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A coding of hierarchical structure in ®nite directed tree graphs was introduced by Robert Horton in

1945; after a modi®cation by Strahler in 1952, this has become a standard river network code de®ned

as follows. Edges along a path adjoining a source (valence 1 vertex) to a junction (valence 3 or higher

vertex) are coded as order 1. Such a path of order 1 edges is also referred to as an order 1 stream.

Having de®ned edges and streams of order i, one now recursively de®nes edges and streams of order

i� 1 by the rule that the `order 1' streams of the tree obtained by pruning the streams of order i (and

lower) are assigned order i� 1. This code has helped to identify a number of naturally occurring

patterns in river network structure as well as in other naturally occurring dendritic structures. Let

Ti, j(s) denote the number of order j , i junctions in a stream s of order i and let Ti, j denote the

sample average over all such streams s of order i. Empirically it has been observed that Ti, j is,

allowing small-sample ¯uctuations, approximately a function of iÿ j for large classes of river

networks. A calculation of Ronald Shreve published in 1969 revealed that ETi, j � 1
2
2iÿ j for the critical

binary Galton±Watson distribution. This is our starting point. In particular, we introduce a more

general notion of stochastic self-similarity and show that within a class of Galton±Watson trees both

this and the consequent mean Toeplitz property are characteristic of the critical binary offspring

distribution. In addition, we obtain interesting conditioned limit theorems corresponding to the

invariance of the critical binary branching process under a pruning dynamic in the space of ®nite

rooted trees.
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1. Introduction and statement of results

A labelled tree graph ô rooted at ö may be coded as a set of ®nite sequences of positive

integers hi1, i2, . . . , ini 2 ô such that:

(i) ö 2 ô is coded as the empty sequence;

(ii) if hi1, . . . , iki 2 ô then hi1, . . . iji 2 ô 81 < j < k;

(iii) if hi1, i2, . . . , ini 2 ô then hi1, . . . inÿ1, ji 2 ô 81 < j < in.

If hi1, . . . , ini 2 ô then hi1, . . . , inÿ1i 2 ô is referred to as the parent vertex to hi1, . . . ini. A

pair of vertices is connected by an edge (adjacent) if and only if one of them is parent to the

other. In this way edges may also be identi®ed with the (unique) non-parental or descendant
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vertex. A ghost edge is attached to the root ö to complete this identi®cation. Also, the tree is

naturally directed by the `headward growth' convention that for u, v 2 ô we write u! v if u

is the parent of v. This speci®es the graph structure of ô and makes ô a rooted connected

graph without cycles. For simplicity, we shall refer to any such graph as a tree.

Let T be the space of labelled tree graphs rooted at ö. T may be viewed as a metric

space with metric d(ô, ã) � 1=(1� supfn:ãjn � ôjng), where ôjn � fhi1, . . . , iki
2 ô : k < ng. The countable dense subset T0 of ®nite labelled tree graphs rooted at ö
makes T a Polish space. The distribution of a random tree T is a probability measure on

(T, B ), where B is the Borel ó-®eld of T. An important class of probability distributions

on T for this paper is the Galton±Watson distribution with single progenitor and offspring

distribution pk , k � 0, 1, . . . , for which the probability assigned to a closed ball B(ô, 1=N ),

ô 2 T0, N 2 f1, 2, . . .g is

P B ô,
1

N

� �� �
� GWf pkg B ô,

1

N

� �� �
�

Y
v2ôj(Nÿ1)

pl(v), (1:1)

where l(v) � #f j : hv, ji 2 ôjNg. The river network statistics considered in this paper are

based on observations of the bifurcation structure of the network. From this point of view one

may assume p1 � 0. In the case of a binary offspring distribution, p2 � p, p0 � q � 1ÿ p, we

shall write GWp in place of GWf pkg. The distribution of a critical or subcritical tree is supported

on the denumerable set T0. We shall write T 2 (T0, GW ) to denote that T is a ®nite

(subcritical or critical) random tree with Galton±Watson distribution. The condition p1 � 0

will be in place throughout without explicit further mention. The random variable L will

represent a generic offspring number distributed as P(L � j) � GWf pkg(L � j) � pj, j > 0.

Let ô be a ®nite tree. The Horton order of ô is a non-negative integer-valued function W

de®ned on the set of edges of ô as follows: If ô � ö then de®ne the order of the vertex ö
to be 1. If u is a vertex of ô 6� ö and either l(u) � 0 or l(u) � 1 and huvi 2 ô,
u 6� ö, ) v � h1, 1, . . . , 1i, then call u a source-path vertex of order W (u) � 1. While

l(u) � 1 is ruled out from randomly occurring by our condition p1 � 0, the pruning

operation leads naturally to such effects. So certain aspects of trees having vertices u such

that l(u) � 1 need to be included in our preliminary de®nitions. An order 1 stream is a

maximal path of source-path vertices or, equivalently, edges. Having de®ned edges and

streams of order i, one inductively de®nes edges and streams of order i� 1 by the rule that

the `order 1' streams of the tree obtained by pruning the streams of order i (and lower) are

assigned order i� 1; see Figure 1.1. The Horton order assigned to each vertex v of ô may

also be viewed as the Horton order of the subtree of ô rooted at v. The order of the tree

ô 2 T0, also denoted by W, is then given by W � W (ö). This code has helped to identify a

number of naturally occurring patterns in river network structure as well as in other

naturally occurring dendritic structures; see, for example, Berry and Bradley (1976),

Borchert and Slade (1981), Ershov (1958), Flajolet and Prodinger (1986).

The following is an easily implemented algorithm to compute Horton orders of the edges

and paths of an arbitrary given tree ô. For a vertex u 2 ô let eu denote the corresponding

edge; that is, eu is the edge connecting u to its parent. Recall that it is often convenient to

assign ö a ghost edge. If u has no offspring then W (eu) � 1, else
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W (eu) � ù if only one child of u has (maximal) order ù
ù� 1 if at least two children of u have (maximal) order ù,

�
(1:2)

where ù � maxv:u!vW (ev).

Remark. While the random variables de®ned above depend on the parameter ô 2 T0 as a

sample point, we follow the usual probability convention of suppressing this dependence.

Each stream s of order i is a maximal path which either consists of a single terminal

vertex of order i, or contains an initial vertex of the path (that closest to the root, with a

parent of order i� 1 or higher and at least one offspring of order i and others of lower

order) and a distinct terminal vertex (that farthest from the root, having at least two

offspring of order iÿ 1). Let Ti, j(s) denote the number of order j , i subtrees rooted at the

non-terminal vertices along a stream s in ô of order i, and let Ti, j denote the arithmetic

average of Ti, j(s)s over all such streams s of order i. Empirically it has been observed that

Ti, j is, allowing small-sample ¯uctuations, approximately a function of iÿ j for large

classes of river networks. Table 1.1 provides sample data on generators for a river network

in Kentucky; see Ossiander et al. (1997), Peckham (1995), Shreve (1969), Gupta and

Waymire (1998) for other sample data and further river network properties. With this as our

motivation, in this paper we introduce a notion of stochastic self-similarity which we

consider for the class of Galton±Watson trees. This leads to an extension of a calculation of

Shreve (1969) showing that ETi, j � 1
2
2iÿ j for the critical binary Galton±Watson distribution.

To be precise, Ti, j will be de®ned by Ti, j � Ti, j(sö), where sö denotes the leftmost order i

stream closest to the root of a tree of order i� 1 or larger. In view of the regenerative

Figure 1.1. Edge, stream and network orders.
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structure of Galton±Watson trees this de®nition is adequate for the problems concerning

ETi, j under the Galton±Watson distribution. For notational simplicity we make the

convention that ETi, j refers to the conditional expectation E[Ti, jjW > i� 1] understood by

this de®nition without explicit mention, unless required for a particular calculation.

Remark. While our choice of a stream of order i is to make a `®xed but arbitrary' selection,

we condition on trees of order i� 1 or larger so that all streams of order i will have the same

statistical structure. In particular, this de®nition ensures that there will not be an arti®cial

truncation of the length of an order i stream by the root. In data analysis truncation at the

outlet presents an additional source of ¯uctuation in the largest-order stream generator values.

On T0, the space of ®nite trees, de®ne a pruning function ð : T0 ! T0, by ð(ö) � ö; and

for ô 2 T0, ô 6� ö, let ð(ô) be the tree left after pruning off the order 1 streams from ô and

then replacing each higher-order stream by a single edge. This last compression of streams

to edges is necessary in order to isolate the effect of bifurcation in the de®nition of order;

see Figure 1.2.

The de®nition of the order of ô 2 T0 can be restated in terms of the pruning function as

a (hitting) time to absorption as follows:

Table 1.1 Sample generators for a Kentucky River subnetwork

1.13 0.00 0.00 0.00 0.00 0.00 0.00

2.87 1.13 0.00 0.00 0.00 0.00 0.00

6.78 2.70 1.05 0.00 0.00 0.00 0.00

((Ti�1, j))1<i, j<W � 14.71 5.89 2.78 1.16 0.00 0.00 0.00

51.12 20.00 10.75 3.88 1.88 0.00 0.00

84.50 28.50 14.50 6.00 2.50 1.50 0.00

86.00 24.00 8.00 3.00 2.00 1.00 0.00

�The sample values are computed from digital elevation maps using RiverTools software developed by Scott
Peckham, US Geological Survey.

Figure 1.2. Pruning/compression dynamics.
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W (ö) � 1� inffn > 0 : ð(n)(ô) � ög: (1:3)

In particular, one may view the successive application of pruning (with compression) as a

discrete-time Markov process fT ng evolving deterministically in the space of ®nite trees,

starting at a random initial tree, by T n�1 � ð(T n), n � 0, 1, . . . : The particular case of

interest to us in this paper is that in which T 0 has a Galton±Watson distribution.

Remark. GoÈtz Kersting (personal communication) has pointed out that a similar operation

was considered in Neveu (1986) for a case of continuous-time Galton±Watson processes. The

corresponding discrete-time process induced by constant-rate erasure starting from the tips

corresponds to a random pruning dynamics on the space of trees. It will be of interest to

compare the invariant distributions for these two classes of random versus deterministic tree

evolutions. The example (3.26) cited at the end of this paper shows that there is overlap in

the respective classes of invariant distributions.

Although the measure concentrated at ö, äö, is obviously an invariant distribution for

fT ng, analogously to the case of the generation sizes conditioned on non-extinction

(Athreya and Ney 1972; Yaglom 1947), conditioning T n 6� ö leads to another form of

invariance which we introduce in the form of a stochastic self-similarity as follows.

De®nition. We say that a random tree T with distribution P on T0 is stochastically self-

similar if and only if

P(:jT 6� ö) � ðÿ1 � P(:):

In particular for a stochastically self-similar initial distribution one has P(T n�1 �
ôjT n 6� ö) � P(T n � ô), ô 2 T0. In Sections 2 and 3 we will show that this property is

equivalent to the Toeplitz symmetry of ((ETi, j)) in the following sense.

Theorem 1.1. Let T 2 (T0, GW ). Then T is stochastically self-similar if and only if

((ETi, j)) is Toeplitz.

While this result establishes the relevance of stochastic self-similarity to the observed

Toeplitz structure in the case of the Galton±Watson trees, the following result identi®es the

privileged role of the critical binary offspring distribution from this point of view.

Theorem 1.2. Let T 2 (T0, GW ). Then ((ETi, j)) is Toeplitz if and only if T has the critical

binary offspring distribution.

Although subcritical and critical Galton±Watson trees are almost surely (a.s.) ®nite,

interesting conditioned limit theorems given non-extinction are well known, dating back to

Yaglom (1947). The invariance under pruning suggests a new conditioned limit theorem

which distinguishes the critical binary offspring distribution. For this we restrict to a.s.

bounded offspring number L in the sense that P(L < b) � 1 for some b > 2.

A self-similar invariance of critical binary Galton±Watson trees 5



Theorem 1.3. Let T 0 be a critical Galton±Watson tree with bounded offspring number. Let

T 1, T 2, . . . be the pruning sequence of T 0. Then

lim
n!1P(T n�1 � ôjT n 6� ö) � GW1=2(ô), ô 2 T0:

To see the tendency toward binary trees under pruning in the subcritical case, we change

the conditioning of Theorem 1.3 accordingly as follows.

Theorem 1.4. Let T 0 be a subcritical Galton±Watson tree with bounded offspring number.

Let T 1, T 2, . . . be the pruning sequence of T 0. Then

lim
n!1 P(T n�1 � öjT n 6� ö) � 1

but

lim
n!1 P(T n�1 � âjT n�1 6� ö) � 1,

where â � fö, h0i, h1ig is the binary fork rooted at ö.

Before proving these general theorems in Section 3, we shall ®rst consider the problem in

the context of binary trees in Section 2. The advantage to this is that, ®rst, we prove our

conditioned limit theorem by a reduction to binary trees in the limit and, second, we can

give a simple probabilistic argument to explain the role of criticality in the binary case.

2. Critical and subcritical binary Galton±Watson trees

We begin by considering the distribution of a non-degenerate critical and subcritical binary

Galton±Watson tree under pruning. Throughout this section ð is viewed as a map restricted

to the space of ®nite binary trees.

Proposition 2.1. Let T 2 (T0, GWp), p < 1
2
. Let T n�1 � ð(T n), n > 0, T 0 � T . Then

GWp(T n�1 � :jT n 6� ö) � GW (n�1)(:) � GW p(n�1)(:),

where GW (n�1) is the Galton±Watson distribution with binary offspring distribution given by

p(n�1) � p(n)2

p(n)2 � q(n)2
, p(0) � p, q(0) � q:

The proof of Proposition 2.1 will be based on the following lemma and an induction

argument that easily generalizes to higher branching numbers. To simplify notation, let us

write ô � (ã1, ã2) to mean there exist ã1 and ã2 2 T0 such that ô � fö, h1, v1i, h2, v2i,
vi 2 ãi, i � 1, 2g, where we continue the convention that identi®es hii with hö, ii.
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Lemma 2.2. Suppose ô � (ã1, ã2). Then, restricting ð to the space of binary trees, one has

ðÿ1(ô) � f(s1, s2) : si 2 ðÿ1(ãi), i � 1, 2g [ f(s1, s2) : 9!i, si 2 ðÿ1(ô), s j � ö, j 6� ig:

Proof of Proposition 2.1. It is suf®cient to consider P(T 1 � öjT 0 6� ö), as the general

assertion will then follow by induction. Since

ðÿ1(fög) � ffögg [ ffö, h1i, h2igg [ ffö, h1i, h2i, h1, 1i, h1, 2igg
[ ffö, h1i, h2i, h2, 1i, h2, 2igg [ . . . ,

we have

P(T 1 � öjT 0 6� ö) � 1

p

X1
k�1

2kÿ1 pk q k�1 � q2

p2 � q2
:

De®ne

q(1) � q2

p2 � q2
, p(1) � p2

p2 � q2
:

Next let â � fö, h1i, h2ig and consider pâ � P(T 1 � âjT 0 6� ö). Using Lemma 2.2, one

obtains

pâ � 1

p
2 p2qpâ � 1

p
p3(q(1))2

and, solving for pâ, it follows that

P(T 1 � âjT 0 6� ö) � pâ � p(1)(q(1))2:

Now we will induct on the height of the tree. The theorem has been veri®ed if the height of

the tree is 0 or 1. Suppose that every tree of height less than or equal to h satis®es the

theorem. Let ô 2 T0 be a binary tree of height h� 1. Necessarily ô � (ã1, ã2) where one of

the two branches has height h and the other has height h or less. Again by Lemma 2.2 and a

conventional abuse of notation,

GWp(ð(ã) � ôjã 6� ö) � 1

p
GWp(ðÿ1(ã1))GWp(ðÿ1(ã2))� 2

p
GWp(ö)GWp(ðÿ1(ô))

Applying the induction hypothesis and solving gives

GWp(ð(ã) � ôjã 6� ö) � p2

p2 � q2
GW (1)(ã1)GW (1)(ã2)

� p(1)GW (1)(ã1)GW (1)(ã2):

This completes the induction argument. h

At this point it is natural to ask which ®nite binary Galton±Watson trees remain

(conditionally) invariant under ð(:). One readily has the following corollary.

A self-similar invariance of critical binary Galton±Watson trees 7



Corollary 2.3. T 2 (T0, GWp) is stochastically self-similar if and only if p � q � 1
2
.

In this direction we wish also to consider the asymptotic behaviour of the ð dynamics on

subcritical binary trees.

Proposition 2.4. Suppose T 0 has a subcritical binary Galton±Watson distribution with

bifurcation probability p. Then

lim
n!1 P(T n�1 � ôjT n 6� ö) � 0, ô 2 T0, ô 6� ö:

Proof. Observe that p(n) is a bounded decreasing sequence and r � limn!1 p(n) < 1
2

satis®es

the quadratic equation

r � r2

1ÿ 2r(1ÿ r)
:

h

Proposition 2.5. Suppose T 0 2 (T0, GWp); then

GWp(W � n� 1) � q(n)
Ynÿ1

k�0

p(k), n > 0,

where the parameters q(n), p(n) are de®ned inductively by

q(n) � q(nÿ1)2

p(nÿ1)2 � q(nÿ1)2
, p(n) � p(nÿ1)2

p(nÿ1)2 � q(nÿ1)2
:

In particular, the distribution of Horton order W is geometric if and only if p � q � 1
2
.

Proof. Observe ®rst that GWp(W � 1) � q � q(0). Now, for m > 2, one has

GWp(W � m) � GWp(ð(T )(mÿ1) � ö, ð(T )(k) 6� ö, k � 0, 1, . . . , mÿ 2)

� GW (mÿ1)(T � ö)GW (mÿ2)(T 6� ö) � � � GW (0)(T 6� ö)

� p(0) � � � p(mÿ2)q(mÿ1):

If p � q � 1
2

then, using this and Corollary 2.3, it follows that W has a geometric

distribution. Conversely if W has geometric distribution then it follows that p(0) � p(1) by

considering probability ratios. h

The following theorem provides a new derivation and generalization of Shreve's formula;

see Shreve (1969). It will follow from the results in Section 3 that the critical binary

offspring distribution is the only case in which ETi, j is Toeplitz among all subcritical or

critical Galton±Watson trees; cf. Corollary 3.14.
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Theorem 2.6. Let T 2 (T0, GWp). Then

ETi, j � P(W � j)

P(W > i)
:

In particular, ETi, j � f (iÿ j) if and only if p � 1
2

and, in this case,

ETi, j � f (iÿ j) � 1
2
2iÿ j:

We will use the following simple lemmas in our proof of Theorem 2.6.

Lemma 2.7. For T 2 (T0, GW ), let ev 2 T be an edge of T . Then W (ev) and W � W (ö)

are identically distributed under GW.

Lemma 2.8. Let ri denote the probability that an edge of order i in ô initiates a stream s of

order i. Let Ni denote the length of a stream s of order i. Then Ni has a geometric

distribution with parameter ri � P(W > i).

Proof. Ni may be viewed as the number of order i edges to inspect in s until termination of

the stream. If one begins inspection of the vertices with the terminal vertex of the stream s,

as de®ned in Section 1, then the inspection continues independently from vertex to vertex

depending on whether the order of the joining subnetwork is strictly smaller than i or not.

Thus one has 1ÿ ri � P(W , i). h

Proof of Theorem 2.6. Since T is binary GW it follows that the total number of side

tributaries to a stream s coincides with a geometrically distributed `inspection length' of s

having parameter ri computed in Lemma 2.8. Now let s 2 T be the leftmost stream of order

i closest to the root. Then the number of side tributaries to s having order j ( j , i) is the

same as the number of side tributaries of order 1 to a stream s9 2 ð(T ) jÿ1 of order

iÿ ( jÿ 1), where s9 is the image of s under ð(:) jÿ1. Now observe that, in view of the

compression in ð, if one prunes one more time then ETi, j is the difference in the expected

inspection heights. That is,

E(Ti, jjW > i� 1) � 1

r( jÿ1)
iÿ j�1

ÿ 1

r( j)
iÿ j

, (2:1)

and the result follows from Proposition 2.5 and the following calculations:

GW (k)(W > i) � P(W > i� k)

P(W > k � 1)
, (2:2)

r( jÿ1)
iÿ j�1 :� GW ( jÿ1)(W > iÿ j� 1) � P(W > i)

P(W > j)
:

In particular, observe from Proposition 2.5 that

q( jÿ1) � P(W � j)

P(W > j)
: (2:4)

A self-similar invariance of critical binary Galton±Watson trees 9



To see that critical binary is the only Toeplitz solution, simply note the separation of

variables in the form ETi, j � aib j and note that ratios of the form ETi�k�1,i=ETi�k,i and

ETi,iÿkÿ1=ETi,iÿk are constant functions of i. This leads to geometric solutions from which

one determines that p � 1
2
. h

There are two simple modi®cations of Proposition 2.4 which, while trivial in the binary

case, lead to interesting conditioned limit theorems in the general case to be considered in

the next section. Observe that if one replaces subcritical binary with critical binary in

Proposition 2.4 then, in view of Corollary 2.3, the `limit distribution' is GW1
2
. On the other

hand, in the subcritical binary case but changing the conditioning in Proposition 2.4 to

T n�1 6� ö, one easily observes that the limit tree is a.s. a simple binary fork rooted at ö.

We will see that each of these simple observations in the binary case continues to hold in

the generality of the next section.

3. General case

In this section T will have a Galton±Watson distribution with subcritical or critical offspring

distribution pk � P(L � k), k � 0, 1, 2, . . . , with p1 � 0. We say that T has a.s. bounded

offspring number if and only if P(L < b) � 1 for some b > 2. This latter assumption will be

made in connection with the conditioned limit theory. However, we will begin with the mean

Toeplitz problem.

Theorem 3.1. Let T 2 (T0, GW ) and let W be the order of ô, and G(s) � Es L be the

probability generating function of L. Then

ETi, j � 1ÿ ri

ri

P(W � j)

P(W , i)
(E[LjL . 0]ÿ 1),

where

1ÿ ri �
X1
l�2

pl

1ÿ p0

P(W , i) lÿ1 � G(P(W , i))ÿ p0

(1ÿ p0)P(W , i)
:

The proof of Theorem 3.1 will be carried out via a series of simple lemmas which also

illuminate the content of some related calculations which occur later. Recall the de®nition

of initial and terminal edges (or equivalently, vertices) from Section 1.

Remark. Note that in the non-binary case there may be contributions to Ti, j at the initial

vertex of the stream of lower order j. Conditional on W > i� 1, such contributions cannot

occur in the binary case since the initial vertex must be an order i edge joined by an edge of

order i or higher. In order to be consistent with the identi®cation of vertices and edges

established at the outset, these lower order j , i contributions to Ti, j at the initial vertex in

the non-binary case are not counted since this vertex is of order i� 1.
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Lemma 3.2. Let Ni denote the number of edges in the leftmost stream s of order i closest to

the root in T . Also let T̂i, j(s) be the number of order j subtrees to a non-terminal edge of

order i in s.

(i) T̂i, j(s) and Ni are independent.

(ii) E[Ti, jjNi] � (Ni ÿ 1)ET̂i, j(s).

(iii) ETi, j � E[Ni ÿ 1]ET̂i, j(s).

Proof. Note that the T̂i, j(s) are independent and identically distributed for vertices v interior

to s, but for the initial vertex at least one offspring must be order i and at least two must be

order at least i. After this, assertions (ii) and (iii) follow directly from (i). To prove (i), simply

observe that the offspring subtrees generated at each vertex of T are independent and

identically distributed under the Galton±Watson distribution. h

Lemma 3.3. Let ai, j � P(W � j)=P(W , i). Then

ET̂i, j(s) � ai, j(E[(1ÿ p0)ÿ1 L]ÿ 1) � ai, j(E[LjL . 0]ÿ 1):

Proof. To obtain ET̂i, j(s), write ET̂i, j(s) � E((ET̂i, j(s)jL)) and note that, for l > 2,

ET̂i, j(s)jL � l) � (l ÿ 1)ai, j:

Thus

E(T̂i, j(s)jW > i� 1) �
X1
l�2

(l ÿ 1)ai, j

pl

1ÿ p0

� ai, j(E[LjL . 0]ÿ 1):

h

Lemma 3.4. For ô 2 fW > i� 1g let s denote the leftmost stream of order i closest to the

root. Let ri denote the probability that an edge of order i in s initiates s, and let Ni denote

the length of s. Then Ni has a geometric distribution with parameter

ri � 1ÿ G(P(W , i))ÿ p0

(1ÿ p0)P(W , i)
:

Proof. As in the proof of Lemma 2.8 begin the inspection with the terminal (head) vertex of

the stream. Then the inspection continues independently until the occurrence of a subnetwork

of order i or larger. Thus

1ÿ ri �
X1
l�2

pl

1ÿ p0

P(W , i) lÿ1 � G(P(W , i))ÿ p0

(1ÿ p0)P(W , i)

h

Putting the above lemmas together we obtain Theorem 3.1, namely

A self-similar invariance of critical binary Galton±Watson trees 11



ETi, j � ET̂i, j(s)E(Ni ÿ 1)

� 1ÿ ri

ri

ai, j(E[LjL . 0]ÿ 1): (3:1)

Note that in the binary case this reduces to

ETi, j � 1ÿ ri

ri

ai, j � P(W � j)

P(W > i)
, (3:2)

as proved by another method in Theorem 2.6.

The separation of variables in Theorem 3.1 makes the following result obvious.

Theorem 3.5. Let T 2 (T0, GW ). If ETi, j � f (iÿ j) then the order W has a geometric

distribution.

We will see below that Theorem 3.5 implies p0 � 1
2

in the case of bounded offspring

number (Lemma 3.15, p. 19). This in turn will be enough to show that in this case

ETi, j � f (iÿ j) if and only if the offspring distribution is critical binary (cf. Theorem 3.16).

For now, we turn our attention to our general notion of stochastic self-similarity and

conditioned limits.

Theorem 3.6. Let T 2 (T0, GWf pkg), T 1 � ð(ô), T 0 � T . Let G(t) �P1j�0 pj t
j, G(k)(t) �P1

j�k j( jÿ 1) � � � ( jÿ k � 1) pj t
jÿk , k > 1. Then

GWf pkg(T 1 � :jT 0 6� ö) � GW (1)(:) � GWf p
(1)

k
g(:),

where

p
(1)
0 �

G( p0)ÿ p0

(1ÿ p0)(1ÿ G9( p0))
, p

(1)
1 � 0,

p
(1)
k �

(1ÿ p0)kÿ1G(k)( p0)

k!(1ÿ G9( p0))
, k > 2:

The proof of Theorem 3.6 is an extension of the proof of Proposition 2.1. However, the

following lemma is used to handle the possibility of non-binary branches. Some notation is

needed to simplify matters. If ó � (ó1, . . . , ó k) is a tree in T0, then let Vö(ó ) �
fi 2 f1, . . . , kg : ó i � fögg. Then, de®ne the subsequence ij(ó ) by i1 � minfi 2 f1,

. . . , kg : i =2 Vö(ó )g and ij � minfi 2 fi jÿ1, � � � kg : i =2 Vö(ó )g. Note that i1 may not exist,

and more generally, i j�1 may not exist if ij does.
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Lemma 3.7. Suppose ã � (ã1, . . . , ãN ). Then

ðÿ1(ã) �
[1
k�2

f(ó1, . . . , ó k) : 9!i, ó i 2 ðÿ1(ã), ó j � ö, j 6� ig

[1
m�N

fó � (ó1, . . . , óm) : #(Vö(ó )) � mÿ N , ó i j(ó ) 2 ðÿ1(ã j) 8 j 2 f1, � � � Ngg:

Proof of Theorem 3.6. First, we will derive the conditional probabilities for the root and

height 1 trees. Lemma 3.7 does not apply directly to the root; however,

ðÿ1(ö) � ffögg
[1
k�2

ffö, h1i, . . . , hkigg
[1
k�2

ff(ó1, . . . , ó k) : 9!i, ó i 2 ðÿ1(ö), ó j � ö, j 6� igg:

Thus,

P(T 1 � öjT 0 6� ö) � 1

1ÿ p0

X1
k�2

pk( p0)k �
X1
k�2

kpk( p0)kÿ1(1ÿ p0)P(T 1 � öjT 0 6� ö)

" #
:

Note that G( p0) �P1k�0 pk( p0)k and G9( p0) �P1k�2 kpk( p0)kÿ1. Now solve for the desired

probability to obtain

p
(1)
0 � P(T 1 � öjT 0 6� ö) � G( p0)ÿ p0

(1ÿ p0)(1ÿ G9( p0))
:

If ã is a height 1 tree, then ã � fö, h1i, . . . , hNig for some N . Using the lemma gives

P(T 1 � ôjT 0 6� ö) � 1

1ÿ p0

X1
k�2

kpk( p0)kÿ1(1ÿ p0)P(T 1 � ôjT 0 6� ö)

"

�
X1
m�N

m

N

 !
( p0)mÿN pm(1ÿ p0)N ( p

(1)
0 )mÿN

#
:

Solving for p
(1)
N � P(T 1 � ôjT 0 6� ö) gives the desired result. The proposition is now

veri®ed for the root and height 1 trees. Again, we proceed by induction on tree height to

complete the proof. Assume that all trees in T0 of height h satisfy the proposition. Let ã be a

tree of height h� 1. Then ã � (ã1, . . . , ãN ) for some N , there is an i such that ãi has height

h, and the height of ã j < h for all j 2 f1, . . . , Ng. The lemma gives
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P(T 1 � ãjT 0 6� ö) �

X1
m�N

m

N

 !
pm( p0)mÿN (1ÿ p0)Nÿ1

1ÿ
X1
k�2

kpk( p0)kÿ1

YN
j�1

P(ð(ó ) � ã jjó 6� ö)

� p
(1)
N

YN
j�1

GW (1)(ã j):

h

Iteration of the result in Theorem 3.6 yields the conditional distribution of T n�1 given

T n 6� ö as Galton±Watson with offspring distribution given by

p
(n�1)
0 � Gn( p

(n)
0 )ÿ p

(n)
0

(1ÿ p
(n)
0 )(1ÿ G9n( p

(n)
0 ))

, p
(n)
1 � 0, (3:3)

p
(n�1)
k � (1ÿ p

(n)
0 )kÿ1G(k)

n ( p
(n)
0 )

k!(1ÿ G9n( p
(n)
0 ))

, k > 2, (3:4)

where

Gn(t) �
X1
j�0

p
(n)
j t j: (3:5)

As an alternative check that (3.3), (3.4) de®ne a probability distribution, note that non-

negativity is clear by inspection, and normalization follows by expanding G(t) in a Taylor

series about t � p0 and induction on n. That is,

G(t) � G( p0)� G9( p0)(t ÿ p0)�
X1
k�2

G(k)( p0)

k!
(t ÿ p0)k , (3:6)

so that

1 � G(1) � G( p0)� G9( p0)(1ÿ p0)� (1ÿ p0)(1ÿ G9( p0))
X1
k�2

p
(1)
k : (3:7)

Similarly, by expanding G9(t) in a Taylor series about t � p0, one has

G9(t) � G9( p0)� G 0( p0)(t ÿ p0)�
X1
k�2

G(k�1)( p0)

k!
(t ÿ p0)k , (3:8)

so that

m � G9(1) � G9( p0)� (1ÿ G9( p0))
X1
k�2

kp
(1)
k : (3:9)
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Proposition 3.8. If fpkg is critical then fp
(n)
k g is also critical. Moreover, the means of the

offspring distributions m(n) �P1k�2 kp
(n)
k are strictly decreasing in n if and only if fpkg is

subcritical.

Proof. Simply apply (3.9) together with induction. h

Theorem 3.9. If T 2 (T0, GW ) is stochastically self-similar with
P1

k�0 k2 pk ,1, then

p0 � p2 � 1
2
.

Proof. If T 2 (T0, GW ) is stochastically self-similar then, as noted earlier, it follows from

(3.9) that fpkg is critical. It also follows that 1
2

< p0 , 1 since

1 �
X1
k�2

kpk > 2
X1
k�2

pk � 2(1ÿ p0): (3:10)

Expanding G(t) in a Taylor series about t � p0, one has

G(t) � G( p0)� G9( p0)(t ÿ p0)�
X1
k�2

G(k)( p0)

k!
(t ÿ p0)k : (3:11)

Thus, using self-similarity (3.3) and (3.4), it follows that

G(t � p0) � C � G9( p0)t � (1ÿ p0)(1ÿ G9( p0))G
t

1ÿ p0

� �
, (3:12)

where C does not depend on t. Now, from criticality we have G9(1) � 1 and thus,

differentiating G(t � p0) with respect to t, we have

G9(t � p0) � ëG9(1)� (1ÿ ë)G9
t

1ÿ p0

� �
, (3:13)

where 0 , ë � G9( p0) , 1. Note that t=(1ÿ p0) , t � p0 , 1 for t , 1ÿ p0. Thus, since

G9(0) � 0, G9(1) � 1, G(1) � 1, and G 0(1) ,1, we have, upon taking another derivative in

(3.13) at t � 1ÿ p0, that G9( p0) � p0. Thus

1 � 1

p0

G9( p0) �
X1
k�2

kpk pkÿ2
0 <

X1
k�2

kpk � 1,

with strict inequality unless p0 � p2 � 1
2
. h

For the convergence problem we restrict our attention to the case of bounded number of

offspring. In particular, assume

b � maxf j : pj . 0g,1: (3:14)

Writing an(i) � p
(n)
iÿ1, i � 1, . . . b� 1, equations (3.3), (3.4) may be expressed as a nonlinear

dynamical system of the form
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an�1 � 1

Ã(an)
F(an(1))an, n � 0, 1, 2, . . . , (3:15)

where the matrix F(t), de®ned and continuous for t 2 [0, 1], is given by

f ij(t) � (
jÿ1
iÿ1 )(1ÿ t)iÿ1 t jÿi if j > i > 3, or i � 1 and j > 3

0 otherwise

(
(3:16)

and the scalar Ã(c), de®ned and continuous for c, is given by

Ã(c) � (1ÿ c(1))(1ÿ c . ã(c(1))) (3:17)

and

ã(t) � (0, 0, 2t, 3t2, . . . , (b� 1)tb): (3:18)

In particular, we have

an�1 � 1Yn

i�0

Ã(ai)

F(an(1)) � � � F(a0(1))a0: (3:19)

Note that the eigenvalues of F(t) are given by ë1(t) � ë2(t) � 0, ëi(t) � (1ÿ t)iÿ1,

i � 3, . . . , b� 1. In particular, ë3(t) is the largest eigenvalue. Now observe that the

stochastically self-similar distributions coincide with eigenvectors of F(t), t � p0(1), with

eigenvalues of the form (3.17). From this perspective our previous calculations (Corollary

2.3) show for the binary case that the only (normalized) non-negative eigenvectors have

p0 � 1 and p0 � p2 � 1
2
. These two eigenvectors may be distinguished by subcriticality and

criticality, respectively. We will reduce the general calculation to showing that whenever the

limits limn!1 p
(n)
k exist then these limits yield such an eigenvector, the selection being

determined by subcriticality or criticality.

Remark. While it is obvious that one has tightness and therefore selection of convergent

subsequences in the case of bounded offspring number, it is not obvious that the limit is an

eigenvector in view of the shift on the left-hand side of (3.15). Thus a simple compactness

and uniqueness argument seems to be ruled out.

While for the critical case we shall see that

p
(n)
0 ! 1

2
as n!1, (3:20)

the next results indicate a delicate difference between this and the subcritical case. In

particular, in the subcritical case we will show, as in the binary case (cf. Proposition 2.4), that

p
(n)
0 ! 1 as n!1: (3:21)

Unlike the conditioned limit theorems of Yaglom (1947) in which one can identify a certain

monotonicity, numerical Matlab calculations show that the convergence need not be
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monotonic (see Tables 3.1, 3.2), though it seems to be eventually monotonic. In any case, we

will see that, conditional on T n�1 6� ö, convergence to a ®xed binary fork is obtained.

Remark. One can easily check by inspection of the non-negative triangular matrix F(t) that

regardless of the initial zeros between the ®rst and last terms, after one iteration all of the

terms, with the exception of the second, will become positive. Moreover, one can also check

by examining the ratio p
(n)
k�1=p

(n)
k that once the decreasing order of terms occurs then it will

be preserved throughout the evolution.

As noted above, it is not enough to extract convergent subsequences, so the plan is to

reduce the limits to the binary case by direct calculation. The calculation rests on a

convexity inequality for the size-biased distributions jp
(n)
j =m(n), j � 0, 1, . . . , b.

Table 3.1. Critical example (m � 1)

n p
(n)
0 p

(n)
1 p

(n)
2 p

(n)
3 p

(n)
4

0 0.7273 0 0 0.0909 0.1818

1 0.1564 0 0.3671 0.0800 0.0064

2 0.5196 0 0.4422 0.0370 0.0011

3 0.5092 0 0.4728 0.0178 0.0002

4 0.5044 0 0.4868 0.0088 0.0001

5 0.5022 0 0.4935 0.0043 0.0000

6 0.5011 0 0.4968 0.0022 0.0000

7 0.5005 0 0.4984 0.0011 0.0000

8 0.5001 0 0.4998 0.0001 0.0000

9 0.5000 0 0.5000 0.0000 0.0000

Table 3.2. Subcritical example (m � 0.7)

n p
(n)
0 p

(n)
1 p

(n)
2 p

(n)
3 p

(n)
4

0 0.8000 0 0 0.1000 0.1000

1 0.7693 0 0.3671 0.0800 0.0013

2 0.8945 0 0.1027 0.0028 0.0000

3 0.9856 0 0.0144 0.0000 0.0000

4 0.9998 0 0.0002 0.0000 0.0000

5 1.0000 0 0.0000 0.0000 0.0000
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Theorem 3.10. For bounded offspring number we have, for each j � 3, . . . , b, that

lim
n!1p

(n)
j � 0:

Proof. First let us observe that

1ÿ G9n( p
(n)
0 ) � 1ÿ m(n)

Xb

j�2

jp
(n)
j

m(n)
( p

(n)
0 ) jÿ1 > 1ÿ m(n) p

(n)
0 ,

since ( p
(n)
0 )2ÿ1 is the largest term in the average under the size-biased distribution. Now, in

view of the calculations (3.3) and (3.9), we have m(n) < 1 and, as in (3.10), p
(n)
0 > 1

2
, so that

for k > 2 we have from (3.4) that

p
(n�1)
k � (1ÿ p

(n)
0 )kÿ1G(k)

n ( p
(n)
0 )

k!(1ÿ G9n( p
(n)
0 ))

<
(1ÿ p

(n)
0 )kÿ2

k!
G(k)

n ( p
(n)
0 )

< (1
2
)kÿ2

Xb

j�k

j

k

 !
p

(n)
j , 3 < k < b:

Now start with k � b, and do a backward induction as follows. First, we have by iteration on

n that

p
(n)
b < 2ÿn(bÿ2) � o(1) as n!1:

Now if p
(n)
j � o(1) as n!1 for j � k � 1, . . . , b, then since there are no more than a ®xed

number b of o(1) terms in the sum, we have

p
(n�1)
k < (1

2
)kÿ2 p

(n)
k � (1

2
)kÿ2

Xb

j�k�1

j

k

� �
p

(n)
j � (1

2
)kÿ2 p

(n)
k � o(1):

Iteration on n now yields for 3 < k < b that

p
(n�1)
k < (1

2
)(kÿ2)n pk � o(1)

Xn

i�0

(1
2
)kÿ2)i � o(1):

h

Having reduced the calculation to binary distributions, the following results are obtained.

Theorem 3.11. Suppose T has a critical Galton±Watson distribution with bounded offspring

number. Then

lim
n!1P(T n�1 � ôjT n 6� ö) � GW1

2
(ô), ô 2 T0:
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Proof. Using Theorem 3.10 and Proposition 3.8, we see in the critical case that any

convergent subsequence is binary critical so that there is only one limit point. h

Theorem 3.12. Suppose T has a subcritical Galton±Watson distribution with bounded

offspring number. Then

lim
n!1P(T n�1 � ôjT n�1 6� ö) � äfâg(ô), ô 2 T0,

where â � fö, h1i, h2ig is the binary fork rooted at ö.

Proof. In view of Theorem 3.10 it is enough to show that

lim
n!1

p
(n)
2 ( p

(n)
0 )2

1ÿ p
(n)
0

� 1: (3:22)

Observe from Proposition 3.8 that the means are strictly decreasing and bounded below by

zero. Thus limn!1m(n) exists and therefore, in view of Theorem 3.10, so does limn!1 p
(n)
2 .

So it also follows that limn!1 p
(n)
0 � limn!1(1ÿ p

(n)
2 ) exists. So the full limit distribution

exists and, in view of (3.15), is a subcritical binary eigenvector with eigenvalue of the form

(3.17). The result follows since there are only two such eigenvectors, a1 � 1, a j � 0,

2 < j < b� 1 and a1 � a3 � 1
2
, a2 � a j � 0, 4 < j < b� 1. h

The following result generalizes Proposition 2.5.

Proposition 3.13. Suppose T 2 (T0, GWf pkg); then

GW (W � n� 1) � p
(n)
0

Ynÿ1

k�0

(1ÿ p
(k)
0 ), n > 0:

Proof. Observe ®rst that GWf pkg(W � 1) � p0 � q(0). Now, for m > 2, we have

GWf pkg(W � m) � GWf pkg(ð(T )(mÿ1) � ö, ð(T )(k) 6� ö, k � 0, 1, . . . , mÿ 2)

� GW
(mÿ1)

f pkg (T � ö)GW
(mÿ2)

f pkg (T 6� ö) . . . GW
(0)

f pkg(T 6� ö)

� p(0) . . . p(mÿ2)q(mÿ1)

h

Corollary 3.14. If T 2 (T0, GWf pkg) is stochastically self-similar then the order W has a

geometric distribution.

Lemma 3.15. If T 2 (T0, GW ) has bounded offspring number and the order W is

geometrically distributed then the offspring distribution is critical and p
(n)
0 � p0 � 1

2
.
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Proof. If P(W � j) � (1ÿ ä) jÿ1ä, j > 1, 0 , ä, 1, then ä � P(W � 1) � p0. In view of

Proposition 3.13, we have by induction that p(n) � p0, n > 0. Now use Theorems 3.11 and

3.12 to obtain that the offspring distribution must be critical and p0 � limn!1 p
(n)
0 � 1

2
. h

Theorem 3.16. For T 2 (T0, GW ) with bounded offspring distribution,

ETi, j � f (iÿ j)

if and only if p0 � p2 � 1
2
.

Proof. If T is the critical binary tree then the Toeplitz property was shown in Section 2.

Conversely, if the Toeplitz property holds then Theorem 3.5 and Lemma 3.15 yield that

p
(n)
0 � p0 � 1

2
for n � 0, 1, 2, . . . : In particular, we haveX

k>2

pk � 1
2

(3:23)

and X
k>2

kpk � 1: (3:24)

Multiply (3.23) by 2 and subtract from (3.24) to obtainX
k>3

(k ÿ 2) pk � 0: (3:25)

By non-negativity of the terms in (3.25), it now follows that pk � 0 for all k > 3. h

While some of our results are proven more generally than for bounded offspring number,

the following theorem is a summarizing statement of the main results of this paper within

this setting.

Theorem 3.17. Let T 2 (T0, GWf pkg) with bounded offspring number. Then T is

stochastically self-similar if and only if p0 � p2 � 1
2

if and only if the order W is

geometrically distributed if and only if ETi, j is Toeplitz.

In closing, let us remark that while it is possible to construct deterministic self-similar

trees naturally for arbitrarily prescribed generators (see Peckham 1995), the corresponding

construction of stochastic self-similar trees is more dif®cult. Examples indicate that one

may obtain stochastic self-similar solutions by relaxed conditions on the moments of the

offspring distribution. For example, the distributions of Zolotarev (1957), de®ned by the

family of probability generating functions

Gè(t) � t � 1

è
(1ÿ t)è, 0 < t < 1, (3:26)

for ®xed parameters è 2 (1, 2), are easily checked using Theorem 3.6 to be in®nite-variance

critical offspring distributions of stochastically self-similar Galton±Watson distributions.
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However, it is of greatest interest to river network applications to see what other possible

stochastic self-similar trees with bounded offspring number may be constructed as

conditioned limits by considering random initializations other than by Galton±Watson trees.
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