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Estimating the mean in a nonparametric regression on a two-dimensional regular grid of design points

is asymptotically equivalent to estimating the drift of a continuous Gaussian process on the unit

square. In particular, we provide a construction of a Brownian sheet process with a drift that is almost

the mean function in the nonparametric regression. This can be used to apply estimation or testing

procedures from the continuous process to the regression experiment as in Le Cam’s theory of

equivalent experiments. Our result is motivated by first looking at the amount of information lost in

binning the data in a density estimation problem.
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1. Introduction

The purpose of this paper is to establish a connection between a nonparametric regression

on a two-dimensional set of design points and an appropriate continuous Gaussian

approximation. This connection provides a bound on Le Cam’s deficiency distance between

the experiments and allows inference in the easier problem (the continuous case) to be

applied to the practical problem (observations on a finite grid of points). The motivation for

the form of this connection comes from a similar result: approximating the problem of

estimating an unknown density from n independent observations by the experiment that

observes only those observations aggregated into m bins.

Brown and Low (1996) showed that the nonparametric regression experiment

Yi ¼ g(xi) þ ��i, i ¼ 1, . . . , n, (1)

with �i independent standard normals, xi ¼ i=(nþ 1), � a known value, and g an unknown

smooth function on [0, 1], is asymptotically equivalent to an observation of a continuous

Gaussian process with an unknown drift function

dYt ¼ g(t) dt þ �ffiffiffi
n

p dWt, (2)

where Wt is a standard Brownian motion on [0, 1] whenever the class of possible mean

functions g 2 G is a subset of a Lipschitz (Æ) space with Æ . 1=2.

This result does not immediately extend to a regression on a two-dimensional space. The

higher-dimensional result requires that the class of drift functions be smoother; in particular,
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they must be differentiable, Æ . 1. We propose a construction that can take advantage of

this added smoothness.

The idea of developing asymptotic results for nonparametric regression by appealing to a

continuous Gaussian processes approximation is widely used; see, for example, Donoho

et al. (1995) or Efromovich (1999, Chapter 7). Donoho and Johnstone (1999) described a

method for constructing wavelet coefficients from the nonparametric regression as if the

original process was continuous. They showed that the squared-error loss was not

significantly affected by the approximation. Our construction leads to the same statistical

estimators. Brown et al. (2002) extended their original result to include regression with a

random design, but our result assumes a fixed grid of equally spaced design points. Grama

and Nussbaum (1998) established equivalence for regression problems with non-normal

errors.

Nussbaum (1996) showed that observing n independent observations from an unknown

density is equivalent to a Brownian motion plus drift. Carter (2002) and Brown et al.

(2004) constructed a connection between these experiments by comparing their behaviour

on a finite partition of the unit interval. It is also then necessary to bound the error in

‘discretizing’ the continuous observations. The process in (2) is approximated by its

increments Y ( j=m) � Y (( j� 1)=m), and the independent observations are approximated by

the number falling in each of m equal subintervals. These two problems are related and the

solution of the binning problem will motivate the approach used to go from the continuous

to the finite-dimensional Gaussian process. The technical bounds in Section 4 can

essentially be used in both situations.

1.1. Le Cam’s deficiency distance

The constructions described in Sections 2 and 3 will bound the deficiency distance between

the experiments. This statistical distance compares the relevant information about the

parameter that is available in the two sets of distributions.

First, the total variation distance between two distributions is

kP� Qk ¼ sup
A2A

P(A) � Q(A), (3)

where P and Q are both measures on the � -field A. This distance also bounds the difference

in the expectations of bounded functions jgj , 1,

sup
f g:j gj<1g

jP(g) � Q(g)j < 2kP� Qk:

However, this distance is equal to 1 if P and Q do not have common support.

A statistical experiment P consists of a set of distributions fPŁ : Ł 2 ¨g indexed by a

parameter set ¨ for data X 2 X with a � -field A. A second experiment Q ¼ fQŁ: Ł 2 ¨g
has the same parameter set but a different sample space (Y, B). To compare these two

experiments, we need a way to connect the sample space Y to X . A randomization of the

data X can be described by the conditional distribution Kx on (Y, B) given X ¼ x. Let

PŁKx represent the marginal distribution on (Y, B). The randomization does not depend on
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Ł so PŁKx cannot contain any additional information about Ł. If kPŁKx � QŁk is always

small, then Q does not have much more information about Ł than P.

Le Cam’s deficiency (Le Cam 1986, pp. 18–20) is

�(P, Q) ¼ inf
K

sup
Ł2¨

kPŁK � QŁk,

where K is a ‘transition’ from the linear space including probability distributions PŁ to a

space that includes the measures QŁ. For experiments that depend on an increasing sample

size n, if �(Pn, Qn) ! 0 then the sequence of experiments Pn is asymptotically as

informative as Qn. Furthermore, if max[�(Pn, Qn), �(Qn, Pn)] ! 0 then Pn and Qn are

termed asymptotically equivalent.

For our purposes, it is not necessary to think in terms of these general transitions. We

will bound the deficiency using a transformation of the observations X from P that may

also include an external randomization T (X , W ). The random variable W represents the

external randomization that has the same distribution for all Ł. Then Kx is the conditional

distribution of T (X , W ) given X ¼ x. Thus,

�(P, Q) < sup
Ł2¨

kPŁKx � QŁk

¼ sup
Ł2¨

sup
A2A

jPŁfT (X , W ) 2 Ag � QŁfY 2 Agj:

The usefulness of a bound of this type is in its flexibility. Suppose that

supŁ2¨ kPŁKx � QŁk < �. Then for any bounded loss function jL(a, Ł)j < 1, any decision

procedure d(Y ) in the experiment Q which has risk R(d(Y ), Ł) ¼ QŁL(d(Y ), Ł) generates a

randomized decision procedure d[T (X , W )] such that

R(d[T (X , W )], Ł) ¼ PŁL(d[T (X , W )], Ł) < QŁL(d(Y ), Ł) þ 2�:

In other words, the T transformation maps good decision procedures for Q to good decision

procedures for the P experiment.

1.2. Main results

The parameter sets in these nonparametric experiments are Lipschitz classes of

differentiable functions L(Æ, M) for 1 , Æ < 2 where f 2 L(Æ, M) implies that

j f (x)j < M , j f 9(x)j < M , and

j f 9(x) � f 9(y)j < M jx� yjÆ�1 (4)

for every x and y in the sample space.

For g: [0, 1]2 7! R, the analogous conditions hold with the Euclidean norm in R2

replacing absolute values. The partial derivatives exist and the vector of partials, g9(x), is

bounded and smooth.
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L(Æ, M) ¼ g: sup
x2[0,1]2

jg(x)j < M , sup
x2[0,1]2

jg9(x)j < M ,

(

sup
x,y2[0,1]2

jg9(x) � g9(y)j < M jx � yjÆ�1

)
:

Theorem 1. For n equally spaced design points x�i, j in [0, 1]2,

x�i, j ¼
2i� 1

2
ffiffiffi
n

p ,
2 j� 1

2
ffiffiffi
n

p
� �

,

let Q g be the distribution of the

Yi, j ¼ g(x�i, j) þ ��i, j

where � is known, the �i, j are independent standard normals, and g is an unknown function

from [0, 1]2 to R that is in L(Æ, M). Let Q g be the distribution of the Gaussian process

Y (t) ¼
ð t1

0

ð t2
0

g(x) dx2 dx1 þ
�ffiffiffi
n

p W (t), (5)

where W (t) is a Brownian sheet on the unit square. Then there exists a randomization K y

such that

sup
g2L(Æ,M)

kQ gK y �Q gk <
6Mffiffiffiffiffiffiffiffiffiffiffi
2�� 2

p n1=2�Æ=2 þ n�1=4
� �

:

For Æ . 1, this implies that the error made by performing the inference in the continuous

experiment is asymptotically negligible. This is a reasonably sharp result in that Brown and

Zhang (1998) showed that the experiments are not equivalent for Æ ¼ 1. Theorem 1 is proved

in Section 3.

The experiments are asymptotically equivalent because there is a simple transformation in

the other direction, taking the increments of the Gaussian process, that produces a smaller

error than in Theorem 1. Details are given in Section 4.3.

It will be instructive to first show the following result about density estimation

experiments. Let P f ¼ Pn
f be the distribution of n independent observations from Pf , a

distribution on the unit interval with density f . Then let P f be the distribution that results

from binning the n observations into m equal-length subintervals. The new observations

have an m-dimensional multinomial distribution.

Theorem 2. For a density f 2 F (Æ, M , �) such that F (Æ, M , �) � L(Æ, M) and f (x) . � for
every x in the sample space, there exists a randomization Kx such that

sup
f 2F (Æ,M ,�)

kP f Kx � P f k < 3M��1=2n1=2 m�Æ þ m�3=2
� �

:

The implication is that the experiments are asymptotically equivalent as long as the number
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of bins is greater than n�1=(2Æ) for Æ , 3=2. The transformation in the other direction just

bins the continuous observations to produce exactly P f from P f . Theorem 2 is proved in

Section 2.

Remark. The constants 6=
ffiffiffiffiffiffi
2�

p
and 3 in these inequalities are not meant to be sharp, but they

indicate that the statements are true for a reasonable size constant.

2. Binning in density estimation

Let x�j ¼ (2 j� 1)=2m denote the midpoint of the jth interval. For the n independent

observations X1, . . . , X n with density f , let X�i ¼ x�j when X i is in the subinterval

[( j� 1)=m, j=m]. The X�1 , X�2 , . . . , X�n are independent observations from a discrete

probability distribution PŁ with probabilities

Ł j ¼
ð j=m

( j�1)=m

f (x) dx, j ¼ 1, . . . , m, (6)

on the points x�j .

The rounding off of observations onto a regular grid has computational advantages; see

Silverman (1982) and Fan and Marron (1994). Hall and Wand (1996) demonstrated that

kernel density estimators based on discretized versions of the data perform nearly as well as

on the original data. They also discussed ‘common linear binning’ which is related to our

method, but differs in that their triangular kernel is part of the binning procedure while we

use the kernel to smooth data that have already been binned.

A sufficient statistic for estimating the Ł j is the number of observations at each x�j . Let

X 1, . . . , X m be the counts at each x�j . The conditional distribution of the X�i given the X i

is just the probability of each random ordering of n objects of m types. This conditional

distribution does not depend on the Ł j, and the necessary randomization takes, for each j,

X j copies of x�j and then randomly assigns an index i to each of the n observations.

Therefore, the first part of the randomization Kx chooses a random permutation to produce

n independent observations from the discrete PŁ.

Theorem 2 can then be established by constructing a randomization from the X�i to the

X i. Working on each coordinate separately, the randomization chooses a new X i to

correspond to each X�i . By construction, if X�i ¼ x�j then X i must have been in

[( j� 1)=m, j=m], but we do not know anything else about X i. Thus it seems appropriate to

have Kx uniformly distributed over this subinterval. This results in a continuous marginal

distribution that has a piecewise constant density (equal to mŁ j on the jth subinterval). A

better approximation to the original distribution of f can be achieved using a Kx that is

more spread, resulting a smoother density (see Section 4).

Let K j be the conditional distribution of the new X i given that X�i ¼ x�j . The marginal

distribution PŁKx is a mixture of m distributions K1, . . . , Km with weights Ł j such that it

has density
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d(PŁKx)

dº
(x) ¼

Xm
j¼1

Ł j

dK j

dº
(x) � f̂f (x),

where º is uniform on [0, 1]. Repeating this randomization on the n independent observations

defines Kx such that P f Kx ¼ Pn

f̂f
. Therefore, the result of the randomization is n independent

observations from a distribution with density f̂f .

The final step is to bound the total variation distance between n independent observations

from f and f̂f , respectively. For product experiments it is worthwhile to use a Hellinger

distance bound on the total variation distance

kP�Qk <
ffiffiffi
2

p
H(P, Q) ¼

ffiffiffi
2

p 1

2

ð ffiffiffiffiffiffi
dP

p
�

ffiffiffiffiffiffiffi
dQ

p� �2
� �1=2

,

because the squared Hellinger distance between product measures is bounded by the sum of

the squared marginal distances,

H2(Pn

f̂f
, Pn

f ) < nH2(P
f̂f
, Pf )

(see, for example, Strasser 1985, pp. 11–12).

If the densities are bounded away from zero, f > E . 0, then the Hellinger distance can

be bounded by the L2 distance between the densities,

1

2

ð
f 1=2 � f̂f 1=2
� �2

¼
ð

( f � f̂f )2

2( f 1=2 þ f̂f 1=2)2
<

1

2E
k f � f̂f k2

2:

In Section 4.1 it is shown that for f 2 L(Æ, M),

k f̂f � f k2
2 < M2m�3 þ 9M2m�2Æ: (7)

Therefore,

sup
f 2F (Æ,M ,E)

kPn

f̂f
� Pn

f k < 3ME�1=2n1=2(m�Æ þ m�3=2):

and Theorem 2 is established.

3. Nonparametric regression

The nonparametric regression experiment in (1) has n observations that can be thought

of as approximating the increments of the Brownian motion process in (2),

Yi � n[Y (i=n) � Y ([i� 1]=n)]. Brown and Low (1996) showed that for g 2 L(Æ, M),

Æ . 1=2, these experiments are equivalent. Using the Yi as approximations to the

increments, a continuous Gaussian process can be constructed by interpolating independent

Brownian bridges Bi(t) on [(i� 1)=n, i=n] between the points Y (i=n),

Yg(t) ¼
ð t

0

Xn
i¼1

Yi1((i�1)=n,i=n] dt þ �
1

n

Xn
i¼1

Bi(t):
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This process has mean g(t) ¼ g(xi) for (i� 1)=m < t , i=m, and for 0 , s , t , 1,

cov(Yg(t), Yg(s)) ¼ � 2s=n. This result can be extended to the unit square if differentiable

drift functions can be properly exploited, much as in the density estimation case.

3.1. The construction

The constructed process is a function of the Yi and some independent continuous Gaussian

processes on [0, 1]2. These centred processes are determined by their covariance functions

(Dudley 2002, Theorem 12.1.3). The Brownian sheet W (t) is a centred Gaussian process

with covariance function C(t, s) ¼ (s1 ^ t1)(s2 ^ t2). We also need Ki-Brownian sheets WKi

where the Ki are probability measures on [0, 1]2. Let ki be the cumulative distribution

function (cdf) for the measure Ki. The covariance function for WKi is

cov(WKi(s), WKi(t)) ¼ ki(s ^ t), s, t 2 [0, 1]2,

where s ^ t ¼ (s1 ^ t1), (s2 ^ t2)ð Þ. Furthermore, a Ki-Brownian bridge BKi can be

constructed via WKi by

BKi(t) ¼ WKi(t) � ki(t)WKi(1, 1):

The Ki-Brownian bridge has mean zero and covariance

cov(BKi(s), BKi(t)) ¼ ki(s ^ t) � ki(s)ki(t): (8)

Hence, var(BKi(t)) ¼ ki(t)(1 � ki(t)).
The construction of the Gaussian process Y�(t) from the Yi first generates n independent

processes BK1, . . . , BKn, and then

Y�(t) ¼ 1

n

Xn
i¼1

[Yiki(t) þ � BKi(t)]:

The mean of this process is n�1
P

g(x�i )ki(t), and the covariance is

cov(Y�(t), Y�(s)) ¼ 1

n2

Xn
i¼1

� 2ki(t)ki(s) þ � 2(ki(s ^ t) � ki(s)ki(t))

¼ � 2

n

1

n

Xn
i¼1

ki(s ^ t)

 !
:

Assuming an additional condition on the Ki measures,

1

n

Xn
i¼1

ki(t) ¼ t1 t2, (9)

fixes the covariance of Y�g to be the same as Yg. The condition in (9) seems reasonable as it

implies that if all the Yi are the same then the resulting drift function is constant over the

whole square. The kernels described in Section 4.2 meet this criterion, as do uniform

distributions over disjoint subsets.
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Therefore, Y� actually has the same distribution as

Y ĝg(t) ¼
ð t1

0

ð t2
0

ĝg(x) dx þ �ffiffiffi
n

p W (t),

where

ĝg(x) ¼ 1

n

Xn
i¼1

g(x�i )
dKi

dº
(x):

This should be close in distribution to the Yg if g and ĝg are close.

3.2. A total variation distance bound

Shifting two distributions by the same amount will not affect the total variation distance

between them. Thus, without loss of generality, we will find the total variation distance

between a process Y0(t) with mean 0 and variance � 2=n, and a process Y�(t) with drift �(t)

and the same variance. Let Q0 and Q� be the distributions of Y0 and Y�, respectively. The

set of sample paths that achieves the supremum in (3) is the set where

dQ�

dQ0

¼ exp
n

� 2

ð
�(t) dY (t) � 1

2
k�k2

2

� �� �
. 1:

Let A be this set of continuous sample paths such that
Ð
�(t) dY (t) . 1

2
k�k2

2. Under Q0, the

integral
Ð
�(t) dY (t) has a normal distribution with mean 0 and variance � 2k�k2

2=n. Under Q�,

the integral has mean k�k2
2 and the same variance. Therefore the total variation distance is

kQ0 �Q�k ¼ jQ0A�Q�Aj ¼ 1 � 2�(�˜=2), (10)

where ˜ ¼ � �1n1=2k�k2. The expression in (10) for the total variation distance is concave for

positive ˜, so a simple expansion gives

kQ0 �Q�k <
1ffiffiffiffiffiffi
2�

p ˜:

In the case of Yg and Y ĝg, the bound again depends essentially on the L2 distance

between the means,

kQ g �Q ĝgk <
1ffiffiffiffiffiffi
2�

p
ffiffiffi
n

p

�
kg � ĝgk2:

A bound on the L2 distance is needed, in Section 4.2 we will show that

sup
g2L(Æ,M)

kg � ĝgk2 < 6M(n�Æ=2 þ n�3=4): (11)

Therefore,

sup
g2L(Æ,M)

kQ gK y �Q gk <
6Mffiffiffiffiffiffiffiffiffiffiffi
2�� 2

p (n1=2�Æ=2 þ n�1=4),

which proves Theorem 1.
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4. Bounding the L2 distances

The K j are probability measures with densities equal to linear interpolating functions:

dK j

dº
:

�

����� ��� �����

where x�j�1 ¼ x�j � 1=m and x�jþ1 ¼ x�j þ 1=m.

For j ¼ 1, we will need a different conditional density:

dK1

dº
:

�

� ��
��

��
��

to avoid getting observations outside [0, 1]. The analogous measure will be used for j ¼ m to

avoid results greater than 1. Equivalently, we could use the triangular measures everywhere

and then reflect any observations outside the interval back in.

The average

1

m

Xm
j¼1

a j

dK j

dº
(x)

is a piecewise linear function that is equal to a j at the midpoints x�j .

4.1. One dimension

For the set of functions f 2 L(Æ, M) with continuous first derivatives ( Æ . 1), the error in

a linear Taylor expansion is

j f (t þ �) � f (t) � � f 9(t)jh ¼ j f (t) þ � f 9(t�) � f (t) � � f 9(t)j < M�Æ (12)

from (4). The existence of t� such that jt� � tj < � and f (t þ �) ¼ f (t) þ � f 9(t�) follows

from the mean value theorem.

Any x between (2m)�1 and 1 � (2m)�1 lies between two of the grid points x�j and x�jþ1.

The difference between f and f̂f at such an x is

j f (x) � f̂f (x)j < j f (x�j ) � f̂f (x�j )j þ jx� x�j j j f 9(x�j ) � f̂f 9(x�j )j þ jE1j þ jE2j, (13)

where E1 and E2 are the errors in expansions around x�j of f and f̂f , respectively. By (12),

jE1j < Mm�Æ.

Let us bound the first term on the right in (13). The average over any interval

[(i� 1)=m, i=m] can be approximated using an expansion around the midpoint x�j ,
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f̂f (x�j ) ¼ m

ð i=m
(i�1)=m

f (x) dx

¼ m

ð i=m
(i�1)=m

f (x�j ) þ (x� x�j ) f 9(x�j ) þ E3 dx

¼ f (x�j ) þ E4

because
Ð i=m

(i�1)=m(x� x�j ) ¼ 0. The bound in (12) implies that jE3j < Mm�Æ and thus

jE4j < Mm�Æ.

The second term on the right in (13) is problematic because the derivative f̂f 9(x�j ) does

not exist. However, if we are only interested in x�j , x , x�jþ1 then defining

f̂f 9(x�j ) ¼ m( f̂f (x�j ) � f̂f (x�jþ1)) makes jE2j � 0. Making two appeals to the mean value

theorem,

f̂f 9(x�j ) ¼ m f̂f (x�j ) � f̂f (x�jþ1)
� �

¼ m2

ð i=m
(i�1)=m

f (x) � f xþ m�1
� 	

dx

¼ m2

ð i=m
(i�1)=m

m�1 f 9(�x) dx

¼ f 9(� j),

where �x and � j are arbitrary points in the interval [x�j�1, x�jþ1] that make the statements true.

Therefore, the second term is

jx� x�j j




 f 9(x�j ) � f̂f 9(x�j )





 < 1

m





 f 9(x�j ) � f 9(� j)





 < Mm�Æ,

and each of the terms in (13) is bounded:

j f (x) � f̂f (x)j < jE4j þ Mm�Æ þ jE1j þ 0 < 3Mm�Æ: (14)

This argument does not work at the edges. If x , (2m)�1 then f̂f (x) ¼ f̂f ([2m]�1) and

j f (x) � f̂f (x)j < j f̂f ([2m]�1) � f ([2m]�1)j þ jx� x�j j j f 9(x�j )j þ jE1j

< 2Mm�Æ þ 1

2
Mm�1 (15)

because j f 9(x�j )j , M by assumption. The same argument works for x . 1 � (2m)�1.

Squaring the pointwise bounds in (14) and (15) and then integrating,
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k f̂f � f k2
2 ¼

ð1=(2m)

0

( f̂f � f )2 þ
ð1�1=(2m)

1=(2m)

( f̂f � f )2 þ
ð1

1�1=(2m)

( f̂f � f )2

< m�1M2m�2 þ 9M2m�2Æ: (16)

Therefore, the bound needed in (7) is established.

4.2. Two dimensions

For regression mean functions g(x) on [0, 1]2, we will use kernels that are products of the

one-dimensional kernels above. The cdf of the kernel Ki, j is ki, j(x) ¼ ki(x1)k j(x2), where ki
and k j are the cdfs of Ki and K j respectively.

In R2, the differentiability of g gives

g(x) ¼ g(x�i, j) þ (x � x�i, j)T g9(x�i, j) þ E1, (17)

and the Lipschitz condition implies that the error is bounded by

jE1j < jx � x�i, jkg9(x�i, j) � g9(�)j < M jx � x�i, jjÆ (18)

as in the one-dimensional case.

The mean value of the constructed process ĝg is no longer linear, but the quadratic part is

small. Consider points x in the interior of the square formed by the four midpoints

x�i, j, x�iþ1, j, x�i, jþ1, and x�iþ1, jþ1. We have

ĝg(x) ¼ g(x�i, j) þ
ffiffiffi
n

p
(x � x�i, j)T g(x�iþ1, j) � g(x�i, j)

g(x�i, jþ1) � g(x�i, j)

� �
þ E2: (19)

The differences can be written as

g(x�iþ1, j) � g(x�i, j) ¼
1ffiffiffi
n

p 0

� �
g9(x�i, j) þ E3,

g(x�i, jþ1) � g(x�i, j) ¼ 0
1ffiffiffi
n

p
� �

g9(x�i, j) þ E4:

The bound in (18) means the errors jE3j and jE4j are less than Mn�Æ=2.

The error term E2 in (19) is the quadratic component of the mean function. Let

(�1, �2) ¼ (x � x�i, j)T; then

E2 ¼ n�1�2[g(x�i, j) � g(x�iþ1, j) � g(x�i, jþ1) þ g(x�i, jþ1)]:

The size of jE2j is bounded using nj�1�2j < 1 and

jg(x�i, j) � g(x�iþ1, j) � g(x�i, jþ1) þ g(x�iþ1, jþ1)j < n�1=2jg9(x�i, jþ1) � g9(x�i, j)j þ jE3j þ jE5j,

where E5 is the error in approximating the difference g(x�iþ1, jþ1) � g(x�i, jþ1) by the derivative

at x�i, jþ1. Thus, jE5j < Mn�Æ=2 and jE2j < 3Mn�Æ=2.

Putting together (17) and (19),
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jg(x) � ĝg(x)j <




g(x�i, j) þ (x � x�i, j)T g9(x�i, j) þ E1

� [g(x�i, j) þ (x � x�i, j)T g9(x�i, j) þ n1=2�1E3 þ n1=2�2E4 þ E2]





 < 6Mn�Æ=2

for x not within 1
2
n�1=2 of the edge of the square. The contribution from the centre of the

square to kg � ĝgk2
2 is therefore less than 36M2n�Æ.

To see what happens near the edges of the square, consider a point x where the first

coordinate is less than 1
2
n�1=2; then the ĝg function is exactly

ĝg(x) ¼ g(x�i, j) þ
ffiffiffi
n

p
x � x�i, j
� �T g(x�iþ1, j) � g(x�i, j)

0

� �
:

Thus,

jg(x) � ĝg(x)j < jE1j þ jE3j þ
M

2
n�1=2 <

1

2
Mn�1=2 þ 3

2
Mn�Æ=2,

where 1
2
Mn�1=2 bounds the contribution from the second coordinate of g9(x) because

jg9(x)j < M . An analogous bound can be put on the errors along the other sides.

Finally, if x1 , 1
2
n�1=2 and x2 , 1

2
n�1=2, then ĝg ¼ g(x�i, j) and thus jg(x) � g(x�i, j)j

< M(2n)�1=2. The same bound applies in the other three corners.

The total contribution to kg � ĝgk2
2 from all the area near the edges is less than

M2n�3=2=2 because the total area is less than 2n�1=2.

Therefore,

kg � ĝgk2
2 <

1

2
M2n�3=2 þ 36M2n�Æ,

which establishes (11).

4.3. The other direction

Asymptotic equivalence also requires a transformation in the other direction: a way to

generate the n regression observations from the continuous Gaussian process. The

transformation uses the increments of the process over each square,

Y�i, j ¼ n Y
iffiffiffi
n

p ,
jffiffiffi
n

p
� �

� Y
i� 1ffiffiffi

n
p ,

jffiffiffi
n

p
� �

� Y
iffiffiffi
n

p ,
j� 1ffiffiffi

n
p

� �
þ Y

i� 1ffiffiffi
n

p ,
j� 1ffiffiffi

n
p

� �� �
:

Let I i, j ¼ f(x1, x2): (i� 1)=
ffiffiffi
n

p
, x1 < i=

ffiffiffi
n

p
, ( j� 1)=

ffiffiffi
n

p
, x2 < j=

ffiffiffi
n

p g. Then the incre-

ments Y�i, j are independent with variance � and have mean n
Ð Ð

I i, j g dx.

The only error then is the difference between g(x�i, j) and this average:
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g(x�i, j) � n

ðð
I i, j

g(x) dx ¼ n

ðð
I i, j

g(x�i, j) � g(x)dx

¼ n

ðð
I i, j

(x � x�i, j)T g9(x�i, j) þ E1 dx

¼ n

ðð
I i, j

E1 dx:

Therefore, by (18), (g(x�i, j) � n
Ð Ð

I i, j g(x) dx)2 < Mn�Æ. The total variation distance between

the joint distributions of all n observations is therefore less than (
ffiffiffiffiffiffi
2�

p
� )�1Mn�Æ=2þ1=2.

This error is less than that made in the other direction and therefore whenever the bound

in Theorem 1 goes to 0, the experiments are asymptotically equivalent.

4.4. Higher dimensions

The same technique could provide a solution in the three-dimensional case if there is an

added restriction to the class of parameter functions in order to lessen the edge effects.

The kernel would still be a product of the one-dimensional kernels in each of the

dimensions K(x) ¼ Ki(x1)K j(x2)Kk(x3). The errors in the inner part of the cube are of

order O(n�Æ=3).

The points near the edge of the cube, however, would make an error of order n�1=3 in at

least one of the three coordinates. This contributes a term of order O(n�1) to the squared

difference between g and ĝg. The result is that the total variation distance between the

Gaussian processes will not converge to 0. It is possible to impose conditions on the drift

functions to minimize these edge effects. For example, imposing a periodic boundary

condition and adjusting the edge kernels to be periodic makes the error O(n�Æ=3)

everywhere. This is sufficient for asymptotic equivalence if Æ . 3=2.

Higher dimensions would require Æ . 2 (see Brown and Zhang 1998), and our methods

cannot take advantage of this added smoothness. Higher-order interpolating kernels are

negative in places, and the requirement that the kernels have a positive density function is

critical in the construction.

Using a Fourier series expansion, Rohde (2004) was able to take advantage of arbitrary

amounts of smoothness in the case of periodic functions in the nonparametric regression

problem, and it is likely those techniques could be extended to higher-dimensional

problems.
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