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The number of iterations required to estimate accurately the stationary distribution of a Markov chain

is determined by a preliminary sample to estimate the convergence rate, which is related to the second

largest eigenvalue of the transition operator. The estimator of the second largest eigenvalue, along with

those of two nuisance parameters, can be shown to converge to their true values in probability, and a

form of the central limit theorem is proved. Explicit expressions for the bias and variance of the

asymptotic distribution of this estimator are derived. A theoretical standard is derived against which

other estimators of the second largest eigenvalue may be judged. An application is given involving the

use of the Gibbs sampler to calculate a posterior distribution.
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1. Introduction

Markov chain Monte Carlo algorithms have become widely used in statistical inference,

especially in Bayesian analysis (Gelfand and Smith 1990; Smith and Roberts 1993) but also

for solving non-Bayesian problems involving latent variables (Geyer and Thompson 1992).

Particular attention has been paid to the Gibbs sampler (Geman and Geman 1984), though a

more general approach is through Hastings's (1970) generalization of the Metropolis et al.

(1953) procedure. A related idea is data augmentation (Tanner and Wong 1987). In recent

research on these methods, a recurrent theme is the use of diagnostic tests to assess the rate

of convergence or, more broadly, when to stop sampling. Contrasting approaches are

presented by Gelman and Rubin (1992) and Geyer (1992), and a comprehensive review of

convergence issues is in the paper by Tierney (1994).

Our aim in this paper is to introduce a new method of assessing the rate of convergence

of Markov chain samplers, based on estimation of the second largest eigenvalue of the

Markov transition operator. The largest eigenvalue is always one, but the second largest,

when it is well de®ned and strictly less than one in modulus, determines the rate of

convergence. A feature of our method is that it is based directly on data generated by the

sampler, in contrast with methods based on analytical bounds (see, for example, Lawler and
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Sokal 1988; Sinclair and Jerrum 1989; Diaconis and Stroock 1991; Frigessi et al. 1993;

Rosenthal 1993). However, there are precedents for a data-based approach, notably the

papers of Raftery and Lewis (1992) and Roberts (1992). Intermediate between the data-

based and analytical approaches is that of Mykland et al. (1995), which is based on the

regeneration principle.

Our own approach is based on a two-stage sampling procedure, in which data from the

®rst stage are used to estimate the rate of convergence and hence to determine the length of

the second stage. This idea was motivated by Raftery and Lewis (1992), who adopted a

similar point of view but whose analysis was based on an assumption that the process,

reduced to suitable indicator variables, could be viewed as a two-state Markov chain.

Although the method seems to produce good results in practice, the justi®cation for treating

the two-state reduced process as Markov remains doubtful. The only other approach we are

aware of that is based on direct estimation of the rate of convergence is Roberts (1992).

However, Roberts did not consider the sampling properties of his proposed diagnostic

procedure, whereas a considerable part of the present paper is devoted to obtaining such

properties for our procedure.

In Section 2 we de®ne the class of Markov chains we are considering ± essentially, ones

for which the transition operator is Hilbert±Schmidt ± after which we de®ne the estimators

and prove sampling properties including consistency and asymptotic normality. Section 3

provides further discussion, including our main result: a theoretical standard is derived

against which other estimators of the second largest eigenvalue may be compared in terms

of mean square error and the number of iterations. An example based on Bayesian analysis

of actual data is given in Section 4.

2. A Markov chain method for sampling algorithms

Consider an irreducible Markov chain fX n, n > 0g on a state space Ù, where X n is sampled

at time n. Let X 0 have a known initial distribution Ð�(:), and let fXn, n > 0g have an

unknown stationary distribution Ð(:) as n!1. The Radon±Nikodym derivative (assumed

to exist) of Ð with respect to some measure í on the measurable space, (Ù, F ) evaluated at

y is denoted by ð(y) or Ð(dy)=í(dy), and the Radon±Nikodym derivative of Ð� with respect

to í evaluated at y is denoted by ð�(y) or Ð�(dy)=í(dy). Assume that one's objective is to

estimate Ð(D), where D is any ®xed non-empty proper subset of Ù. We are choosing a

speci®c D to focus on a particular problem and to simplify the procedure. De®ne

Zn � I(X n 2 D),

where I(:) is the indicator function. Also, let

r � Ð(D), rn � E(Zn), n � 0, 1, . . . :

Assume throughout without loss of generality that r is strictly between zero and one. For

®xed M0 > 0 and N0 . M0, one can estimate r by
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r̂M0,N0
� (N0 ÿ M0)ÿ1

XN0

n�M0�1

Zn: (1)

This estimate of r is performed in the second stage of the two-stage sampling procedure. Our

aim will be to choose M0 and N0 so that the variance and bias of r̂M0,N0
are less than some

speci®ed small numbers. This is done by estimating the second largest eigenvalue of the

Markov chain, as performed in the ®rst stage of the two-stage sampling procedure.

2.1. Markov chains generated by Hilbert±Schmidt operators

We now make explicit the class of Markov chains we are considering, which is essentially the

Hilbert±Schmidt class on (Ù, F , Ð). Let L 2 denote the space of measurable functions

F : Ù ! R for which

kFk2
HS �

�
Ù
jF(x)j2Ð(dx) ,1:

Then, L 2 is a Hilbert space with inner product

hF, GiHS �
�
Ù

F(x)G(x)Ð(dx), 8F, G 2 L 2:

We shall assume that the Markov chain is reversible and the transition probability measures

are absolutely continuous with respect to the dominating measure í, with densities A(x, y),

x, y 2 Ù. Assume the function y 7! A(x, y)=ð(y) is in L 2 for each x. This de®nes an

operator A on L 2, given by

AF(x) �
�
Ù

A(x, y)F(y)í(dy) �
�
Ù

[A(x, y)=ð(y)]F(y)Ð(dy):

Then A is self-adjoint. It is Hilbert±Schmidt if�
Ù

�
Ù
jA(x, y)=ð(y)j2Ð(dy)Ð(dx) �

�
Ù

�
Ù
jA(x, y)j2[ð(x)=ð(y)]í(dx)í(dy) ,1: (2)

Roberts (1992; 1994) has previously discussed self-adjoint Hilbert±Schmidt operators in

the context of Markov chain Monte Carlo methods. The Gibbs sampler is not, in general, a

reversible Markov chain, though with some simple modi®cations (for example, alternating a

forward and a backward order of updating) it may be made into one. Then (2) is automatic

if Ù is compact, and can often be veri®ed in non-compact cases. On the other hand, the

Metropolis±Hastings algorithm is typically not Hilbert±Schmidt, because there is positive

probability that the chain remains in the same state, so transition densities do not exist.

Smith (1994) has computed a speci®c example (the independence Metropolis chain) for

which discrete expansions of the form (3) below do not exist, and must be replaced by

integrals. Our theory does not at present cover such cases. On the other hand, condition (3)

below is the one that really matters, and it is conceivable that this could be satis®ed for

reversible Markov chains without the Hilbert±Schmidt condition.

For a self-adjoint Hilbert±Schmidt operator A on L 2, there exists an orthonormal basis
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fek(:), k � 1, 2, . . .g of L 2 with eigenvalues fëk , k � 1, 2, . . .g (Dunford and Schwartz,

1963, pp. 1009±1034) such that

[Aek](:) � ëk ek(:), k � 1, 2, . . . :

Since A is generated by an ergodic Markov chain, then an eigenvalue of A is ë1 � 1, and

e1(:) � 1 Ð-a.s., and ë1 is the largest eigenvalue in modulus.

For an ergodic Markov chain fXn, n > 0g satisfying the above condition, the Radon±

Nikodym derivative of the probability that X n is in state dy during the (n� m)th iteration

given that X n is in state x during the nth iteration with respect to í(dy) exists, and for

some r > 0 can be written

Ðn�m(dyjX n � x)=í(dy) �
X1
k�1

ák(yjx)(ëk)m, Ð-a:e: x 2 Ù, í-a:e: y 2 Ù, 8m > r, (3)

where

1 � ë1 . jë2j > jë3j > jë4j > . . . , (4)

and ë2 is real. The ák(yjx) are real-valued and are de®ned by

ák(yjx) � ek(x)ek(y)ð(y), Ð-a:e: x 2 Ù, í-a:e: y 2 Ù, k � 1, 2, . . . :

If (4) holds and X1
k�1

jëk jr ,1, (5)

then

EZn ÿ r �
X1
k�2

(ëk)n

�
Ù

�
D

ák(yjx)í(dy)Ð�(dx), 8n > r, (6)

� a2ë
n
2 � O(jëkjn) as n!1, for some k > 3 and some a2,

assuming that

sup
fk�1,2,...g

�����
Ù

�
D

ák(yjx)í(dy)Ð�(dx)

����,1, (7)

where

r �
�
Ù

�
D

á1(yjx)í(dy)Ð�(dx): (8)

Note that (6) can be rewritten

EZn ÿ r � a2ë
n
2 �

X1
k�k

ak(ëk)n, (9)

for some ak .

If the Markov chain fX n, n > 0g is discrete and ®nite, then (5) holds for r � 0. If the
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Markov chain generates a self-adjoint operator of trace class, then (5) holds for r � 1. In

the more general Hilbert±Schmidt case, (5) holds for r � 2, and (6) is satis®ed since (7)

holds.

Notice that a2 depends on Ð�(:) and D, but ë2 depends on neither. The parameter r
depends on D but not on Ð�(:). Assuming that the ergodic Markov chain induces a self-

adjoint Hilbert±Schmidt operator, (5) implies that the right-hand side of (3) is absolutely

convergent a.e. í(dy)Ð(dx), for all n > r � 2. The result also holds for r � 1 if the

operator is trace class (Yosida, 1965, p. 281).

For the self-adjoint Hilbert±Schmidt case, the parameters ë1, ë2, . . . are the eigenvalues

of the operator A. Multiple eigenvalues of ë2 in modulus are not problematic, provided that

ë2 6� ÿëk , for all k. It is assumed that

jë2j. jëkj and a2 6� 0 (10)

to avoid non-identi®ability problems.

Under (6) one can write

ëÿM0ÿ1
2 (N0 ÿ M0)bias(r̂M0,N0

)! a2(1ÿ ë2)ÿ1 as N0 ÿ M0 !1: (11)

Furthermore, for any stationary, ergodic, reversible Markov chain, Kipnis and Varadhan

(1986) show that

(N0 ÿ M0)var(r̂M0,N0
)! T� as N0 !1, (12)

for ®xed M0 and some ®nite constant T�. Geyer (1992) and Besag and Green (1993) state

that T� can be bounded according to

T�[r(1ÿ r)]ÿ1 < [1� jë2j][1ÿ jë2j]ÿ1: (13)

Also, (6) implies that jakj can be bounded for Markov chains which generate Hilbert±

Schmidt operators since�����
Ù

�
D

ák(yjx)í(dy)Ð�(dx)

���� � �����
Ù

�
D

ek(x)ek(y)ð(y)í(dy)Ð�(dx)

����
<

�
Ù
jek(x)jð�(x)í(dx)

� � �
D

jek(y)jÐ(dy)

� �
< kð�(:)=ð(:)kHS

������������
Ð(D)

p
by the Cauchy±Schwarz inequality, where k:kHS denotes the Hilbert±Schmidt norm. By

symmetry it follows that

jak j < kð�=ðkHS

���������������������������
min(r, 1ÿ r)

p
, k � 2, 3, . . . :

Hence, for ®xed Ð� both

jbias(r̂M0,N0
)j[min(r, 1ÿ r)]ÿ1=2 and [r(1ÿ r)]ÿ1 var(r̂M0,N0

)

can be minimized uniformly for all non-trivial D 2 Ù. To estimate (1) accurately, (11) and

(12) are made to be suf®ciently small by choosing M0 and N0 ÿ M0 suf®ciently large.
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2.2. A least-squares estimator

We have seen in (6) that the key parameter in determining the rate of convergence is ë2,

which under the Hilbert±Schmidt assumptions is also the second largest eigenvalue of the

operator A. We also see from (11)±(13) that a2 and ë2 are the key parameters required to

bound the bias and variance of the estimator r̂M0,N0
. It will now be argued that preliminary

estimates of r, a2, and ë2 can be obtained in the ®rst stage of a two-stage procedure. The

second stage will be (1), with M0 and N0 chosen suf®ciently large to obtain a much more

accurate estimate of the parameter r, which is the ultimate objective.

Assume that (10) holds, and generate L replications fX ( l)
n , 0 < n < N , 1 < l < Lg of the

®rst N steps of the Markov chain. Similarly, let

Z( l)
n � I(X ( l)

n 2 D), 0 < n < N , 1 < l < L:

The estimator will depend on the values of Z( l)
n for M , n < N, 1 < l < L. Here L, M and

N are integers, and the purpose of the following analysis is to give some guidance as to how

they should be chosen. For asymptotic calculations we shall let M !1 and write L and N

both as functions of M.

The criteria for estimating r, a2, and ë2 in the ®rst stage are as follows. De®ne the

vector

è0 � (r, a2, ë2)T,

which are the true values r, a2, and ë2 to be estimated. Moreover, de®ne the dummy vector

è � (è1, è2, è3)T,

where è1, è2 and è3 denote generic values of the parameters r, a2, and ë2 being estimated,

respectively. Also, de®ne

rn(è) � è1 � è2è
n
3 ,

and the sum of squares

SM (è) �
XN

n�M�1

Lÿ1
XL

l�1

Z( l)
n ÿ rn(è)

" #2

: (14)

It will be shown that there exists a value, è̂M say, such that SM (è̂M ) is a relative minimum of

SM (:) and è̂M ! è0 in probability as M !1. Furthermore, the probability that è̂M

absolutely minimizes SM (:) converges to one, within some open symmetric sphere which

converges to è0, as M !1.

The conditions on N and L as a function of M are now to be determined. First, choose

ë1� such that

jë2j, ë1�, 1 and jëkj, ë1�jë2j: (15)

Furthermore, choose N suf®ciently large such that

N ÿ (1� å0)M !1 as M !1, for some å0 . 0: (16)

Also, choose L such that
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1=
����
L
p
� O(jë1�ë2jM=[M4 N ]) as M !1: (17)

De®ne the matrix

JM (è) � 2
XN

n�M�1

@rn(è)

@è j

@rn(è)

@èk

( )����
1< j,k<3

, (18)

k:k to be the L2 norm, and t to be a three-dimensional dummy vector. Before showing that a

consistent estimator of è0 exists as M, N, and L tend to in®nity, the following lemma will be

proved:

Lemma 2.1. Under conditions (15) and (16),

inf
ft:ktk�1g

tTJM (è0)t > K0ë
2M
2 Mÿ2, 8M . 0, some K0 . 0:

Proof. From (18) one can write

1
2
JM (è0)

�

N ÿ M
ëM�1

2

1ÿ ë2

a2[M(1ÿ ë2)� 1]ëM
2

(1ÿ ë2)2

ëM�1
2

1ÿ ë2

ë2M�2
2

1ÿ ë2
2

a2[M(1ÿ ë2
2)� 1]ë2M�1

2

(1ÿ ë2
2)2

a2[M(1ÿ ë2)� 1]ëM
2

(1ÿ ë2)2

a2[M(1ÿ ë2
2)� 1]ë2M�1

2

(1ÿ ë2
2)2

a2
2(q2

1 M2 � 2q1 M � q2)ë2M
2

(1ÿ ë2
2)3

26666666666664

37777777777775

�

0 O(jë2jN ) O(N jë2jN )

O(jë2jN ) O(jë2j2N ) O(N jë2j2N )

O(N jë2jN ) O(N jë2j2N ) O(N2jë2j2N )

26664
37775 as N ÿ M !1,

where

q1 � 1ÿ ë2
2, q2 � 1� ë2

2:

The eigenvalues of 1
2
JM (è0) are the zeros of the function

gM (Ë) � 1
2
JM (è0)ÿ

Ë 0 0

0 Ë 0

0 0 Ë

24 35������
������:

For any å1 . 0, by direct expansion of the determinant, we can show that
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���� @ gM (Ë)

@Ë

���� < c1(N ÿ M)M2ë2M
2 , 8jËj, å1ë

2M
2 Mÿ2, for some c1 ,1:

Hence,

jgM (Ë)ÿ gM (0)j, [c1(N ÿ M)M2ë2M
2 ]å1ë

2M
2 Mÿ2

, å1c1(N ÿ M)ë4M
2 , 8jËj, å1ë

2M
2 Mÿ2:

Since

(N ÿ M)ÿ1ëÿ4Mÿ4
2 gM (0)! a2

2(1ÿ ë2
2)ÿ4 as M !1 and N ÿ M !1,

then

gM (Ë) . 0 whenever jËj, å1ë
2M
2 Mÿ2 as M !1 and N ÿ M !1,

for suf®ciently small å1. Hence, the smallest eigenvalue of 1
2
JM (è0) is at least as large as

å1ë
2M
2 Mÿ2 as M !1 and N ÿ M !1. Now, since 1

2
JM (è0) is symmetric, it can be written

1
2
JM (è0) � ÓTAÓ,

where Ó is orthonormal, and A is a diagonal matrix consisting of the eigenvalues of 1
2
JM (è0).

Therefore, since kÓtk � 1 whenever ktk � 1, then

inf
ft :ktk�1g

tTÓTAÓt > å1ë
2M
2 Mÿ2 as M !1 and N ÿ M !1: h

Now, using ë1� as de®ned in (15), de®ne the sphere

ÈM � fè : kèÿ è0k � ëM
1�g,

and de®ne the interior of ÈM by

È(int)
M � fè : kèÿ è0k, ëM

1�g: (19)

Lemma 2.1 can be strengthened to include a wider range of values of (è1, è2, è3) as shown in

the following lemma:

Lemma 2.2. Under conditions (15) and (16),

inf
fè2ÈM[È(int)

M
g

inf
ft:ktk�1g

tTJM (è)t > K1(jë2j ÿ ëM
1�)

2M Mÿ2, 8M . 0, some K1 . 0:

Proof. The in®mum of jè3j for all è 2 ÈM [È(int)
M is jë2j ÿ ëM

1� . The proof then follows from

Lemma 2.1 by replacing ë2 by all è 2 ÈM [È(int)
M

when determining how large M needs to

be. h

Consistency can be shown after using the following lemma, which is stated without

proof:
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Lemma 2.3. Under conditions (15)±(17), if (èM ÿ è0)T=SM (èM ) . 0, 8èM 2 ÈM , then there

exists è̂M 2 È(int)
M such that è̂M is a relative minimum of SM (:).

An asymptotic expression is established in the next lemma to aid in proving Theorem

2.1.

Lemma 2.4. For any sequence fbn, n . 0g, one can write

1

L

XL

l�1

XN

n�M�1

bn[Z( l)
n ÿ rn(è0)] � O

XN

n�M�1

jbnj jëkjn
 !

� OP

XN

n�M�1

jbnj=
����
L
p !

as M !1:

Proof. Observing that one can write

1

L

XL

l�1

XN

n�M�1

bn[Z( l)
n ÿ rn(è0)] � 1

L

XL

l�1

XN

n�M�1

bnf[Z( l)
n ÿ EZ( l)

n ]� [EZ( l)
n ÿ rn(è0)]g

� 1

L

XL

l�1

XN

n�M�1

bn[Z( l)
n ÿ EZ( l)

n ]

� O
XN

n�M�1

jbnj jëkjn
 !

as M !1

from (6), and that the Cauchy±Schwarz inequality implies that

var
1

L

XL

l�1

XN

n�M�1

bn[Z( l)
n ÿ EZ( l)

n ]

( )
<

1

L
E

XN

n�M�1

jbnj jZ(1)
n ÿ EZ(1)

n j
( )2

,

the result follows from Chebyshev's inequality since jZ(1)
n ÿ EZ(1)

n j < 1 a.s. h

As an immediate consequence of Lemma 2.4, we note that

1

L

XL

l�1

XN

n�M�1

[Z( l)
n ÿ rn(è0)] � O(jëkjM )� OP([N ÿ M]=

����
L
p

) as M !1: (20)

Furthermore, if jëj, 1, cM � o(1=M) as M !1, and v > 0, then Lemma 2.4 also implies

that

1

L

XL

l�1

XN

n�M�1

nv(ë� cM )n[Z( l)
n ÿ rn(è0)] � O(MvjëëkjM )� OP(MvjëjM=

����
L
p

) as M !1:

(21)

Now, consistency of è̂M is proved in the following theorem:
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Theorem 2.1. Under conditions (15)±(17), the probability that there exists a unique relative

minimum è̂M of SM (:) in the set È(int)
M

tends to one as M !1. Uniqueness implies that this

relative minimum is also an absolute minimum over the set È(int)
M . The rate of convergence is

governed by

kè̂M ÿ è0k � OP(ëM
1�) as M !1:

Proof. We ®rst prove that è̂M exists. Observe that

@2rn(è)

@è j@èk

�
0 0 0

0 0 nènÿ1
3

0 nènÿ1
3 n(nÿ 1)è2è

nÿ2
3

2664
3775, n � M � 1, . . . , N :

De®ne the set

AM � fè 2 ÈM : jè1 ÿ rj < jë1�ë2jMg,
and let èM 2 ÈM . Using a Taylor series expansion about è0, there is a è�M on the line

segment connecting è0 to èM such that

(èM ÿ è0)T=SM (èM ) � (èM ÿ è0)T=SM (è0)� (èM ÿ è0)T[=2SM (è�M )](èM ÿ è0): (22)

By Lemma 2.3, it suf®ces to prove that the above expression is strictly positive on ÈM with

probability tending to one as M !1. We do this splitting by into two cases.

Case 1. Assume that èM 2 AM . The right-hand side of (22) is equivalent to

Q1 � Q2 � Q3, where

Q1 � (èM ÿ è0)T=SM (è0),

Q2 � ÿ2(èM ÿ è0)T
XN

n�M�1

Lÿ1
XL

l�1

Z( l)
n ÿ rn(è�M )

" #
=2rn(è�M )(èM ÿ è0),

and

Q3 � (èM ÿ è0)TJM (è�M )(èM ÿ è0):

The objective is to show that Q3 dominates Q1 and Q2 as M !1. Lemma 2.2 implies that

Q3 . K2jë1�ë2j2M Mÿ2, 8M . 0, some K2 . 0:

The bound for Q1 can be split into three terms, corresponding to the three components of è0.

It follows from (20) that

[èM ÿ è0]1[=SM (è0)]1 � O(jë1�ë2ëkjM )� OP(jë1�ë2jM [N ÿ M]=
����
L
p

),

8èM 2 AM , as M !1:
Also, (21) implies that

224 S.T. Garren and R.L. Smith



[èM ÿ è0]2[=SM (è0)]2 � O(jë1�ë2ëkjM )� OP(jë1�ë2jM=
����
L
p

), 8èM 2 ÈM , as M !1,

and

[èM ÿ è0]3[=SM (è0)]3 � O(M jë1�ë2ëkjM )� OP(M jë1�ë2jM=
����
L
p

),

8èM 2 ÈM , as M !1:
From (15) and (17) it follows that

Q1 � o(Q3) as M !1:
The term Q2 is equivalent to R1�R2, where

R1 � ÿ2(èM ÿ è0)T
XN

n�M�1

Lÿ1
XL

l�1

Z( l)
n ÿ rn(è0)

" #
=2rn(è�M )(èM ÿ è0)

� O(M2jë2
1�ë2ëkjM )� OP(M2jë2

1�ë2jM=
����
L
p

), 8èM 2 ÈM , as M !1, from (21),

and

R2 � ÿ2(èM ÿ è0)T
XN

n�M�1

[rn(è0)ÿ rn(è�M )]=2rn(è�M )(èM ÿ è0)

� O(M3jë3
1�ë2

2jM ), 8èM 2 AM , as M !1,

since

rn(è0)ÿ rn(è�M ) � O(M jë1�ë2jM ), 8èM 2 AM , as M !1, 8n . M :

Again, from (15) and (17) it follows that

Q2 � o(Q3) as M !1:
Case 2. Assume that èM 2 ÈMnAM . As in case 1, decompose the right-hand side of (22)

into Q1 � Q2 � Q3. Note that

Q3 � 2
XN

n�M�1

f[èM ÿ è0]1 � [èM ÿ è0]2([è�M ]3)n � n[èM ÿ è0]3[è�M ]2([è�M ]3)nÿ1g2:

Recalling (16), we ignore the terms in M , n < M(1� å0=2). For n . M(1� å0=2), we have

[èM ÿ è0]2([è�M ]3)n � n[èM ÿ è0]3[è�M ]2([è�M ]3)nÿ1 � O(M jë1�ë(1�å0=2)
2 jM ) as M !1:

(23)

Since

j[èM ÿ è0]1j. jë1�ë2jM ,

then [èM ÿ è0]1 dominates the left-hand side of (23) for all M suf®ciently large, and for

some K3 . 0,
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Q3 . K3 M([èM ÿ è0]1)2, 8M sufficiently large:

The term Q3 dominates R1 and the last two terms of Q1, using the same argument as in case

1. The ®rst term of Q1 is bounded by

j[èM ÿ è0]1jfO(jëkjM )� OP([N ÿ M]=
����
L
p

)g as M !1,

which is o(Q3) as M !1 from (15) and (17). Since

rn(è0)ÿ rn(è�M ) � O(j[èM ÿ è0]1j � M jë1�ë2jM ) as M !1, 8n . M ,

then

R2 � O(j[èM ÿ è0]1jM2jë2
1�ë2jM � M3jë3

1�ë2
2jM ) � o(Q3) as M !1:

Hence, Q3 dominates Q1 and Q2 as M !1.

Combining cases 1 and 2 results in

P inf
fèM2ÈMg

(èM ÿ è0)T=SM (èM ) . 0
� �

! 1 as M !1: (24)

Therefore, if one de®nes

è̂M �
any value 2 È(int)

M which locally minimizes SM (:), if 9 such a value,

any estimator of è0, otherwise,

(
then

kè̂M ÿ è0k � OP(ëM
1�) as M !1,

which follows from (19), (24), and Lemma 2.3.

Finally to prove uniqueness of è̂M we show that the probability that è̂M absolutely

minimizes SM (èM ) for all èM 2 È(int)
M tends to one as M !1. If è̂M 2 È(int)

M , but è̂M does

not absolutely minimize SM (èM ) for all èM 2 È(int)
M , then there exist at least two values of

èM 2 È(int)
M such that =SM (èM ) � 0. By continuity there must exist a value èéM 2 È(int)

M such

that =2SM (èéM ) � 0. Recalling (22) and the fact that Q3 dominates Q2 in both cases 1 and

2, it follows that

P(=2SM (èéM ) � 0, some èéM 2 È(int)
M )! 0 as M !1: h

2.3. The bias of the asymptotic distribution of the estimator

The goal of this section is to determine the bias of the limiting distribution of è̂M as

M !1, where è̂M is used to estimate è0. Throughout this section assume that (6), (10) and

conditions (15)±(17) required by Theorem 2.1 hold. One can determine the asymptotic

distribution of è̂M ÿ è0 as M !1 by noting from a Taylor series expansion about è0 that
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è̂M � è0 ÿ [=2SM (èyM )]ÿ1=SM (è0), (25)

where èyM lies on the line segment connecting è0 to è̂M . Establishing (25) is the motivation

for ®rst proving consistency of è̂M in Theorem 2.1. Observe from Chebyshev's inequality and

(9) that

=SM (è0) � Ef=SM (è0)g � [OP(N=
����
L
p

), OP(jë2jM=
����
L
p

), OP(M jë2jM=
����
L
p

)]T as M !1,

where

Ef=SM (è0)g

�

ÿ2
X1
k�k

ak(ëM�1
k ÿ ëN�1

k )

1ÿ ëk

ÿ2
X1
k�k

ak[(ë2ëk)M�1 ÿ (ë2ëk)N�1]

1ÿ ë2ëk

X1
k�k

ÿ2a2akf[M(1ÿ ë2ëk)� 1](ë2ëk)M�1 ÿ [N (1ÿ ë2ëk)� 1](ë2ëk)N�1g
ë2(1ÿ ë2ëk)2

2666666666666664

3777777777777775
: (26)

Furthermore, de®ning

[J1M (è)] jk �
2(N ÿ M), if j � k � 1,

2
X1

n�M�1

@rn(è)

@è j

@rn(è)

@èk

, otherwise,

8>><>>:
it follows from matrix algebra that

=2SM (èyM ) � J1M (è0)�
0 OP(M jë1�ë2jM ) OP(M2jë1�ë2jM )

OP(M jë1�ë2jM ) OP(M jë1�ë2
2jM ) OP(M2jë1�ë2

2jM )

OP(M2jë1�ë2jM ) OP(M2jë1�ë2
2jM ) OP(M3jë1�ë2

2jM )

2664
3775: (27)

The determinant of J1M (è0) is strictly greater than zero for all M suf®ciently large. Also,

the probability that the determinant of =2SM (èyM ) is strictly greater than zero converges

to one as M !1. Approximating [=2SM (èyM )]ÿ1 by [J1M (è0)]ÿ1 plus the order terms,

when these inverses exist, the asymptotic distribution of è̂M now can be expressed as

follows:

Theorem 2.2. Under conditions (6) and (15)±(17),
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è̂M ÿ è0

�

(1ÿ ë2)

(N ÿ M)(1ÿ ë2)ÿ 2(1� ë2)

X1
k�k

ak(ë2 ÿ ëk)2ëM�1
k

(1ÿ ëk)(1ÿ ë2ëk)2

(N ÿ M)(1ÿ ë2)2(1� ë2)

[(N ÿ M)(1ÿ ë2)ÿ 2(1� ë2)]ëM�3
2

X1
k�k

akë
M�1
k

(1ÿ ë2ëk)2
fM(1ÿ ë2

2)(ë2 ÿ ëk)ë2

� (1� ë2
2)(1ÿ ë2ëk)g

ÿ(1ÿ ë2)3(1� ë2)2(N ÿ M)

a2[(N ÿ M)(1ÿ ë2)ÿ 2(1� ë2)]ëM�1
2

X1
k�k

akë
M�1
k

(1ÿ ë2ëk)2
fM(1ÿ ë2)(1ÿ ë2ëk)� 1ÿ ëkg

26666666666666664

37777777777777775

�
OP(M4 Nÿ1jë1�ëkjM � 1=

����
L
p

)

OP(M5jë1�ëk=ë2jM � M2jë2jÿM=
����
L
p

)

OP(M4jë1�ëk=ë2jM � M jë2jÿM=
����
L
p

)

26664
37775 as M !1:

Proof. The proof follows from (25) and matrix calculations. h

We have shown in Theorem 2.2 that è̂M ÿ è0 can be written in terms of the asymptotic

bias plus higher-order terms as M !1.

2.4. Evaluation of the covariance matrix of the gradient vector

Section 2.3 involved determining the asymptotic bias of è̂M via (25) and approximating

[=2SM (èyM )]ÿ1 by [J1M (è0)]ÿ1 plus higher-order terms. In order to determine the asymptotic

behaviour of the covariance matrix of è̂M , the asymptotic covariance matrix of the vector

=SM (è0) also needs to be determined as

N (1ÿ å2)ÿ 2M !1 as M !1, some 0 , å2 , 1, (28)

where (28) is a stronger condition than (16): that is the goal of this section.

Assume that (3) holds for r � 1. This condition is always satis®ed for chains which

induce self-adjoint trace class operators and for discrete, ®nite Markov chains. Also, assume

that (6) and (10) hold. Since ë1 � 1 and the stationary distribution of the Markov chain

fX n, n > 0g is independent of the starting state, then (3) implies that

á1(y) � á1(yjx), Ð-a:e: x 2 Ù, í-a:e: y 2 Ù,

so that (8) may be rewritten

r �
�

D

á1(y)í(dy):

Thus, one can write
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cov(Z(1)
n , Z

(1)
n�m)

� P(Z(1)
n � Z

(1)
n�m � 1)ÿ P(Z(1)

n � 1)P(Z
(1)
n�m � 1)

�
X1
k�1

ën
k

�
Ù

�
D

ák(yjx)
X1
l�2

ëm
l

�
D

á l(zjy)ÿ ën
l

�
Ù
á l(zjw)Ð�(dw)

� �
í(dz)

( )
í(dy)Ð�(dx),

8n > 0, m > 1: (29)

Notice that (29) also holds for m � 0 in the Hilbert±Schmidt case since

X1
l�1

�
D

á l(zjy)í(dz) � I(y 2 D):

Therefore,

L cov
@SM (è)

@è j

,
@SM (è)

@èk

� �
� 4 cov

XN

n�M�1

Zn

@rn(è)

@è j

,
XN

n�M�1

Zn

@rn(è)

@èk

 !
,

and the covariance matrix of =SM (è0) can be de®ned by

VM (è0) :� L varf=SM (è0)g:

Under (28) one can conveniently express

1
4
VM (è0) �

T11(N ÿ M) T12ë
M
2 T12a2 MëMÿ1

2

T12ë
M
2 T22ë

2M
2 T22a2 Më2Mÿ1

2

T12a2 MëMÿ1
2 T22a2 Më2Mÿ1

2 T22a2
2 M2ë2Mÿ2

2

266664
377775

�

S11 S12ë
2M
2 S13ë

M
2

S12ë
2m
2 S22ë

3M
2 S23ë

2M
2

S13ë
M
2 S23ë

2M
2 2S23a2 Më2Mÿ1

2 � S33ë
2M
2

266664
377775

�

O(jë2jM ) O(jë2j3M � jë2ëkjM ) O(M jë2j2M )

O(jë2j3M � jë2ëkjM ) O(jë2j4M � jë2
2ëkjM ) O(M jë2j3M )

O(M jë2j2M ) O(M jë2j3M ) O(jë1�ë2
2jM )

26664
37775 (30)

as M !1 under conditions (15), (17), and (28), where
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T11 �
X1
l�2

(1� ë l)(1ÿ ë l)
ÿ1

�
D

�
D

á1(y)á l(zjy)í(dz)í(dy),

T12 � ë2(1ÿ ë2)ÿ1
X1
l�2

[1ÿ ë2ë
2
l ][(1ÿ ë l)(1ÿ ë2ë l)]

ÿ1

�
D

�
D

á1(y)á l(zjy)í(dz)í(dy),

T22 � ë2
2[1ÿ ë2

2]ÿ1
X1
l�2

[1� ë2ë l][1ÿ ë2ë l]
ÿ1

�
D

�
D

á1(y)á l(zjy)í(dz)í(dy),

S11 � ÿ2
X1
l�2

ë l(1ÿ ë l)
ÿ2

�
D

�
D

á1(y)á l(zjy)í(dz)í(dy),

S12 � ë2
2[1ÿ ë2

2]ÿ1

�
Ù

�
D

�
D

ÿá1(y)á2(zjx)�
X1
k�2

á2(yjx)ák( zjy)�
X1
l�2

ë l[1� ë2 ÿ 2ë2ë l]

 

3 [(1ÿ ë l)(1ÿ ë2ë l)]
ÿ1[ÿá1(y)á2(zjx)� á2(yjx)á1(zjy)]

!
í(dz)í(dy)Ð�(dx),

S13 � a2(1ÿ ë2)ÿ1

�
D

�
D

á1(y)á l(zjy)í(dz)í(dy)
X1
l�2

(1ÿ ë2)ÿ1
�

� ë l[[(1ÿ ë2)(1ÿ ë l)]
ÿ1 � ë2[(1ÿ ë2)(1ÿ ë2ë l)]

ÿ1 � ë2(1ÿ ë2ë l)
ÿ2]
	

,

S22 � ë3
2[1ÿ ë3

2]ÿ1

�
Ù

�
D

�
D

ÿá1(y)á2(zjx)�
X1
k�2

á2(yjx)ák(zjy)

 

� 2ë2

X1
l�2

ë l(1ÿ ë2ë l)
ÿ1[ÿá1(y)á2(zjx)� á2(yjx)á1(zjy)]

!
í(dz)í(dy)Ð�(dx),

S23 � a2ë2(1ÿ ë2
2)ÿ2

X1
l�2

1� ë2ë l(33ÿ ë2
2 ÿ 2ë2ë l)

(1ÿ ë2ë l)2

" #�
D

�
D

á1(y)á l(zjy)í(dz)í(dy)

and

S33 � á2
2[1ÿ ë2

2]ÿ3
X1
l�2

(1ÿ ë2ë l)
ÿ2f(1� ë2

2)(1ÿ ë2ë l)
2

� 2ë2ë l(2ÿ ë3
2ë l ÿ ë2ë l)g

�
D

�
D

á1(y)á l(zjy)í(dz)í(dy):
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2.5. A central limit theorem for the estimator

The goal of this section is to prove a central limit theorem for è̂M using Lindeberg's

condition. Assume throughout this section that conditions (6), (10), (15), (17) and (28) hold.

To condense notation, the matrix VM (è0) is expressed by VM.

It is easy to show that VM is positive de®nite, because for any non-zero t � (t1, t2, t3)T,

we have

tTVM t � 4 var
XN

n�M�1

Z(1)
n (t1 � t2ë

n
2 � t3 na2ë

nÿ1
2 )

( )
. 0:

It will be helpful to de®ne the 333 symmetric matrix V
ÿ1=2
M by the following:

V
ÿ1=2
M V

ÿ1=2
M � Vÿ1

M :

Since VM is symmetric, the matrix V
ÿ1=2
M can be shown to exist. Direct calculation and (30)

imply that

([V
ÿ1=2
M ]1,1)2 � ([V

ÿ1=2
M ]1,2)2 � ([V

ÿ1=2
M ]1,3�2 � [Vÿ1

M ]1,1 � O(Nÿ1),

([V
ÿ1=2
M ]1,2)2 � ([V

ÿ1=2
M ]2,2)2 � ([V

ÿ1=2
M ]2,3�2 � [Vÿ1

M ]2,2 � O(M2jë2jÿ2M ), (31)

([V
ÿ1=2
M ]1,3)2 � ([V

ÿ1=2
M ]2,3)2 � ([V

ÿ1=2
M ]3,3�2 � [Vÿ1

M ]3,3 � O(jë2jÿ2M )

as M !1. From these three equations (31) it follows that

V
ÿ1=2
M �

O(Nÿ1=2) O(Nÿ1=2) O(Nÿ1=2)

O(Nÿ1=2) O(M jë2jÿM ) O(jë2jÿM )

O(Nÿ1=2) O(jë2jÿM ) O(jë2jÿM )

2664
3775 as M !1: (32)

One can write ����
L
p

V
ÿ1=2
M J1M (è0)(è̂M ÿ è0 � [J1M (è0)]ÿ1Ef=SM (è0)g)

�
����
L
p

V
ÿ1=2
M J1M (è0)f[J1M (è0)]ÿ1 ÿ [=2SM (èyM )]ÿ1g=SM (è0)

ÿ
����
L
p

V
ÿ1=2
M [=SM (è0)ÿ Ef=SM (è0)g] from (25): (33)

We shall show that as M !1, the second term on the right-hand side of (33) converges in

distribution to a multivariate normal distribution with mean 0 and variance I3, where 0 is the

zero vector of dimension 3 and I3 is the 3 3 3 identity matrix. Also, we shall show that the

®rst term on the right-hand side of (33) tends to 0 in probability as M !1 whenever the

condition

L � o(Mÿ12jë1�ëkjÿ2M ) as M !1 (34)

holds. This additional condition on L will be shown to result in a central limit theorem on è̂M

as M !1. This condition is needed because if L were allowed to become arbitrarily large

as M increases, then the square of the bias of è̂M , which is not a function of L, might
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dominate the variance of è̂M , which decreases with increasing L. It will be shown in the

proof of Theorem 2.3 that values of N and L exist which satisfy (17), (28) and (34)

simultaneously.

To prove that the second term on the right-hand side of (33) converges in distribution to

MN (0, I3), it is enough to prove that����
L
p

tTV
ÿ1=2
M [=SM (è0)ÿ Ef=SM (è0)g]!D N (0, ktk2), (35)

for all vectors t of dimension 3. Since (35) is satis®ed trivially for t � 0, assume without loss

of generality that t 6� 0. First de®ne

=S
( l)
M (è0) � ÿ2

XN

n�M�1

[Z( l)
n ÿ rn(è0)](1, ën

2 , na2ë
nÿ1
2 )T, l � 1, . . . , L:

Letting å3 . 0, Lindeberg's condition,

lim
M!1

(Lktk2)ÿ1
XL

l�1

Ef(tT[=S
( l)
M (è0)ÿ Ef=S

( l)
M (è0)g])2

I(jtTV
ÿ1=2
M [=S

( l)
M (è0)ÿ Ef=S

( l)
M (è0)g]=

����
L
p
j > å3ktk)g ! 0 as M !1, (36)

for proving (35) will be shown to hold. Since (17), (31) and the bounded nature of Z( l)
n imply

that

tTV
ÿ1=2
M [=S

( l)
M (è0)ÿ Ef=S

( l)
M (è0)g]=

����
L
p
� O([N ÿ M][Nÿ1=2 � MëÿM

2 ])=
����
L
p

� o(1) as M !1,

then (36) holds. This proves (35) for any t, and hence

ÿ
����
L
p

V
ÿ1=2
M [=SM (è0)ÿ Ef=SM (è0)g]!D MN (0, I3) as M !1: (37)

Since (26), (27), (32) and (34) imply that the ®rst term on the right-hand side of (33)

converges to 0 in probability under conditions (15), (17), (28) and (34), the asymptotic

distribution of è̂ now can be stated.

Theorem 2.3. Under conditions (6), (15), (17), (28) and (34),����
L
p

V
ÿ1=2
M J1M (è0)(è̂M ÿ è0 � [J1M (è0)]ÿ1Ef=SM (è0)g)!D MN (0, I3) as M !1:

Proof. First observe that a large class of values of N and L exists which satis®es conditions

(17), (28) and (34) simultaneously; for example, let N � M2 and L � M14jë1�ë2jÿ2M . The

result follows by applying to (33) and (37) Slutsky's lemma, which is (for example) Theorem

4.4.6 from Chung (1974, p. 92). h

Using tedious algebra or a computer software package, the covariance matrix of the

asymptotic distribution of è̂M can be expressed by
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L varfè̂M ÿ ([J1M (è0)]ÿ1 ÿ [=2SM (èyM )]ÿ1)=SM (è0)g

� [J1M (è0)]ÿ1VM (è0)[J1M (è0)]ÿ1, 8 valid M , (38)

�

T11

N ÿ M

W12 M

[N ÿ M]ëM
2

ÿW12

a2[N ÿ M]ëMÿ1
2

W12 M

[N ÿ M]ëM
2

W22 M2

ë2M
2

ÿW22 M

a2ë
2Mÿ1
2

ÿW12

a2[N ÿ M]ëMÿ1
2

ÿW22 M

a2ë
2Mÿ1
2

W22

a2
2ë

2Mÿ2
2

266666666664

377777777775

�

O
1

N2

� �
O

1

N jë2jM
� �

O
1

N

���� ë1�
ë2

����M � 1

N 2jë2jM

 !

O
1

N jë2jM
� �

O
M

jë2j2M

� �
O

1

jë2j2M

� �

O
1

N

���� ë1�
ë2

����M � 1

N2jë2jM

 !
O

1

jë2j2M

� �
O

���� ë1�
ë2

2

����M � 1

N jë2j2M

 !

2666666666664

3777777777775
as M !1, where

W12 � (1ÿ ë2)(1� ë2)2[a2
2ë

6
2]ÿ1fT11a2

2ë
4
2 � T12a2

2ë
2
2(1ÿ ë2)

� T22a2
2(1ÿ ë2)2(1� ë2)ÿ S13a2ë

3
2(1ÿ ë2)2(1� ë2)

ÿ S23a2ë2(2ÿ ë2 ÿ 4ë2
2 � 2ë3

2 � 2ë4
2 ÿ ë5

2)� S33ë
2
2(1ÿ ë2

2)3g
and

W22 � (1ÿ ë2
2)4[a2

2ë
8
2]ÿ1[T22a2

2 ÿ 2S23a2ë2(1ÿ ë2
2)� S33ë

2
2(1ÿ ë2

2)2]:

3. Discussion

The issue remaining is how to choose M, N and L in practice. Since we are interested in

estimating ë2 and since

Lÿ1
XL

l�1

Z( l)
n � r� a2ë

n
2 � O(jëkjn)� OP(1=

����
L
p

) as L!1, (39)

reducing the bias of è̂M requires values of n suf®ciently large such that jëk=ë2jn is negligible,

as Theorem 2.2 quanti®es. However, if M and N are chosen too large, then the a2ë
n
2 term in

(39) becomes negligible relative to the OP(1=
����
L
p

) term, and for ®xed L the variances of â2
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and ë̂2 become large, as (38) quanti®es. These variances may be reduced simply by choosing

L large. Qualitatively, therefore, the results show that M needs to be moderately large so that

jëk=ë2jM is negligible, but then L needs to be as large as possible so that
����
L
p jë2jM is large.

Since computing time may be limited, M, N and L should ideally be chosen to allow a

trade-off between bias and variance of ë̂2, which are

O(M jëk=ë2jM ) and O(Lÿ1jë2jÿ2M ) as M !1, (40)

respectively, using Theorems 2.2 and 2.3. Choosing M, N and L to allow an optimal trade-off

is possible in theory but not in practice since knowledge of jë2j and jëkj is required. Since the

bias of ë̂2 decays geometrically as M !1, M typically need not be chosen too large. The

value of N required is O(M) as M !1, and the values of L required increases

geometrically in M and proportionally to N2, as implied by (16) and (17), respectively.

In practice one may want to ®x values of N and L with L as large as practically possible,

and estimate ë2 using various values of M. The value of M needed to allow an optimal

trade-off between bias and variance can be determined theoretically. Using (40) to equate

the asymptotic variance to the square of the asymptotic bias, it follows that

M � ÿ[log
����
L
p
� log log L][logjëkj]ÿ1 � O(1) as L!1,

and the optimal mean square error is

MSE(ë̂2) � O(Llogjë2j=logjëkjÿ1[log L]2logjë2j=logjëkj) as L!1:
If one insists that

����������
MSE
p

be less than some å4 . 0, then (40) implies that M and L

should be chosen according to

M � [ÿlog å4 � log (ÿlog å4)][logjë2=ëkj]ÿ1 � O(1) as å4 ! 0,

and

L � O(åÿ2
4 [ÿåÿ1

4 log å4]2logjë2j=logjëk=ë2j) as å4 ! 0:

The total number of Monte Carlo variables needed is

NL � O(ML) � O(åÿ1
4 [ÿåÿ1

4 log å4]1�2logjë2j=logjëk=ë2j) as å4 ! 0: (41)

Remark 3.1. Equation (41) provides a standard against which other estimators of ë2 may be

judged. We make no claim that our estimator of ë2 is the best possible, even in an asymptotic

sense, but if some other estimator were proposed, then the sample size needed to achieve a

speci®ed mean square error, å2
4, could in principle be computed and compared with (41).

We are not aware of any results related to (41) in the current literature on Markov chain

Monte Carlo convergence diagnostics.

4. An example

This two-stage sampling procedure is applied to an example, known as the hierarchical

Poisson model, which has been studied by Gelfand and Smith (1990) and Tierney (1994) in
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the Gibbs sampling context using data previously analysed by Gaver and O'Muircheartaigh

(1987). The data, which are listed in Table 1, are denoted by yi, the number of failures at the

ith pump at a nuclear power plant at ®xed time ti, for i � 1, . . . , 10.

The hierarchical Poisson model is now described. Assume that the yi are independently

Poisson distributed with mean ùiti. Also, assume that the ùi have independent gamma

distributions Ã(á, â), whose densities are ùáÿ1 expfÿù=âg=âáÃ(á). The parameter 1=â is

chosen to have a Ã(ã, ä) distribution, where ã � 0:01 and ä � 1. Moreover, the parameter

á is chosen to be 1.802, which is the method of moments estimator as suggested by

Gelfand and Smith (1990). The values of á, ã and ä used herein are the same ones as used

by both Gelfand and Smith (1990) and Tierney (1994).

To set up the Gibbs sampler, one needs to be able to sample from the conditional

distributions [ùijù j, j 6� i; y], i � 1, . . . , 10, and [1=âjù, y]. It can be shown that

[ùijâ, ù j, j 6� i; y] � [ùijâ, yi]

� Ã(á� yi, (ti � 1=â)ÿ1), i � 1, . . . , 10,

and

[1=âjù, y] � [1=âjù]

� Ã ã� 10á,
X10

i�1

ùi � 1=ä

( )ÿ1
0@ 1A, i � 1, . . . , 10:

Using (2), it now will be shown that the Hilbert±Schmidt double norm is ®nite for the

hierarchical Poisson model. Letting f (:) denote the appropriate densities, for the hierarchical

Poisson model it follows that

Table 1. Number of pump failures at a nuclear power plant

Pump i yi ti

1 5 94.320

2 1 15.720

3 5 62.880

4 14 125.760

5 3 5.240

6 19 31.440

7 1 1.048

8 1 1.048

9 4 2.096

10 22 10.480

Note: yi is the number of failures at pump i, and ti is the time when
the failures at pump i are observed.
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A(â�, â)=ð(â) /
�1

0

. . .

�1
0

X10

i�1

f (ùijâ�, yi)

" #
f (âjù, y) dù1 . . . dù10

3 f (â)
X10

j�1

�1
0

f (yjjùyj) f (ùyjjâ) dùyj

24 35ÿ1

/
�1

0

. . .

�1
0

Y10

j�1

ù
á� y jÿ1
j exp fÿù j(tj � â� � â)g

24 35

3 äÿ1 �
X10

k�1

ùk

" #ã�10á

dù1 . . . dù10

Y10

i�1

[(ti � â�)(ti � â)]á� yi :

Since

äÿ1 �
X10

k�1

ùk

" #ã�10á

<
2(ã� 10á)

min j(tj)
exp (ti=2) äÿ1 �

X10

k�1

ùk

" #
ÿ 1

( )
, i � 1, . . . , 10,

then

A(â�, â)=ð(â) < constant 3
X10

i�1

[(ti � â�)(ti � â)(â� � â� ti=2)ÿ1] yi�á, (42)

and the right-hand side of (42) can tend to in®nity only if â!1 and â� ! 1
simultaneously. Therefore, (2) holds since the tails of ð(â) decay exponentially fast as

â!1, and the Hilbert±Schmidt double norm is ®nite.

Using the data listed in Table 1 the joint posterior distribution of ù and â is

approximated using Gibbs sampling. In the ®rst stage of the two-stage sampling procedure,

the initial distribution Ð�(:) is chosen to be degenerate at â � 0:01. To satisfy the

reversibility condition the variates are sampled in the order (ù1, . . . , ù10, â). The set for the

indicator function Z( l)
n is chosen to be D � [â, 0:42].

The number of independent replicates is chosen to be L � 5000, and the length of any

replicate is chosen to be N � 12. Allowing M to vary between 0 and 6, the least-squares

estimates of and 95% con®dence intervals on r, a2, and ë2 are graphed in Figures 1, 2 and

3, respectively. These con®dence intervals have width 2 3 1:96 times the standard error. The

standard errors are calculated by empirical evaluation of the asymptotic covariance matrix

(38), using the variability among different runs of the simulation to estimate VM , the

covariance matrix of =SM (è0) (the so-called information sandwich method). The relatively

narrow con®dence intervals on ë2 using M � 0, M � 1, and possibly even M � 2, suggest

that 0:3 , ë2 , 0:5. The con®dence intervals using M > 3 are too large to draw reasonable

conclusions.

Run lengths longer than 12 are also used, some as large as 50, but not discussed in detail

herein. However, estimates of ë2 are less stable for longer run lengths since the standard
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deviation of Z n is large compared to ja2ë
n
2
j for large n, as exempli®ed by (39). Of course

if N is too small, then the bias of ë̂2 is large. We eventually chose N � 12, since all

simulations suggest that jë2j is not close to one. If indeed jë2j, 0:5, then estimating ë2

accurately becomes dif®cult but not too pertinent, since covergence is quite rapid.

ê

0.
51

0
0.

50
5

0.
50

0
0.

49
5

0.
49

0

ρ

0 1 2 3 4 5 6

M

Figure 1. Least-squares estimates of r, hierarchical Poisson model

6
4

2
0

2
2

â 2

0 1 2 3 4 5 6
M

Figure 2. Least-squares estimates of a2, hierarchical Poisson model

Estimating the second largest eigenvalue of a Markov transition matrix 237



Other authors also have noted rapid covergence. Using many independent replications,

Gelfand and Smith (1990) show that the posterior distribution is practically reached after

only N0 � 10 iterations, although they do not specify their initial distribution for (ù, â).

Mykland et al. (1995) show that the average number of iterations required for the chain to

reach a regeneration point is 2.56, suggesting that convergence is rapid. Rosenthal (1995)

shows that after N iterations the total variation norm can be bounded by

0:976N � 0:951N 6:2� E
X10

i�1

ù(0)
i ÿ 6:5

 !2
24 35,

where the ù(0)
i are the initial values of the ùi, and hence an upper bound on ë2 is 0.976; this

appears in the light of our results to be a much too conservative estimate.

In an attempt to estimate the true convergence rate for this example as accurately as

possible, the whole procedure has been repeated with L increased to 105. Such a large value

of L usually would not be practical, but it is here in view of the small value of N and the

fast operation of the Gibbs sampler for this problem. We took N � 12, various sets D, and

degenerate initial distributions on â (Figure 4). The simulations suggest that a reasonable

estimate of ë2 is 0.3, using M � 1 for Figure 4a±b, and M � 0 for Figure 4c±f. In these

®gures the solid line represents Z n, and the long-dashed lines are pointwise 95% con®dence

intervals. The short-dashed line represents the least-squares estimate r̂� á̂2(ë̂2)n, using the

common estimate ë̂2 � 0:3 This line usually falls within the con®dence limits, indicating

that 0.3 is indeed a reasonable estimate of ë2.

For the second stage of the two-stage sampling procedure, simulations are generated with

ê

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

2
0.

2

λ 2

0 1 2 3 4 5 6
M

Figure 3. Least-squares estimates of ë2, hierarchical Poisson model
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Figure 4. Observed and ®tted probabilities, common ë2 for the following (â, D) pairs: (a)

(0:01, â, 0:42); (b) (0:02, â, 0:4); (c) (0:02, ù1 , 0:07); (d) (0:04, ù3 , 0:1); (e)

(0:03, ù4 , 0:12) (f) (0:04, ù2 , 0:14).
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M0 � 50 and N0 � 105 to minimize the bias and variance of r̂M0,N0
. Since r(1ÿ r) < 0:25,

and if jë2j < 0:5, then (12) and (13) imply that the standard deviation of r̂M0,N0
is less than

0.0027 for all r. If ja2j < 3 and jë2j < 0:5, then (11) implies that the bias of r̂M0,N0
is

negligible for all r. The initial distribution Ð�(:) for this stage also is chosen to be

degenerate at â � 0:01. The sample means and standard deviations of these N0 samples of

ù and â are listed in Table 2. Using Laplace's method as discussed in Tierney et al. (1989),

Tierney (1994) reports approximate asymptotic posterior means of ù1, ù5 and ù10 to be

0.070 28, 0.6279, and 1.8431 and standard deviations to be 0.026 95, 0.2931, and 0.3910,

respectively. The 105 simulations generated herein using M0 � 50 produce sample means

for ù1, ù5 and ù10 of 0.0703, 0.6293 and 1.8452 and sample deviations of 0.0271, 0.2942

and 0.3912, respectively. The two sets of estimates are in very close agreement.
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