.

Proposition 3.2. For Y de®ned by (3.2), we have

EM tYT �

c2
H

2H

� t

0

(T ÿ s) Hÿ1=2s1ÿ2 H ds, t , T ,

T 3=2ÿH

3
2
ÿ H

, t > T :

8>>>><>>>>:
Proof. The case t > T follows from the other case by noting that, by Proposition 3.1, the
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increments of M after time T are independent of YT . For t , T, the result follows from

Proposition 2.2. Note ®rst that

EM tYt � hhs1=2ÿH 1[0, t)(s), Ãw(t, :)(s)ii �
� t

0

s1=2ÿH ds � t3=2ÿH

3
2
ÿ H

:

Second, a short computation shows that

EM t(YT ÿ Yt) � hhs1=2ÿH 1[ t,T )(s), Ãw(t, :)(s)ii � c2
H

2H

� t

0

u1ÿ2 H (T ÿ u) Hÿ1=2 duÿ t3=2ÿH

3
2
ÿ H

:

u

Only a little remains to prove that M is indeed a fundamental martingale in the above-

mentioned sense that it generates the same ®ltration as Z. This is shown by deriving a

representation of the process Y in terms of M.

Theorem 3.2. The martingale M generates, up to sets of measure zero, the same ®ltration as

Z. The same holds for the related processes W and Y, de®ned in (3.1) and (3.2), respectively.

The process Y has the integral representation

YT � 2H

�T

0

(T ÿ t) Hÿ1=2 dM t, (3:3)

and we have the prediction formula

E[YT jF t] � 2H

� t

0

(T ÿ s) Hÿ1=2 dM s: (3:4)

Proof. Denote by (F M
t ) t>0 the ®ltration generated by M. We ®rst show that, for t < T,

E[YT jF M
t ] � 2H

� t

0

(T ÿ s) Hÿ1=2 dM s �: ŶT j t:

It is enough to show that the difference YT ÿ ŶT j t is orthogonal to M s for s < t. Further,

since M has independent increments, we have EM sŶT j t � EM sŶT js for s , t, so that we have

to show only that EM tŶT j t � EM tYT . Since

EM tŶT j t � 2H

� t

0

(T ÿ s) Hÿ1=2 dhM , Mis � c2
H

2H

� t

0

(T ÿ s) Hÿ1=2s1ÿ2 H ds,

this follows from Proposition 3.2.

In order to see that in fact ŶT jT � YT a.s., we have to check only that E(ŶT jT )2 � EY 2
T .

Indeed, we have

E(ŶT jT )2 � (2H)2

�T

0

(T ÿ t)2 Hÿ1 dhM , Mi t � c2
H B(2H , 2ÿ 2H)T ,

and short computations, for the cases H , 1
2

and H . 1
2

separately, show that we also have

EY 2
T � c2

H B(2H , 2ÿ 2H)T . Now it is easy to see that, for any t, F t � F Y
t � F M

t � F W

up to sets of measure zero. u
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Remark 3.1. The de®nition of M in Theorem 3.1 can be written as

c1

� t

0

(t ÿ s)1=2ÿH dYs � M t:

This is a generalized Abel integral equation with respect to the process Yt. A formal solution

yields

Yt � 1

c1 B(H � 1
2
, 3

2
ÿ H)

� t

0

(t ÿ s) Hÿ1=2 dM s � 2H

� t

0

(t ÿ s) Hÿ1=2 dM s:

Thus, we could alternatively have proved Theorem 3.2 by solving these pathwise integral

equations.

Remark 3.2. It is well known that all right continuous square integrable (F W
t ) martingales

can be expressed as stochastic integrals with respect to W. Since the ®ltrations (F W
t ) and

(F t) coincide up to sets of measure zero, it follows that all right continuous square

integrable (F t) martingales can be expressed as stochastic integrals with respect to W. Since

W itself is obtained from Z with an integral transform, one could expect that all the above-

mentioned martingales could also be represented as suitably de®ned stochastic integrals with

respect to Z. It seems, however, that it is still not clear how the theory of stochastic

integration with respect to non-semimartingales should be built.

4. The Girsanov formula

Denote by E (M) the stochastic exponent of M:

E t(M) �: exp(M t ÿ 1
2
hM , Mi t):

By a standard result of martingale theory, E t(M) is a martingale with expectation 1. Let us

restrict our considerations to a ®nite time interval [0, T ]. For a 2 R, let Pa be the probability

on (Ù, F T , P) de®ned by the relation

dPa

dP

� �
F T

�: E T (aM):

(It is easy to see that, if the measure Pa can be extended to the ó-algebra F 1, this extension

is singular with respect to P.)

In this section we prove the Girsanov-type result that E T (aM) is in fact the likelihood

ratio between the following two hypotheses.

H0. With respect to the measure P the process X is a fractional Brownian motion with index

H, i.e. X t � Z t.

Ha. With respect to the measure Pa the process X is a fractional Brownian motion with

constant drift a, i.e. X t � Z t � at.
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Theorem 4.1. With respect to the measure Pa, the process Z is a fractional Brownian motion

with drift a, i.e. the distribution of Z with respect to Pa is the same as the distribution of

Z t � at with respect to P � P0.

Proof. It is suf®cient to prove that the ®nite-dimensional distributions of Z with respect to the

measure Pa are those of a fractional Brownian motion with a drift a.

So ®x ti 2 [0, T ], i � 1, . . . , n, and put ô t � (t1, . . . , tn). We have to show that

(X t1
, . . . , X t n

) �Pa
N (aô, Ó), (4:1)

where Ó �: (cov0 (Z ti
, Z t j

))i, j�1,... , n.

Pick á t � (á1, . . . , án) and note that

Ea exp
Xn

i�1

ái Z ti

 !
� E0 exp

Xn

i�1

ái Z ti
� aM T ÿ a2

2
hM , MiT

 !
:

With respect to the measure P0 the random variable U �: Pn
i�1ái Zii

� aM T is a Gaussian

random variable with mean E0U � 0 and variance

E0U 2 � E0(aM T )2 � E0

Xn

i�1

ái Z ti

 !2

�2
Xn

i�1

cov0(aM T , ái Z ti
):

Now, by Proposition 3.1,

cov0(aM T , ái Z ti
) � áia cov0(M ti

, Z ti
) � ái ati:

Hence

E0U 2 � a2hM , MiT � á tÓá� 2
Xn

i�1

ái ati

and, since U is Gaussian,

E0 exp(U ) � exp
a2hM , MiT � 2aá tô� á tÓá

2

� �
:

Thus we have shown that

Ea exp
Xn

i�1

ái Z ti

 !
� exp aá tô� á tÓá

2

� �
,

i.e. under the measure Pa the ®nite-dimensional distribution of the vector (Z t1
, . . . , Z t n

) has

a multivariate normal distribution with mean aô and covariance that of fractional Brownian

motion. u
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5. Applications

5.1. Maximum-likelihood estimation of the drift

Consider again the P-martingale M and de®ne a measure Pa by

dPa �: E (aM) dP0:

It is readily found by differentiating E (aM) with respect to a that the maximum-likelihood

estimator âT , based on observation of the process on an interval [0, T ], is given by the

formula

âT � M T

hM , MiT :

The basic properties of this estimator are given in the next theorem.

Theorem 5.1. The maximum-likelihood estimator ât is unbiased and normally distributed:

ât �d(Pa)
N a,

1

hM , Mi t

� �
� N a,

1

c2
2 t2ÿ2 H

� �
:

It is also consistent; for all a 2 R,

lim
t!1â t �Paÿa:s:

a:

Moreover, we have the following law of the iterated logarithm:

lim sup
t

A
1=2
t jâ t ÿ aj

(2 log log At)1=2
� 1 Pa ÿ a:s:,

where A �: hM , Mi.

Proof. It is well known that the so-called local characteristics of the P0 martingale M with

respect to the measure Pa are (ahM , Mi, hM , Mi, 0) (see, for example, Jacod and Shiryaev

(1987, Theorem III.3.24)). This means that the process M ÿ ahM , Mi is a Pa martingale.

The consistency of â is now almost obvious:

â t ÿ a � M t ÿ ahM , Mi t
hM , Mi t ,

where the process M ÿ ahM , Mi is Pa martingale; so the consistency follows from the

strong law of large numbers for martingales (see, for example, Liptser and Shiryaev (1986,

Theorem 2.6.10)). Finally, since the deviation âÿ a is obtained from a continuous Gaussian

martingale, the last assertion follows from Corollary 1.1.12 of Revuz and Yor (1991). u

An obvious choice for an estimator of the drift would of course be the mean ZT=T

which is an unbiased estimator with variance t2 Hÿ2. Thus, the variances of these two

unbiased estimators differ by the constant multiplier 1=c2
2. Now, the function H 7! 1=c2(H)

has an interesting shape (Figure 1). For H > 1
2
, 1=c2(H) is very close to one, so that the
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maximum-likelihood estimator gives only negligible improvement over the simple mean. On

the other hand, 1=c2(H) is much less than one for small H, and using the maximum-

likelihood estimator can give a clear advantage. The corresponding fact has been observed

in a more general time series context by Samarov and Taqqu (1988).

5.2. Representation of Z through a Brownian motion on a ®nite interval

As already noted in Section 3, the process

W t � 2H

c H

� t

0

s Hÿ1=2 dM s

is a standard Brownian motion. We also have the inverse relationship

M t � c H

2H

� t

0

s1=2ÿH dWs: (5:1)

Thus, the results of Section 3 give a sequence of simple representation formulae which allow

us to proceed from process to process in the order W ! M ! Y ! Z. It is now

straightforward to combine these steps into a single integral transformation which brings W

to Z.

Theorem 5.2. The process Z has the following integral representation in terms of W:

Z t �
� t

0

z(t, s) dWs,

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

H

Figure 1. The number 1=c2 as a function of H.
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where

z(t, s) � c H

t

s

� �Hÿ1=2

(t ÿ s) Hÿ1=2 ÿ (H ÿ 1
2
)s1=2ÿH

� t

s

u Hÿ3=2(uÿ s) Hÿ1=2 du

" #
:

For H . 1
2

we have also the slightly simpler expression

z(t, s) � (H ÿ 1
2
)c H s1=2ÿH

� t

s

u Hÿ1=2(uÿ s) Hÿ3=2 du

� c H (t ÿ s) Hÿ1=2
2 F1

1
2
ÿ H , H ÿ 1

2
, H � 1

2
, 1ÿ t

s

� �
,

where 2 F1 is the Gauss hypergeometric function. Moreover, we have the prediction

formula

ẐT j t �: E[ZT jF t] �
� t

0

z(T , s) dWs: (5:2)

Proof. Denote again á � H ÿ 1
2
. Since Ys � c H

� s

0
uÿá(sÿ u)á dWu, we have

Z t �
� t

0

sá dYs

� táYt ÿ á

� t

0

sáÿ1Ys ds

� c H tá
� t

0

uÿá(t ÿ u)á dWu ÿ c Há

� t

0

ds sáÿ1

� s

0

dWu uÿá(sÿ u)á:

The assertion now follows by changing the order of integration. The alternative form for

H . 1
2

is obtained by integrating by parts. Finally, the prediction formula (5.2) is an

immediate consequence of the fact that its right-hand side is an F -martingale. u

Remark 5.1. The better known representation (1.1) can be obtained from Theorem 5.2 as a

limit result.

5.3. The prediction formula for fractional Brownian motion

Gripenberg and Norros (1996) showed (with slightly different notation; c.f. Molchan (1969))

the following theorem.

Theorem 5.3. For H . 1
2
, we have the prediction formula

E[ZT jZs, s 2 [0, t]] � Z t �
� t

0

ØT (t, s) dZs,
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where the weight function ØT (t, s) has the expression

ØT (t, s) � sinfð(H ÿ 1
2
)g

ð
sÿH�1=2(t ÿ s)ÿH�1=2

�T

t

u Hÿ1=2(uÿ t) Hÿ1=2

uÿ s
du:

The theory developed in this paper offers a new way to derive this result. We only have

to transform the prediction formula (5.2) into an integral with respect to Z. To transform

the result to the form given above requires, however, a rather long computation, and we

skip the details here.

5.4. Approximation of Z with a simple diffusion

By Proposition 3.1, the correlation coef®cient between Z t and M t is, for any t > 0,

corr(Z t, M t) � t

t H c2 t1ÿH
� 1

c2

:

Now, the number 1=c2 � 1=c2(H) is very close to one when H 2 (1
2
, 1), with equality at the

endpoints and a minimum value of about 0.99. Thus, one can use the diffusion process

X t �: t2 Hÿ1

c2

M t

as an approximation to Z for some practical purposes.
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