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On local times of a symmetric stable
process as a doubly indexed process
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We consider the local time process (L}, x € R, = 0) of a symmetric stable process X with index f
in (1, 2]. We compute the p-variation of L on any rectangle of R X [0, oco). Unlike for the p-variation
of L with respect to the spatial parameter (studied by Marcus and Rosen), we show here that the
Brownian case — when 8 =2 — is atypical.
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1. Introduction and notation

Let (X;, t = 0) be a symmetric stable process with index § in (1, 2]. This means that X is a
real-valued process with stationary independent increments such that

E[eXr] = e 1o, a € R.

This process admits a continuous local time process (L}, x € R, t = 0) (see Boylan 1964;
Barlow 1988).

Marcus and Rosen (1992b) have shown that if (7,).en 1 any sequence of partitions of
[a, b], a subinterval of R, such that |7,| converges to 0 as n tends to oo, then uniformly in
t on any bounded subinterval of R*, for all >0,
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n—0o00 a

where ¢(f) is a constant that only depends on f3. For = 2, which is the case when X is a
Brownian motion, (1) was already established by Bouleau and Yor (1981).

In this paper, we consider the local times as a doubly indexed process. For [a, b] a
subinterval of R and [s, 7] a subinterval of [0, +00), let (Aj)ren be a sequence of grids of
[a, b] X [s, f]. For each k, writt Ay ={(x; t),1<i<n,1=<j=<m}, where, for
notational simplicity, we drop the dependence on k. Suppose that |Aj| converges to 0 as
k tends to co. We seek the limit in L! as k& tends to oo of the sum

Z L — L)ti'm e _,_L);;-|2/(/5—1). )

tiv1 tis1
(xi,t;))EA

The process L has been studied as a doubly indexed process by Walsh (1983), Rogers and
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872 N. Eisenbaum

Walsh (1991) and Eisenbaum (1998). These authors have developed the notion of stochastic
integration with respect to L of doubly indexed processes. We will use some results of
Eisenbaum (1998) in Section 4.

In Section 2, we treat the case 8 € (1, 2). Sections 3 and 4 are devoted to the case § = 2.
This is an atypical case, because it is the only value of S for which the limit in (2), for
s =0, is equal to the limit in (1): when X is a Brownian motion, we have

b
z+l i i ,2 Ll R
Z ‘L)l(jJFl _ LJ"/H — L’t‘#l + L’;}| k—>—o)o4j (L] — L) dx.
(i, 1)EAL 4

Actually f =2 is the only case for which the local time process satisfies Tanaka’s formula.
The computations can hence be done by considering the process

t

M(x, l) = J l(Xl$x) dx;,.
0

In Section 3, we compute the quadratic variation of L. In Section 4, we exploit the process M
in order to rewrite, from a new point of view, an It6 formula obtained in Eisenbaum (1998).

For ease of notation, we will write, for any doubly indexed process (Y(x, #), x € R,
t=0),

Ain = (Y(xi+1,t;+1) - Y(Xi+1,tj) - )](xi,lfﬂ) + Y(Xis[/'))'

Further, we let (p;(y), t =0, y € R) be the transition densities of X with respect to the
Lebesgue measure and (%),=¢ be the natural filtration of X. Finally, ¢(f) will denote a
generic constant depending only on 3, which may be different from line to line.

2. p-variation of the local times for £ in (1, 2)
We have the following theorem.

Theorem 2.1. For € (1, 2), let (Ay)ren be a sequence of grids of [a, b] X [s, t], where, for
each k, Ay = {(x;, ), | <i<n, 1< j< m}. We suppose that |A;| and sup s ear|¥it1—
xil/(tis1 — )P both converge to 0 as k tends to co. We then have

1
() 1AL =0,
) k—o00

ii 1 |B/(B=D)
(i) E<Z |A;L| ) IH—O>O—|—oo.

(.))

In view of Theorem 2.1, it is natural to ask whether there exists a critical exponent
such that we would have convergence of Z(i, j)|A,-jL|“ in L' to a finite, non-zero limit. The
answer is negative and given by the following proposition. We write &/ for the set of the
grids of [a, b] X [s, ] satisfying the hypotheses of Theorem 2.1.
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Proposition 2.2. For any p € (8/(B— 1), 2/(8 — 1)), we have

() infQE{ Y [AGLIP | A€ =0,
(xi,4)€EA

(i) sup< E Z |AGLI? | A e D p =+o0.
(xi,t))EA

Proof of Theorem 2.1. Define, for a fixed y € R and a fixed j,

.. o Xi— Y
d(l) Js y) - (tj+1 ——tj)]/ﬁ .

(i) By successively applying the Markov property of X at time #; and its scaling property,
we obtain

ED_IAGLI DN =B 1D LT, = L7, [P0 e 0,
(i) (i.))
E[<Z|Lf;:i 4 t/+1 I)|2/(ﬁ 1)>

= ZJ P(Xt/ € dy)E [Z ‘L)tcjill 7 XI,HV t/‘z/(ﬁ 1)]

= (1 - tj)z/ﬁJRP(X[/ € dy) S E[IL{UY - pERRIG-Dy,
J i

:Z:E

Consequently, we have

E Z |AijL|2/(ﬂ—1)‘|

(@.))

- d(i+1.j, d(i.j, -
< sup|t;41 — P E (tj41 — tj)JRP(XIj Gdy)§ E[|L{T ) — {00y,
J j i

We note that since 2/ > 1, we have

sup| 141 — 7P — 0.
J

k—o0

Hence, to prove (i) it is sufficient to show that
> (i1 = rj)JRPort, € dy)ZE[ L
J i

is uniformly bounded.

d(i+13) _ dGij.y)
1 1

2/(/7’—1)]



874 N. Eisenbaum
We will use the following inequality, established by Marcus and Rosen (1992b): for any
p=2,
E[|LY — L]|P] < C(B, p)t'P=VP/2B|x — y|(F=Dp/2]

where C(f, p) is a constant depending only on 3 and p. Note that a direct use of the above
inequality does not provide the uniform majorization that we want to establish.
Now note that, uniformly in y and j,

i —0Q

We set
S; = sup X,.

o=r=<1

Let (p, ¢) be a pair of positive real numbers such that 1/p+1/g =1 and 1<g<p. By
successively applying Holder’s inequality and the above result of Marcus and Rosen, we
obtain

E[ Z |L¢11(i+l,j,y) _ Lf(i»j,y)Z/(ﬁl)]
d(i,j,y)=0

d(i,j,y)=0

=3 E{(Li](m’j’y)Lii(i"i’w)z/(ﬁ1)]1/”1’[31?61(1',]} DI
d(i,j,y)=0

<c(f) Y, @i+1,j,y)—dG, j, MIPLS = d(, j, »1'
d(i,j,y)=0

=cPd, > di+1, ), y)—dl, j, YIPIS = d(, j, y)]'

neN n<d(i,j,y) < n+1
<c(B)Y_ PLS = n]"/".

neN
Next we use the estimate (see, for example, Bertoin 1996, p. 221)
c(B)
xP

P[S) = x] ~ as x — 00.

Since f3/q is strictly greater than 1, we obtain by symmetry that

o . 2/(B-1)
E [Z <Lf(z+l,j,y) _ Lf(l’]’y)) ‘| < zc(ﬁ)z P[S, = n]l/q < 00.

i neN
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Consequently,
> (tpsr = rJ»)JRPoc,. € dy) ZE[
J i

(ii) Similarly, we have

> |AI~,~L|’5/<’3‘”] = (1 - rj)JRP(X,, € dy)E lZ
J

(i.)) i

1

LA _ pdi)

2/('3_1)} < ¢(P)(t — 5) < 0.

E Li’(i‘*l»j,y) _ Lf(i,j,y)

B/(B-1 )]

t
_ j j Glu, y) dudy,
R Js
with

L(lj(i+l’j’y) _ L?(i,.f:y)

Gilu, y) = Z Lty 1 py,(VE [Z ﬁ/(ﬁl)‘| .
J i

For a fixed pair (u, y), there exists a unique sequence (j(k)); (actually (j(k, u));) such
that ¢ <u < tj41 for every k Now if y € [a, b], then (d(i, j(k), ¥))1<i<n 1s a partition
such that sup,(d(i + 1, j(k), y) — d(i, j(k), y)) tends to O, d(1, j(k), y) — —oo, and
d(n, j(k), y) — +o00, as k tends to co. Thanks to (1), we immediately have, for any » >0,

fimEl 2

(@, j(k),y)I<r

LAGHI0D _ pd@i00 BB | — o

Hence Gg(u, y) converges to oo on [s, f] X [a, b] almost everywhere with respect to
Lebesgue measure. By the Lebesgue dominated convergence theorem, this implies that, for
any M >0,

bt
J J L, >mdydu ]H—;O(b— a)(t —s).

adJds

Since

t b pt
J J Gi(u, y)dudy = MJ J 1G> dydu,
RJs

adJds

we obtain that, for any M >0,

t

li}t{n ian J Gi(u, y)dudy = M(b — a)(t — s).
—00 RJs
Consequently,

t
lim J J Gi(u, y)dudy = +o0.

k—oo JrJs
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Proof of Proposition 2.2. (i) Let (¢;)ren be a sequence of real numbers strictly decreasing to
0. For each k, we set n = [(b — a/¢;)] and we define the grid Ay by

x| =a, X —Xi=¢ 1 <isn—2, x, = b.
Now let ¢ be such that 0 < g <f. We set m = [(b — a)/c!]. Similarly, we define
t=s, tim—t=¢,1<j<m-2, tm=t.

With this definition of Ay, the assumptions of Theorem 2.1 are readily verified and,
moreover, we have

Xivl — X 3 1-a/P

sup(;41 — ;) < 3¢j and sup WA S €

j i (L =4
Following the same steps as in the proof of Theorem 2.1(i), we obtain

B Astl? = Y - 00 A, <an S|
(i.)) J i

L(II(Hl’j’y) _ Lil(i’j’y)

]

< sup(tpr — )PPV ey - ")JRP(X” €dn E{ LA _ )
J j i

p}
We retain the notation S| = supp<,<; Xs;. For u and v positive real numbers such that
I/u+1/v=1and 1 <v<f, we have

E|: L‘IJ(i‘HJ,y) _ Lil(i».f,y) p:|
d(i,j,y)=0
< E[ L{TH — L0 Pﬂ] VrpLs, = da, j, 17
d(i,j,y)=0
<c) > @i+, y) —dG,j. )P OPPPS = dG, j, ]
d(i,j,y)=0

<c(B) sup (di+1,j,y)—dG, j, )PP N @i+ 1, . y) - dG, . )
d(i,j,y)=0 d(i,j,y)=0

X P[S, = d(i, j, »)]'".

As we have already seen in the proof of Theorem 2.1(i), we have

> Wi+ 1, 4, y)—dG, j, IPIS) = dGi, j, ] <D PIS) = 0] < oo,
d(i,j,y)=0 neN

Therefore,
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d(i+1,J, d(i,j, . . .. _ _
Z E[|L1(1+ 5y _ Ll(tjy)|p] <c(B) sup dGi+1, ), y)—dG, ], y))(ﬂ 1)p/2—1
d(i,j,)=0 d(i.j,y)=0

1- —1)p/2—1
gc(ﬂ)e(k q/B(B-1)p/ ).

This implies that

E Z A;LP < C(ﬁ)eg(ﬁf1)/2}{q(p72)/ﬂ)+p72/(ﬁ71}'
(i.))
The exponent of ¢; is positive as soon as we choose ¢ strictly greater than
B{2/(f—1)— p}/(p—2) and this is always possible since this last quantity is strictly
smaller than f.
(ii)) We consider a sequence of grids (Aj)ien defined as above, except that we will
choose another value for g.
]

_ d(i+1,), d(iJ.
EY ALY = (1701 — )" WﬁJRP(th € dy)ZE[ Ly — e
J i
LA _ g

(i.))

p]_

L({{(i+l"j’y) _ Lflj(iaj,,")

Similarly, for a fixed pair (u, y), there exists a unique sequence (j(k)); (actually
(j(k, u))k) such that ¢;p <u<tjp4 for every k Now if ye€la, b], then
(d(i, j(k), ¥))<i<n is an ordered sequence such that sup;(d(i + 1, j(k), y) — d(i, j(k), y))
tends to 0, d(1, j(k), y) — —oo, and d(n, j(k), y) — 400, as k tends to co. Moreover, for
any 7, u and y,

b
= 6Z(p(ﬁfl)/ﬁfl) Z(th - tj)J P(X,, € dy)ZE[
7 a i
Now motivated by the proof of Theorem 2.1(ii), we write

bt b
||| Grtw yrdudy = 4700 0y < | v, < ane lz
S J

a a

. ]

1

where

Llli(i+1~./3y) _ L(lj(i’j’y)

1

Gilu, y) = {00 Z Lty,00 ) pr,(V)E [Z
J

3P P < dGi+ 1, j(k), y) — dG, jk), y) < 3¢, P
We want to find a lower bound for

PPN G AR,

|G, j(k), )| <M

In order to do so, we will use the following two results. The first was established by Barlow
(1988) and Marcus and Rosen (1992a), this is the exact modulus of continuity of L;, namely,
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lim

1/2
sup — C(ﬂ) sup L7 as
0—0 [x—y| <o 2 s :
yl=m [x = ¥|P=D72 (log
x — |

The second result is a refinement of (1) and was proved by Marcus and Rosen (1992b).
Retaining the notation of the Introduction, and moreover assuming that the sequence of
partitions (77,,),en is such that || = o(1/log n)!//#=D, then the convergence in (1) is almost
sure.

To apply this result to the partitions (d(i, j(k), y); indexed by k, we take from now on

1/ 1 \YB-Da-a/p
% (log k>

LY — L)’
Y((S) = sup | 1 1 |

x—y|<od 1 1/2°
\‘x|,|yy\‘sM |x — y|(B=D/2 <10g( ))
|x — ¥l

We now we remark that, for any M >0, we have

¥ S

i |d(i,j(k), y)<M

i — L]

We set

LAGHLIRY) _ pdGi0.) LAGHLIRD) _ pdGi0D)|p

L;l(iJrl,j(k),y) _ Ltli(i,j(k),y) 2/(B-1)

2 _ldGjk) )< M

; b
d(i+1,j(k), d(i,j(k), N
SUP|a(i,joiy, )< ae | LTI — L{GIOD 2/ p

which leads to

Gz(p(ﬁfl)/ﬁfl)z Ltli(iJrl,j(k)J) _ Ltli(i,j(k),y)
i

LAY _ i) (2/(5-1

r=cB)| .

|d(i.j(k). y)l<M

X [Y(36}C—q//3)]p—2/(ﬁ—1)6§((/3—1)/2}{q(p—2)/ﬂ+p—2/ﬁ—1} (p=2/(B-1)/2

log(ex)

By the two results just recalled, we know that, for any pair (u, y),

. d(i+1,j(k), d(i,j(k), - 1- Yy
lim L1(1+ Jk.y) Ll(u( 1) [2/(B—1) [Y(3c} Q/ﬁ)]p 2/(B-1)

| 1dG, i< m

M p=2/(f-1)
= C(ﬂ)J L’fII/(ﬂ_l)dx< sup Li) a.s.
-M

lz|lsM

Since this last limit is almost surely strictly positive, the previous inequality shows us that



On local times of a symmetric stable process 879

lim ¢ +00 a.s.

k—o0

t}]ﬂ(p(ﬁfl)/ﬁfl) Z |L1d(i+1,j(k),y) _ L;f(i,j(k),y)|p _
i

for any ¢ such that 0<q<p{2/(f—1)— p}/(p —2).
Making use of the last argument in the proof of Theorem 2.1(ii), we obtain that, for

almost every pair (u, y) of [s, 7] X [a, b], Gi(u, y) converges to +oc as k tends to co. The
same argument finally gives

bt
J J Gi(u, y)dudyk—> 400

adJds

3. Quadratic variation of the local times for £ =2

Here X is a Brownian motion. Our main tool is Tanaka’s formula, which we formulate as
%L)[C = M(xa t) - V(xa t)a

where

t

M(x, t) = J I(Xxgx) dX,
0

and
Vi, ) = (Xo—x) — (X, —x)".

We start by computing the quadratic variation of M.

Theorem 3.1. Let (Ay)ien be a sequence of grids of [a, b] X [s, t] such that |Ay| converges
to 0 as k tends to co. Then we have

e
> (AyMy = J Leas)(X) du.

(i.)) s

Proof- We have to compute the limit as k£ tends to co of

i 2
Z J 1(x;,x‘.+l](X,,) dx, | .

(i) \"
Instead of computing this limit directly (which is easy by It6’s calculus), it is more interesting
to use a result of Bouleau (1982) which ensures, in particular, that for every continuous
martingale Z and every sequence of predictable partitions (H;, i € N)gen such that for
d[ Z], X dP)-almost every (wy, t),
limsup H;i(wo, ) =0 d[Z],-a.s.

k—o0
(wo,t0)€ Hi i
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we then have

Choosing
2= | @ ln (o) ax,
0

and
Hij,k(wa U) = 1(l‘/,l‘jur]](U)l(x[,xi+1](BU(w))7

we obtain Theorem 3.1.

Remark 3.1. For a fixed b € R, we know that (M(b, f), t =0) is a continuous local
martingale with quadratic variation on any interval [s, #] equal to

t
(B N, = M. e = | Lo
For a fixed 7€ R*, Perkins (1982) has shown that (L7, x € R) is a continuous semi-
martingale with respect to the excursion field. Since the process (V(x, ), x € R) is a process
of bounded variation, adapted to the excursion field, (M(x, ¢), x € R) is also a continuous
semimartingale with the same quadratic variation as L, on any interval [a, b] (computed also
by Bouleau and Yor 1981). We obtain

[MC, D]y — [MC, D]a = Ll(musb) du.

The motivation of Bouleau (1982) was actually to give an explanation to the following
remarkable equality:

[M(b’ )]t - [M(b7 )]S - [M((J, )]f + [M(a:v )]S

= [M(a t)]b - [M(> t)]a - [M(9 S)]b + [M(9 S)]a-

We have used his explanation to prove that each member of this equality is also equal to the
quadratic variation of M on [a, b] X [s, f].

Moreover, one can easily prove that M and M? are also doubly indexed semimartingales,
and that M and (M?*(x, t) — [(; lix,<vdu; x € R, t = 0) are weak martingales — see Meyer
(1981) for the precise definitions. All these properties make of M a very nice example of a
doubly indexed semimartingale. However, in Eisenbaum (1998) it is shown that as a doubly
indexed process L does not share the semimartingale properties of M.

Remark 3.2. If V were a doubly indexed process of bounded variation, then we would obtain
immediately that the quadratic variation of L is four times the quadratic variation of M. But
V is not of bounded variation. Indeed, thanks to Tanaka’s formula, we know that
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(X —b)~ — (X, —a)"), t =0) is a continuous semimartingale, hence it has finite quadratic
variation on [0, 1] and thus infinite variation on [0, 1]. We then note that

STIAV =Y X, —b) — (X, = b — (X, —a) + (X, —a) .
(i.)) J
Nevertheless, the next theorem will show that, in a way, ' has a quadratic variation equal to

0 on any rectangle, and this will be sufficient to establish that the quadratic variation of L is
four times the quadratic variation of M.

Theorem 3.2. Let (Ap)ren be a sequence of grids of [a, b] X [s, t], where, for each k,
Ar=A{(xi, s)), 1 <i<n,1=<j< m}. We suppose that |A;| and

sup  |xip1 — Xil/\/tji1 — ¢

(xi,8 )EA

both converge to 0 as k tends to oco. We then have

1
) DAV =0
) o

g o
(i) Y (ALY = 4J Lgap) (X)) du.
(i.)) §

In order to prove Theorem 3.2, we establish the following lemma:

Lemma 3.3. Under the hypotheses of Theorem 3.1,

> (ALY

(@.))

t
E — 4E |:J 1(a,b](XU) dU:| .

k—o0

Proof of Lemma 3.3. By successively applying the Markov property of X at time #; and its
scaling property, we obtain

S (aL2| = E [Z@?;:at,,- 1R e]

(.)) (i.))

E

:zj:E

E[(Z(L’f;:ﬁ-f, - Lf;+nff>2> i ”H
= Z JRP(Xt/ € dy)E [Z(Lfi:‘lzf, _ L’t‘;+l))t]_)2‘|
J i

d(i+1,j, d(i,j,
— E (th _ IJ)JRP(XU € dy) E E[(Ll(lJr Ly L](lj)’))z].
J i
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We thus obtain

E

> (ALY

t
:J dyj duFi(u, y),
(i,j) R s

with

Fi(u, y) = Z Ligyt,01(10)
J

e [Z G wa»)z] |

1

1
/2t

For a fixed pair (u, y), there exists a unique sequence (j(k)); (actually (j(k, u))z) such
that 74 <u < tj41 for every k. Either y € [a, b], in which case (d(i, j(k), ¥))i=i=n is a
partition such that sup;(d(i + 1, j(k), y) — d(i, j(k), y)) tends to 0, d(1, j(k), n) — —o0,
and d(n, j(k), y) — +o0, as k tends to oo, and consequently

1
d(i+1,j(k d(i,j(k), ?
Z(Ll(hL JK),y) Ll(lj( ),"))2 i 4J 1(—oo,+oo)(Xv) dv,
; 0
i

which implies that

k—o0

E [Z(Lf(i+]3j(k);y) _ Lil(i,j(k),y))zl — 4
i

or y<a (y>b), in which case the partition (d(i, j(k), ¥))i1<i<n converges to —oo (4-o00) and
thus

k—o0

E[Z( AL _ Lif(i,j(kxy))z] 0.
i

In summary, we obtain

4

eV /2u
V2mu

Fi(u, y) P Lia,p)(¥)

To apply the Lebesgue dominated convergence theorem, we remark that the set

1

{Z(L{M — LY, ()i a partition of (—oo, —|—oo)}

is bounded in L! (see, for example, Proposition 3 of Bouleau 1982). Consequently, we obtain

! t
4 >
d duFy(u, — d duly, e v [2u
JR ch k( y) k—o0 JR va [ ’b](y) m
and this last limit is equal to 4 J"St duP(a < X, < b). -

We now use the following result, established in Eisenbaum (1998), which is a simple
consequence of Tanaka’s formula, namely,
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L7 = M(x, t)+ N(x, 1), xeR 0=st=<1,

where N(x, t) = Lt A(x,_,=xdXi_,. Hence, we have
D> AGL? =D (AgMY + (AN +2> (AgN)A;M). 3)
i i i i

Using the same argument as in Eisenbaum (1998), we see that we also have

2V(x, t) = M(x, t) — N(x, ©),

and similarly
43 AV =D (AgMY + > (AN =2 (AyN)(AzM). 4)
i v v ¥

We recall that the one-dimensional semimartingale (X;_;, 0=<s=<1) admits the
decomposition

t
Xi_,
XI_S:X1+W,—J =2 g,

Ol_s

where W is a Brownian motion starting from 0. To compute the quadratic variation of N, we
first note that the process

! X1y
(J l()(lﬂsx)—1 l_ ds, xeR,0=<¢=< 1)
0 s

has bounded variation on any finite rectangle. Consequently, using the same argument as for
M, we know that

1 t
Z(AUN)Z L’ J l[a,b](Xu) du.
— k—oo )
ij
Therefore, Lemma 3.3 and (3) together give

E|Y (AyN)XA;M)

t
k—> J l[a,b](Xu) du.
ij s

Thanks to (4), we obtain

E

> (@Ayry
ij

— 0
k—o0

which is equivalent to
1
S @ o
W ke
Thus (i) is proved.
Going back to (4), we hence know that
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AN
> (AgN)AzM) = J lpap(X.) du.
ij s

Assertion (ii) is then proved thanks to (3). O

4. Rewriting of an Ito formula

Let F be an absolutely continuous function on R with a locally bounded measurable
derivative F'. For any pair of reals (a, b), we have

F(b)= F(a) + J F'(x)ds((a—x)" = (b —x)").
R
In particular, for the Brownian motion X, we have
FUX) = Fto) + | F'@d v o,
R

We now consider a function F defined on R X R, and seek an analogous representation for
F(X;, t) — F(Xy, 0). To this end, we need the following results established in Eisenbaum
(1998).

For f a measurable function from R X [0, 1] into R, we define the norm ||-|| by

1/2
! 275, dxds ! dxds
— 2 —x%/2s —x?/2s GG
||fH 2 (JOJRf (x9 S)e \/E) JOJ |xf(x S)|e S\/ﬁ.

Let .7 be the set of functions f such that ||/ < co.
In Eisenbaum (1998), it is shown that integration with respect to L is possible in the
following sense: let fa be an elementary function on R X R*, meaning that

= > fill (s, 100,

(xi,8,)EA

where A = {(x;, s;), ]l <i<n,1=<j<m}isan R X[0, 1] grid, and, for every (i, j), f is
in R. For such a function, integration with respect to L is defined by

+00
Jo JRfA(x, DALy = Y fij(AL).

(x;,8)EA

Let f be an element of J/ For any sequence of elementary functions (fa,)ren converging to
f in .7, the sequence (jo Jr Sai(x, $)dLY) ken converges in L'. The limit obtained does not
depend of the choice of the sequence (fa,) and represents the integral fo fR (x, s)dL;.

We can also define fo fR f(x, s)dM(x, s) for a deterministic function f in a similar sense
to that above. More precisely, we have
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1 1
| ] s oame o= 3 rgmn = | g sax.

(x3,5)EA 0
Let f be a function such that

! 2 dxds
2 , e ¥ /2s <
[ Jore o =

Then, for every sequence of elementary deterministic functions (fa,)ren converging simply
to f, we know that

1 1
J Fau(Xs, 5)dX, k# J f(X,, 5)dX,.
0 — Jo
Consequently, we obtain
1 1
J J . ) dM(x, 5) = J F(X,, )dX.. 5)
0JR 0

We now introduce the process (A(x, 7); x € R, t = 0) defined by A(x, 1) = fot Ix,<x ds. We
note that 4 has bounded variation on any bounded rectangle and similarly satisfies

J;JRf(x, s)dA(x, s) = J;f(XS, s)ds (6)

for any function f such that

0 2ms

We can then obtain the following representation for F(X,, t) — F(Xo, 0):

1
J J |/ (x, s)|e‘x2/2s\d/x—d_s<oo
R

Theorem 4.1. For F defined on R X [0, 1] such that OF /0x and OF /0t exist as Radon—
Nikodym derivatives, OF /Ox is in F and

” aF( ) dxds _
— (X, §)| —=<< 00,
oJr| Ot sV2ms

we have

t t

oF OF
F(X;, t) = F(Xy, 0) + JOJRa(x, s)dA(x, s) + LJRE(JC, s)dV(x, s).

Proof. Since we have V' = M — %L, integration with respect to V is also possible for f in .77
and satisfies

t

J;JRf(x, 9dV(x, 5) = J;f(X.s, 9ax. -5 |

0

JR f(x, 5)dL*.

We recall now an Itd6 formula established in Eisenbaum (1998). Under the hypotheses of
Theorem 4.1, we have
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"OF "OF (! F
F(X;, t) = F(Xy, 0) —|—J a—(XS, s)ds +J 8—(XS, s)dX; —fj J a—(x, s)dL?.
0 Os 0 Ox 2 0JR Ox ’
Now using (6) and (7), Theorem 4.1 is proved. Ol
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