Bernoulli 7(4), 2001, 605-628
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We prove a law of the iterated logarithm for products of independent, identically distributed random
variables taking values on simply connected, graded, nilpotent Lie groups as a consequence of similar
results, of functional type, for stochastic processes which are solutions of ordinary differential
equations with random coefficients.
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1. Introduction

Let {Z/}; be a sequence of independent and identically distributed (i.i.d.) random variables
taking values on a simply connected, graded, nilpotent Lie group G and consider the product

T"=Z2"0...02", n=l1,

where o is the product operation on G. In this paper we show a law of the iterated logarithm
for the random walk {7"}, by providing the set of its limit points whenever it is suitably
normalized by means of the sequence {v/nlnlnn},. The normalization we shall use is the
usual one which has already been used to prove several asymptotic properties for {7"}, as
n — oo. Specifically, it is constructed through the Lie algebra with which the simply
connected, graded, nilpotent group G can be identified, as follows.

Let & stand for the Lie algebra of G. & is said to be graded if it admits the de-
composition

G=V o -V,

where Vi, i=1,...,[, are vector subspaces of & such that [V}, V;] C V. ;, where
Viy; ={0} if i+ j> 1. Thus, any g € & can be uniquely decomposed as

!
g=) Pe
i=1

where P; is the projection on V;. For any y € R, we can define the linear map
1
D,g=Y y'Pg ()
i—1
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which is an endomorphism of the Lie algebra &.

The group G is said to be graded if & is. By assuming that G is simply connected, it
follows that it can be identified with & through the Campbell-Hausdorff formula, so that
the transformation D, acts on G too.

Consider now a random variable Z taking values on G. We say that there exists E[|Z|f]
if such a moment exists whenever Z is considered as a random variable on the Euclidean
space &. We say that Z is centred on G if its projection P;Z on V) is centred as a random
variable on the Euclidean space V. Lastly, we say that the Laplace transform of Z exists
(eventually in a neighbourhood of the origin) if the same transform exists for the random
variable Z taking values on the Euclidean space &.

Returning to the random walk {T"},, let us normalize it by means of the map defined in
(1). The asymptotic behaviour of {D, ,T"}, as n — oo differs according to how fast the
sequence {y,}, C R, goes to 0 as n — oo. For example, when v, = 1/n, if Z/ is centred
on G then

Dy, T" — 0 almost surely

as n — oo — that is, a strong law of large numbers holds; see, for example, Theorem 3.9 in
Neuenschwander 1996, p. 101. Assuming, moreover, that Z/ has a finite Laplace transform,
then the laws induced by {D,,,T"}, on G satisfy a large-deviation principle at speed n —
that is, there exists a rate function [/, strictly depending on the law of the Z/, such that

1 1

—inf 7;(g) < liminf —In P(Dy,,T" € A) < liminf — In P(Dy,,T" € A) < —inf 1,(g),
gEAO n—00 n =00 n gEA

a fact which has been proved in Baldi and Caramellino (1999).

If instead y, = 1/y/n, assuming that E[|Z/|>*°] is finite for some & >0, it has been
shown that {D;, 5z T"}, converges in law to a random variable which can be represented as
the value at time 1 of the principal diffusion on G — that is, a sort of Donsker invariance
principle holds; see Caramellino et al. (1999) and references quoted therein.

Suppose now that y, goes to 0 as n — oo faster than 1/y/n but slower than 1/n:

lim v/ny, =0, lim ny, = +oo. )

In such a case, assuming that the Laplace transform of Z/ is finite in a neighbourhood of the
origin, then the sequence {D, T"}, satisfies a moderate-deviation principle at speed
(\/ﬁy,,)*2 — that is, there exists a rate function 7, which does not depend on both the law of
the Z/ and the sequence {y,}, satisfying (2), such that
—inf Iy(g) <liminf ny2 In P(D,,T" € A) < liminf ny> In P(D,,T" € A) < —inf I,,(g),

geff n—oo n—oo geZ
a result proved in Baldi and Caramellino (1999).

In this paper, we consider a particular sequence {y,}, for which (2) holds: setting

1
yni\/nlnlnn’

we study the asymptotic behaviour of {D, T"}, by giving explicitly the set of its limit
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points, a result which can be interpreted as a law of the iterated logarithm for random walks
on nilpotent Lie groups.

This statement has been already introduced in Baldi and Caramellino (1999), where a
precise proof is not given. Here, we give the proof of such a result as a consequence of a
functional law concerning a more general class of processes. Indeed, the idea underlying the
proof is to represent D, / Jimmnl " as the value at time 1 of the solution of a suitable
ordinary differential equation (ODE) with stochastic coefficients, whose randomness is
driven by a normalized polygon constructed by means of the sequence {Z/};. In Section 2
we consider this more general kind of process, for which we show that a functional law of
the iterated logarithm holds. We make considerable use of some moderate-deviation
estimates proved in Baldi and Caramellino (1999). Section 3 is devoted to the study of
random walks on nilpotent groups: we represent {D, / Vil "} as the value at time 1 of
a suitable sequence of processes whose asymptotic behaviour is analysed in Section 2, so
that a law of the iterated logarithm follows. Finally, we consider the Heisenberg group, by
comparing our result with that proved by Crepel and Roynette (1977).

2. A functional result for polygons

Let (Q, .7, P) be a probability space where a sequence { Z/}; of m-dimensional i.i.d. random
variables is defined. We suppose that the Z/ are centred and that the Laplace transform exists
in a neighbourhood of the origin.

We also suppose that the covariance matrix of the Z’/ is equal to the identity, an
assumption which will be relaxed later.

Let

[
Se=>_ZF+(t—[MZ"" = S + (¢ = [D(Star1 — St 3)
k=1

with Sy = 0. Since S is piecewise linear, S, = ZIIH1 >0, exists almost everywhere, so that
one can define the process X, as the solution of the ODE with stochastic coefficients

Xt = B(X,)+5(X,)S,,
X() =X,

(4)

where b : RY — R? and 6 : R? — R? @ R™ are respectively a vector and a matrix field that
must satisfy certain conditions in order to guarantee the existence of the solution X; for >0
(we shall specify the proper conditions on b and & later).

The aim of this section is to prove a law of the iterated logarithm for the process X: by
means of a suitable family of contractions {I';}4>0, we shall show that the sequence
{Y"},, defined by

Y7 =T s (Xn), t€ [0, 1], )

as a.s. relatively compact on the space # ([0, 1], RY) = {¢ : [0, 1] — R9|¢ is continuous}.
We first set
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[n1]
Sp=Su=Y_Z'+(nt—[n)Z"", 1 €0, 1], (6)
k=1

as the continuous polygon having value S, =Y }_,Z k¥ at time k/n, and linear between k/n
and (k + 1)/n, so that we can write

d . ~ ~ .
E(Xnt) = ant = nb(Xnt) + O(XnT)S;l (7)

because S;’ = nS,.
For a fixed a >0, consider now the map

I,:RY— R? (8)

satisfying the following hypothesis, first introduced in Baldi (1986) in the framework of
diffusion processes.

Assumption 2.1. For any fixed a.>0, T, is a ' map such that:

(@) Tu(x) = x;
(ii) if a = f, then

() — Tu(2)] < [Tp(») — T(2)]

for any y, z € RY;
(iii) I“;l =T, and, for any compact set C C RY and & >0, there exists & >0 such that
if o — 1| <0 then

sup|[[, o Tg(y) — y| <e.
yeC

It is worth remarking that condition (i) ensures that x, the starting point of the process X
defined in (4), is a fixed point for I, for any a > 0. Moreover, condition (ii) stands for a
sort of contraction as a varies: for any y, z € RY the distance between I, (y) and Ty(2)
decreases as a increases. Finally, condition (iii) ensures a sort of continuity property for I,
with respect to the parameter « uniformly on the compact subsets of R? : T, o I'; is not far
from the identity map whenever « - f3 is near 1.

Setting a, = Vrlnlnn, n>2, we can now define

Y} =T, (Xu) €

We will now study the asymptotic behaviour of {¥"}, as a sequence of random variables
on the space of the continuous paths, by proving that {¥Y"}, is a.s. relatively compact in
Z([0, 1], RY) and giving explicitly the set of its limit points. We shall rely heavily on
suitable moderate-deviation estimates proved in Baldi and Caramellino (1999).

By (9) and (7), we have

. 1 .
YV =b,(Y} WY —S7,
R (10)

Yy =x,
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where

ba(y) = nV.Lo, (26|11 ), o
on(y) = VLo, (2)0 (2,1 (5
in which, as usual,

0
(Vzra(z))i}' = 8_2 (ra(z))i-
J

Since a@,/v/n — +o0 and a,/n — 0, representation (10) ensures that the sequence
{Y"}, satisfies a moderate-deviation principle subject to the following hypothesis on the
coefficients b, and o, defined in (11):

Assumption 2.2. (i) b, and o, are locally Lipschitz continuous, uniformly in n.
(i) There exists a vector field b and a matrix field o such that

lim b, = b, lim o, =0

n—oo n—oo

uniformly on the compact subsets of RY.

(iii) o is differentiable and b, 6, o' are locally Lipschitz continuous.

(iv) Denote by 2% the set of the absolutely continuous paths from [0, 1] to R™,
starting at 0, and v : ([0, 1], R™) N {hlhy =0} — R,,

o(h) — %J:)|h;|2 ds if he 277 and b’ € L*([0, 1)), (12)
~+o0 otherwise.
Then, for any h € {v<oo}, the Cauchy problem
@1 = b)) +a(@)h,
$o = X,

has a unique solution ¢ defined on the entire time interval [0, 1].

As has been proved in Baldi and Caramellino (1999), Theorem 4, we have:

Theorem 2.3. Under Assumption 2.2, {Y"}, satisfies a moderate-deviation principle on
7Z([0, 1], RY) at speed ai/n = Inln n, with rate function

1

A 4 _ : 7% -d
oy 1 | 70000 - beonar it e s, 0
+00 otherwise,

where £(&, ) denotes the Legendre transform of 0 »—>%<6, o(&)a (&), 0 € RY, %Zf
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standing for the set of absolutely continuous paths of 7 ([0, 1], RY), starting at x.
Symbolically,

1
—inf J(¢) < liminf InP(Y" € A) < liminf InP(Y" € A) < —inf J(o)
ped n—oo Inlnn n—oo In In n ped
for any Borel set A C 7 ([0, 1], RY).

Moreover, the following inequality holds: for any R, 1, a>0 and h € {v < a}, there
exists 0 >0 such that

lim sup nnn

lnP<Ha1S"—hH<6, |Y" — F(h)| >n> < R, (14)

where F = F, is defined by
F,: {v<oc} — 7([0, 1], RY)

h— Fy(h);=x+ th(Fx(h)S) ds + J’U(Fx(h)s)hg ds.
0 0

Remark 2.4. 1t is worth recalling for later use some properties to Theorem 2.3.
(i) The sequence {(1/vnlnlnn)S"}, also satisfies a moderate-deviation principle on
Z([0, 1], R™), at speed Inln n, with rate function v defined in (12):

1
—inf v(h) < liminf In P

1
S"e A4
he A n—oo Inlnn (\/nlnlnn >

< limi 1 ( 1

higrigolf ninn In P NOTYY
for any Borel set 4 C Z7([0, 1], R™). This is an obvious consequence of Theorem 2.3, once
one chooses d = m, b=0 and 6 = Id, but this is actually a well-known result in the
literature, proved during the 1970s by Mogul’skii (see Mogul’skii 1976; but also Baldi and
Caramellino 1999 and references quoted therein). Notice that the form of the rate function
suggests that {(1/v/nlnln n)S"}, turns out to have the same asymptotic behaviour that such
a sequence should have if the Z/ were standard Gaussian random variables.

(i1)) The rate functions J and v are lower semi-continuous functionals such that the level
sets {@:J(p)<a} and {h:uv(h)<a} are compact subsets of #([0, 1], RY) and
7 ([0, 1], R™) respectively, for any a = 0. Moreover, for any ¢ € Z ([0, 1], R?) for which
J(¢) is finite, there exists # € £ ([0, 1], R™) such that

S"e A) < —inf v(h),
heA

1 1
0= Pl and Jg) = o) = | (W) ds

Indeed, it can be proved (see, for example, Baldi and Caramellino 1999, p. 803) that
J(@) = inf e g1 gy V(A). If a = J(¢) is finite, set C, = FA{oHn{h:v(h) <a+1},so
that J(¢) = infec, v(h). Now, C, is compact because the level set {h: v(h) <a+ 1} is
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compact and the set F;l({qo}) is closed because F, is a continuous functional on
{h:v(h) <a+ 1} (see Baldi and Caramellino 1999, Appendix). Since v is lower semi-
continuous, the infimum of v on C, is achieved, and the assumption above actually holds.

By using the estimates given by Theorem 2.3, we shall prove the following result, which
can be interpreted as a law of the iterated logarithm for the process X:

Theorem 2.5. Under Assumptions 2.1 and 2.2, the sequence {Y"}, is a.s. relatively compact
in the space 7 ([0, 1], RY) and the set of its limit points as n — oo is given by

K={y:J@) =1}, (15)
with J as defined in (13).

Remark 2.6. Before giving the proof of this result, let us compare the asymptotic behaviour
for solutions of ODEs, as in (2.5), and for solutions of stochastic differential equations, that
is, for processes solving

dX, = b(X,)dt + 6(X,)dB,,
Xo = x,

where B is an m-dimensional Brownian motion.
Let Y”" be defined as

Y? - ra,,()?nt)a t e [09 1]

It easily follows that Y” is again a diffusion process, whose drift b, and diffusion coefficient
0, can be computed by means of [to’s formula and by applying a suitable time-change. As
proved in Baldi (1986), under Assumptions 2.1 and 2.2, applied to b, and &,, the sequence
{Y"}, is as. relatively compact in #([0, 1], R?) and the limit points are given by the set K
in Theorem 2.5, in which the coefficients » and o have obviously to be replaced by
b=1lim,_ . b, and & = lim,_,o, 5, respectively, for the computation of the rate function J.

Therefore, for solutions of both ordinary and stochastic differential equations, a law of
the iterated logarithm holds, and whenever the drift and ‘diffusion’ coefficients of Y” and
Y" have the same asymptotic behaviour — that is, b = b and 0 = & — the set of the limit
points does not change.

The proof of Theorem 2.5 will follow from some preliminary results. In what follows, for
¢ € ([0, 1], RY) and 4 C Z([0, 1], RY), ||@|| and d(¢, A) stand for the supremum norm
and the usual distance of ¢ from A, respectively:

@l = sup |o4, d(p, A) = inf || — ||
lell te[og]l f weAII vl

Lemma 2.7. Under Assumptions 2.1 and 2.2,
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lim d(Y”", K) =0 a.s.
n—0o0

Proof. First of all, we prove that

lim d(Y), K) =0 as.,
J—o0

where ¢ > 1 and [n] stands for the integer part of n — that is, the statement holds for suitable
subsequences. By using the first Borel-Cantelli lemma, it is sufficient to prove that, for any
e>0, the series Y-, P(d(Y!), K)>¢) converges.

Let K; be an e-neighbourhood of K: K; = {g : d(g, K) = ¢}. Since the functional J is
lower semi-continuous and K is compact, it follows that there exists 0 >0 such that, for
any ¢ € K,

inf J(p)>1+ 20.
QEK;

Now, by using the moderate-deviation upper bound given by Theorem 2.3, we have, for large
values of j,

const.
(] _ 1)1+z)‘

because, for any large j, [¢/] = ¢/~!. Therefore, the series Y P(Y [¢'] € K!) converges, so
that, for any ¢> 1, lim;_ d(Y!¢'], K) = 0 a.s.
Now fix n: for any ¢>1 and j such that [¢/] < n < [¢/T'], we can write

P(Y' € K!) < exp(—(1 — O)InIn[c’]) <

d(Y", K) < d(Y'), k) + ||y" — Y1)
< d(Y"", K) + |Tu, o T (Y™ — Y1 + sup [, (Xpon,) — T, (Xur)].
t€[0,1]

We shall now estimate d(Y”, K) by proving that it is small enough for large values of n. All
the upper bounds we shall state have to be considered a.s.
By the first part of this proof, for any € >0 amd c¢>1 there exists j. such that, for

j >jc"
d(Y'1 Ky <e, (16)
so that

d(Y", K)< e+ Ty, o r[j,.](y[cf]) — Y 4 s}:)pl] T, (X ) — Lo, (Xont)|-
telo,
Moreover, for any large j,
L < % _ ﬁln In n__ [cf“l] lnln[cf:“] - (lc-/'“)lnln(cf:“) ey
apei) [¢/]InIn[c¢/] [¢/]InIn[c¢/] (¢/ — 1) Inln(c/ — 1) /

and y; — /c as j — oo. It then follows that for any 0 > 0 there exist ¢; > 1 and j; such that
for any ¢ € (1’ Cl)a ]>]1 and n € [[CJ]9 [Cj+1]]a
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Ay

—llsé.

Aei)

By using property (iii) of Assumption 2.1, we can state that for any €>0 and for any
compact C of R there exist ¢;>1 and j; such that for any c € (1, ¢;), j>j; and
n € [[c/], [/,

sup [T, Or[g/()’) y[<e
yeC

Now fix ¢ € (1, ¢): since d(Y1¢'], K) — 0 as j — oo, there exists /; such that, for any j > j,,
1Y) < 2 sup ol =: M
pekK
and M is a finite number because K is compact. Therefore, for any &€ >0 one can find ¢; > 1

such that for any c¢ € (1, ¢) there exists i; = max(j,, jl,jl) such that for any j>i; and
n e [[e/], [/,

[T, o Ty (YD) = Y| < sup [Ty, o Tpy(0) — ¥l <e
{yilylsMm}
and (16) holds, so that

d(yn’ K) < 2e+ sup (X[cl]f) - I_‘ot,,()(nt)"
t€[0,1]

We now have to estimate the quantity appearing on the right-hand side of the above
inequality.
First of all, since a, = &}, by using condition (ii) of Assumption 2.1 we can write

sup |r (X[c/ ) Fa,,(Xnt)| < sup |F[cf](X[cf]r)_r[c/](Xnt)l
t€[0,1] 1€[0,1]

= sup [Den(Xperge) — Doy (Xpery)l,

0=us I,OSSS%

where the latter 1nequa11ty results from setting nt = [¢/T'lu and [¢/]t = [¢/*']s. By adding

and subtracting YI'"1 and Y1), we obtain, for any n € [[¢/], [¢/T1]],
sup |C, (Xjenr) = T, (Xo)|
re[0,1]
= 2||I‘[C,-] o r[;%l](y[c.fﬂ]) _ cl+ ” + sup |YE;/+1] _ YEC”]]‘.

0=u=1.0=s=75y [,+]1]

By using arguments similar to those previously developed, involving property (iii) of
Assumption 2.1, we can find ¢; >1 and i, such that for any ¢ € (1, ¢;) and j > i,

2|| Do o Thog (1) — ¥1] < 2e,

so that for ¢ € (1, min(cy, ¢;)) and j > max(iy, i),
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d(Y", K) < 4¢ + sup |yl oyl
0$u$l,0is$%u
Now, since d(Y[""H], K) — 0 as j — oo, there exists i3 such that, for any j> i,
Ay gy <e.
Therefore, for any such value of j there exists a path g € K such that
[y — g <2e.
Thus, for any j > max(i;, iy, i3), we can write

d(Y", K)<6¢ + sup | g(u) — g(s)|.
=y <Y<ﬂl¢
O=su<I1,0=s <t 1]
Finally, since 0 <u—s<1—[c/]/[¢/"']<1—1/c, and K is a compact subset of
72([0, 1], RY), by the Ascoli—Arzela theorem there exists c3>1 such that, for any
c€(l, ),
sup sup  [g(u) — g(s)| <e.

€K J
¢ Oéuél,ngé[EfA]u

Thus, for any €>0 we have found a constant ¢y = min(cy, ¢z, ¢3)>1 and an integer
Jjo = max(iy, iy, i3) such that if ¢ € (1, ¢g), j> jo and n € [[¢/], [¢/T']], then

d(Y”, K)<Te,
so that the statement holds. (]
In order to prove Theorem 2.5, we also need the following result concerning a sort of
functional law of the iterated logarithm for standard sums of random variables, which will
be used in order to show that K is the set of the limit points for {¥"},. It is well known in

the literature that, for the polygon S” defined in (6), {(1/vrlnlnn)S"}, is a.s. relatively
compact in Z([0, 1], R™) and the set of its limit points is given by

om L[
C={h:vh)=<1}= {h SN A EJ |h'(s)]* ds < 1}
0
(see, for example, Strassen 1964). In particular, for any 42 € C and 6 >0,

1
Pl || —=———==0S8" — h|| < 0 infinitely often | = 1.
<H vnlnlnn H Y >

The next lemma shows that any % € C is the limit point of a suitable subsequence of

{(1/vnlnlnn)S"},:

Lemma 2.8. For any h € C such that %fol |h'(s)>ds <1 and 6 >0, an integer c>1 exists
such that
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1 2 H )
Pl||————8" —h||<dio. | =1.
<H V2 Inln ¢ )

Proof. Fix an integer ¢>0, and let T;: Z([0, 1], R™) — £ ([0, 1], R™), i=1,2, 3, be

defined as
1 1 . 1}
; Z - ft 0, -
g(9) 1ft€[0,c}, g(c) 1 6{,0,

Tg(t)= Tg(t) =

1 . 1 . 1
g<z> if te <E, 1:|, 2(t) if te <C’ 1],

T3g(t) =

It follows that:

(a) (T1 + Ty)g(t) = g(t) + g(1/c), thus g(1) = (T1 + T2)g(t) — g(1/c);

) lg(t/o)| < |Tigll: IT1gll = supicio,1/1 1&(D)] = |g(1/c);

© [ Tsgll < ITvgll: 1 T5gll = supreqijeay | €(¢/ ) = supeqije2,1/e1 | €(H] < supicio,i/e
lg(O] = [T gl

Let us write

; 1 2j
gj t :7SC .
® Vc2inlnc2 !

5"(3;) - h(ﬁ)‘
RC

()] + o) |+ 1072 - 1o = o + e

Using (a), (b), (c), we have

187 = hll < 1T + 208 = (T2 + )| +

<||Th& — Tih| +

< |T\&|| + I Ti 2]l +

c

<3| Th&|| + 2/ T1 k| + [[(T2 — T3)E’ — Tahl].
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Now
[ T1h|| = sup [A(1)],

te [0,%]
where 7(0) =0 and 4 is continuous: there exists ¢; > 1 such that, for any ¢> ¢,
0
27h <5
Thus, for any ¢ > ¢y,
. 0 ; -
I~ Hl = 24 31T 4 1 — T8 — T an

Let us first consider the term 3|71 &7|| = 3 sup,cjo,1/¢1 |E/(2)]. Set

o)
Fs = {ge 7z 3HT1g|| 25},

so that 3||71&/|| = 6/3 if and only if &/ € Fs. Fy is a closed subset and, by Remark 2.4(i), &/
verifies a moderate-deviation principle at speed (c¢*/Inlnc*)/c* =Inlnc*, with rate
function v defined in (12), so that we can use the upper bound applied to Fs. Notice that
if g € Fs then for t < 1/c, we have

t t 1/2 ( o1/c 12 1
18] = Jg%s)ds < (J |g’(s>|2ds) (J ds) < /oo,
0 0 0 \/E
so that
o) = e = &8
& =510 =573%1
and
. c+ &
= .
dnf v(8) =541

It follows that there exists c¢;5>1 such that for any integer c>c,5 we have
c-6%/(2-81)>2, and thus

inf v(g) = 2.
gEFy

For such values of ¢, by using the moderate-deviation upper estimate, we obtain, for large
values of j,

. fo) . .
P<3||T1§-’|| = —) =P e Fy) < exp( —(nln ¢* - inf U(g))
3 gEFs

const.
j3/2 '

3
< exp (—(m In c¥/) 5)
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It then follows that the associated series converges and
. o .
P\ 3| TV&| Bg io. ] =0.

Let us return to (17): if ¢s = max(cy s, c2,5) then for ¢ > cs > 1, ¢ integer, we can state that

. 2 .

1§/ — hll < 55 + (T — T2)§’ — Tah| as.,

for any j large. It remains to prove that, for ¢ > cg,

P(||(T1 —T)E — Toh| <§ i.o.) = 1.

We will make use of the second Borel-Cantelli lemma, which can be applied because the
random variables {(7> — T3)&’/}; are independent. In fact,

1 2j 2 . 1

(S5 - S$ ) =,

(T2 — Ty)E] Ty e ) c
2 — 13)s: =

1 2j 2 . 1

(5 — §°¢ >

ey O TSy g

Now, if 1 = 1/c,

v el (&' _
S‘tfz" _ S;’;’c — Z zk + (Cth _ [CZJ I])Z[Cz'/ J+1 _ Z 7k _ (02]71 t— [02171 t])Z[czf L+1
=1 =1

. [ ,
= (N —[H Iy N ZE e (= [z
k=[c21f]+1

Thus, the random variable (T, — T3)&/ is o(Z 7+, ..., Z")-measurable: since (Z"), is a
sequence of independent random variables, it then follows that (T, — 73)&/ are independent,
as j varies. Thus, if

ZP<||T2T3)§jT2h||<§)+OO (18)

k

it would follow that

P<|(T2 — T3)& — Toh|| <g i.o.) =1.

Therefore, we have only to show that (18) holds.
Set

o)
Gy = {g : g(0) =0and |[(T, — T3)g — Toh| <§},
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so that P(||(T, — T3)&/ — Thh|| <0/3) = P(§&/ € Gs). Since G, is an open set, the moderate-
deviation lower bound in Remark 2.4 gives, for any large ;.

P& € Gs) = exp( —Inlnc¢¥ - inf U(g)),
g€l

Now, having chosen ¢ >cy = ¢} 4, it follows that & € Gs:

(S
WS>

(T2 = T3)h — Tah[| = | T3h] < T2 2] < = <

Thus, inf ;eq U(g) < v(h) <1 and
. . t.
P&’ € G) = exp(—Inln )= cozrl§ .
J

Since the associated series diverges, statement (18) holds. O

With these preliminaries completed, we can now prove our earlier result.

Proof of Theorem 2.5. Lemma 2.7 enables us easily to prove that the sequence {Y "}, is a.s.
totally bounded in the space of continuous paths, so that it is relatively compact. In fact, since
K is compact, for any ¢ >0 there exist a finite number of paths ¢, ..., @ such that

N e
K C B( ¢;, =
U#(e3)
where B(¢;, €/2) is the ball centred in ¢, of radius £/2 in the space Z([0, 1], RY). By
Lemma 2.7, there exists a.s. a value ng such that, for any n > ny,

drn, K)<§,

so that
N
{Y"} =0, € Boss o).
i=1

Since obviously {Y"},<,, C U™, B(Y", ¢), it follows that

no N
{WhC<UMWw0U<UM%@>
i=1 i=1

that is, {¥"}, is a.s. totally bounded in # ([0, 1], RY) and therefore is relatively compact in
7 ([0, 1], RY).

In order to prove that K is the set of all the limit points, it suffices to prove that for any
¢ € K such that J(p) <1,

P(|Y" — o||<eio) =1, (19)

where € > 0.
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Since, by Remark 2.4(ii), there exists & € #%) such that %jol |h'()*ds<1 and ¢ =
F.(h), by using Theorem 2.3 we can state that there exists d >0 such that

. 1
fim sup Inlnn

1nP<|Y" — ol <e,

1
—S"— h||>0 | = 3. 20
vnlnlnn H ) 29)

By Lemma 2.8, there exists an integer ¢ > 1, such that

1 2 .
Pl||l——————=85° —hl|<dio. | =1
<H v 2 Inln ¢/ H )

Setting

v 1 S

G- i<, m={| s <o)
=AY —ol <l H) { S,

then P(/;i.0.) =1, and by (20) we obtain, for any large j,

const.

P(H;N GS) < exp(—2InInc¥) = @

so that
P(H;N GY i.0)=0.
It then follows that P(G; i.0.) = 1:
P(Gji0)= P(H;NG;io)+ P(H;N G i0.)= P(H;io)=1
and (19) holds. O

Remark 2.9. Theorem 2.5 still holds if the covariance matrix A of the random variable Z' is
not the identity, subject to a modification of the representation K of the limit points. Indeed,
if # (< m) is the rank of A, then one can build a m X » matrix M such that A = MM™*, and
a sequence { Z*}; of i.i.d. R”-valued random variables with the » X r identity as covariance
matrix, so that Z* = M Z*. Therefore, the processes X and Y" =T, (X,) solve the
differential equations

Xo=b(X)+ (M8, V= bV + On(Yf)MaLS’”(t)

respectively, where S and S” are the process defined in (3) and (6) respectively, by replacing
Z* with Z*. Thus, if b, and o, satisfy the conditions required in Theorem 2.5, these are
verified by b, and 0, - M too, and one can apply Theorem 2.5 in order to find the asymptotic
behaviour of {¥"},. Notice that in the computation of the rate function J, the matrix field
o = lim,_ 0, has to be replaced by lim,_...0,+ M.
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3. Law of the iterated logarithm on nilpotent Lie groups

In this section we apply Theorem 2.5 in order to obtain a law of the iterated logarithm for
random walks on a simply connected, graded, nilpotent Lie group G.
Let & denote the Lie algebra associated with G, which we suppose to be graded, as in

the Introduction: there exist / vector spaces Vi, ... V; such that

G=V,@®---®V, and [V, V;1C Vi, (21)
where [-, -] denotes the bracket operation on & and V,; = {0} if i+ j>[. Let {ey, ..., es}
be a basis of & which is adapted to the decomposition above: there exist positive integers
0=iy<i; <ip<...<i; such that V; is spanned by {e;,_,+1,...,€;,,as k=1,...,1 In

particular, #; denotes the dimension of V. Let y; stand for the left-invariant vector field
associated with e;: for any smooth function f,

f

d .. 9
xif(y)=5f(yotei) =;x{(y)a—yj(y)- (22)

t=0

Let 6(») = [)1(») - .- xa(»)] be the matrix with ith column vector x,;(y). The crucial remark
is that for a vector ¢ € R? ~ @, the solution of

-xzt = é'(xl)aa
(23)
X0 =g
is given by
x; = go (). 24

Indeed, it is well known that x, = g o Exp(fa) is the solution of (23), Exp : & — G being the
exponential mapping, which allows G to be identified with its Lie algebra @&, so that (24)
actually holds.

Moreover, the product on G is related to the structure of & by the Campbell-Hausdorff
formula:

1 1 1
xoy=x+y+sxyl+5K Xyl + 5 xll+ ... (25)
2 12 12
Therefore, it turns out that by (21) and (25),
X,(y) celVid...e V. (26)

Consider now a sequence of ii.d. random variables {Z’}; taking values on G. Suppose
that each Z/ is centred on G — that is, E[P; Z/] = 0, where P, is the projection map on V|
— and that the covariance matrix is the identity. In the proofs of the results of the preceding
section, which we shall need to use, the hypothesis that the Z/ are (fully) centred is crucial
in order for Theorem 2.3 to be applied, that is, for the validity of the moderate-deviation
estimates. Thus, for any j, let us consider the random variable

7/ =7/ —E[Z/],
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which can be obviously considered as a centred random variable on RY ~ &. We define the
‘standard’ polygon S, and S, associated with {Z/}; and {Z/}; respectively, as in (3), that s,

(1 o0 }
S, ; ZF4+ (=2 and S, = ; 2K+ (t—[MZ = §, — tE[Z"],

where Sy = Sy = 0. Let X denote the solution of the (ordinary) differential equation
X, =6(X)S, >0,
Xo=0.
Since S, = Z' as 1 € (0, 1), by (23) and (24) we have
Xi=002"=2"
By recurrence one easily obtains Xy = Z Y'o...0 ZF and, as k= n,
X,=Z'o...0Z"=T" 27
Notice that, by using the polygon S, it turns out that X also solves the ODE
X, = 6(X)E[Z'1+6(X)S,, >0,
Xo=0. (28)
For a >0, consider the map
I'n=Dy = D;'

where D, is the dilatation defined in (1). It is immediate to check that I', satisfies (8) and the
process V", defined as in (5), becomes

Yi = Dy ) it n Xt te|0, 1]. (29)
Thus, as k=1, 2, ..., n, we have YZ/n = Dl/mTk, so that
Yi = Dl/an~ (30)
Moreover, using the representation in (28), Y " solves the differential equation

. 1 zn
Y?=b,(Y")+ On(Yf)a—S,,

Yy =0,
where a, = vrlnlnn and, by (10) and (11),
Gn(y) = anVDl/an(Z)OA-(Z)|Z:DT/1'Ln(y) = dy Dl/a,, : OA.(Z)|ZZD71 (»)°

1an

bu(y) = alon(y)-

In order to study the asymptotic behaviour of {D, / Jommn T " }ns we consider first the



622 L. Caramellino and V. Di Vicenzo

sequence {Y"},, since by applying Theorem 2.5 one almost immediately obtains the
following result, which can be interpreted as a functional law of the iterated logarithm on
simply connected, graded, nilpotent Lie groups.

Theorem 3.1. The sequence {Y"}, defined in (29) is a.s. relatively compact on ¢ ([0, 1], G),
and the set of its limit points is

K={xez(0,1],G) : Jx) <1},

with the rate function J as in (13), where b = 0 and o is the matrix field having y; as its ith
column for i =1, ..., i}, the rest being equal to 0:

o =0n» . xi()0...0]

Proof. We have only to prove that Assumption 2.2 holds. We first study the convergence of
b, and o0,, as n — oco.

Let us remark that if e; € Vy, then for every y € R™ the vector field y i yi(y) =
(x!(»)); satisfies the relation

Dyyi(») = v 2Dy (») (31)
(see Baldi 1986, Lemma 4.2, for a complete proof). Denoting by k(i) the index k such that
e; € Vi and recalling that 6(y) = [x1(») ... xa(»)], by using (31) we can state that

k(2) k(d)

D, -6(») ="V 1) ¥ 020) - D a0

Therefore, the matrix ¢, is obtained by multiplying the ith column of ¢ by a; ¥D*!:

1 1
o) = [0 - xi (¥) a—xi1+1(y)---Fxcz(y) )

so that 0,(y) converges, uniformly on the compact sets, to the matrix field o0 which has its
first i; columns equal to the corresponding columns of &, and the rest set equal to O:

lim 0,(y) = 0(») = [11() -+ £, () 0 ... .

Concerning b,, we can write

n 1 1 1
B0 = o [0 0) ) )| B2
Now, since E[Z}] =0 for i < i;, we have
d . )
a3 = Y “GHOWELZL 1=j=d,
i=ij+1%n

and, by (26), as i >1i; we have that X{(y) =0 for any j < i}, so that
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0 if j=<i,
Ba); = & n o
' Z k(i)X'l((y)E[Z,!] if j>i;.

i=ij+1%n

Bearing in mind that, for any i > i), k(i) = 2, it follows that
lim b,(y) =0,
and the convergence is uniform on the compact sets.
Moreover, since the vector fields y; are £ °°, all the requirements in Assumption 2.2
concerning Lipschitz conditions turn out to be fulfilled. Finally, as has been proved in
Lemma 4.3 of Baldi (1986), the Cauchy problem in Assumption 2.2(iv) has a unique

solution, so that Assumption 2.2 holds. Thus, Theorem 2.5 can be applied and the statement
holds. (]

Now let
w: 7 (o, 1], G) — G, W(x) = xp,

so that, by (30),

Wy = Dl/mT”.
Such a representation allows a law of the iterated logarithm to be stated for random walks on
simply connected, graded, nilpotent Lie groups as follows:
Theorem 3.2. The set of the a.s. limit points of the sequence {Dl/\/an}” is given by

Ky =W(K)={g: I(g) =<1},

where

I(g) = x_irglix J(x).

Proof. Since W is a continuous map, the relative compactness of the sequence defined by
D\ mmmal" = Y{ =W(Y") immediately follows and the set of its limit points is given by
K; = W(K). Moreover, setting

I(g)= inf J(x),
X g=x

I turns out to be the rate function associated with the moderate-deviation principle satisfied
by {D, /iinimT"}n (see Baldi and Caramellino 1999, Theorem 6), so that 7 is lower semi-
continuous and its level sets are compact. Thus, it is immediate to check that W(K) =

{g:I(g) <1}. O

Remark 3.3. From Remark 2.6, it follows that the asymptotic behaviour of the normalized
random walk turns out to be the same as the sequence
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Dl/\/nlnln nTn’

where 7" = X, and the process X is the principal invariant diffusion on G, that is, the
diffusion process whose generator has the form

1 &

Indeed, using the notation introduced in Remark 2.6, the drift and the diffusion coefficient of
Yl = Dl/m)(,,, are given by

i

Z Wi (¥) 2 (), oM =00) =000 ---x,(»0...0]

=1

by(y) =

2Inlnn

so that b, — 0 as n — oc. Thus, the statement of Theorem 3.1 holds for the sequence {¥"},
as well, so that {D,, mT }a and {Dy ) ;g T"}a have the same set of limit points.

In the particular case of G = R, where the length of the group is / = 1 — that is, ij = d
— and T" becomes the standard sum of # i.i.d. centred random variables, such a property is
well known, since here the principal invariant diffusion is given by a standard Brownian
motion on R?. Thus, for general groups, the role of the Brownian motion is played by the
principal invariant diffusion.

Finally, let us observe that a more general functional law can be stated, similar to that
given in Baldi (1986). Indeed, in that paper a law of the iterated logarithm is proved
whenever X is (almost) any invariant diffusion on G, that is, its infinitesimal generator has
the form

L=+ Z//2
i=1

where, for i =0, ..., r < d, %/; stands for the left-invariant vector field corresponding to (a
fixed) y; € &:

d
Yif(y)= af(y o 1yi)|i=0-

The drift and the diffusion coefficients are given by
b(y) = 200+ Y Vo 20 73, () =210 ... Z:(3) 0...0].
i=1

Now, if yy ¢ Vi, then a law of the iterated logarithm follows. It is worth noticing that the
constraint yp ¢ ¥, does not mean that X, is centred on G (i.e. E[P,X,] = 0), but ensures
that, as n — oo, E[P|D, / m)( ] — 0, because this is equivalent to requiring that b,
converges as n — 0o, where b, is the drift of the diffusion D, mX > £ € [0, 1]. Notice
that such a fact is indeed what we need in the proof of Theorem 3.1.

Now, one could consider an analogous result for the case of ODEs: taking b=b, or
simply b= Yo, and 6 = 0, then the process X which solves



Law of the iterated logarithm on nilpotent groups 625

Xt = ];(Xt)+6(Xz)Sz,
Xy =0,

satisfies a law of the iterated logarithm: if yo ¢ V;, the sequence {D, / S Xnbn 18 as.

ninln n

relatively compact on £7°([0, 1], G) and the set of its limit points is the set K in Theorem 2.5,
in which

b=0, o=[Z...%,0...0]
For the proof, it is sufficient to recall Remark 2.6 and Theorem 4.1 in Baldi (1986).

4. An example: the Heisenberg group

This section is devoted to an application of Theorem 3.2 to the simplest Lie group in the
class of interest: the Heisenberg group.
Let & be the Lie algebra on R***! with k = 1, spanned by {ei, ..., exs1}, with

€2j+1 ifj=i+k 1<i<k,
[ei, ej1 = § —e2k+1 if j=i—k, k+1=<i=<2k,
0 otherwise.
Here /=2, V; is generated by {ei, ..., exx} and V5 by {eyr+1}. By the Campbell—-
Hausdorff formula, the left invariant vector fields associated with eq, ..., e;;11 can be
written as
o 1 0
—_—— = Vitk——— if 1l <i<k,
oy 27" Oy
o 1 0
)= — 4=y p=— if k+1<i<2k,
1) Jyi 2% “0varst
0
if i=2k+1.
3y2k+1

The Heisenberg group H; on R>**! is the Lie group having & as its Lie algebra. Again from
the Campbell-Hausdorff formula, the product on Hj turns out to be

. . . . &, .
gog= <g1 + g1 -5 &2kt L2k L2k+1 + C2k+1 +§Z(gigi+k - gi+kgi)>
i=1
and the endomorphism D, becomes
Dag = (agls sy A2k, a2g2k+1)-

Let {Z/};, be a sequence of ii.d. random variables taking values in H;. If 7" =
Z' o...0 Z", it is easy to check that



626 L. Caramellino and V. Di Vicenzo

T;':ZI:Z'., j=1,...,2k
n ~ I i i i o
Typp = Z Lok T 5 Z(Z§Zs+k = Zy 2

i=1 i=2 j=1 s=1
Theorem 3.2 allows a law of the iterated logarithm to be deduced for the random walk
{T"},: the limit set of the sequence {D,, ;77" }a is given by
Ki={g:g=x,xsuchthat Jx) <1} ={g: I(g) <1},
where J is as in (13), with
1 if i =j <2k,
—LVivk if j=2k+1,1<i<k,
b(y) =0, o) =g , o ,
ik if j=2k+1, k+1=<i=<2k,
0 otherwise

and where
1(g)= :igf:gJ(g)

The problem of computing such an infimum exactly is a non-trivial variational problem,
because the matrix field o is degenerate in the sense that detooT(y) =0 for any y.
Nevertheless, it has been solved through the associated Hamiltonian system in Gaveau

(1977): if the covariance matrix is the identity, recalling that P;g = (gy, ..., g24) and
P g = g1,
%|P|g|2 if Pzg:O,
271 g2k 41 if Plg=0,
I(g) = ' (32)

4 4 -2
Pigl*? |g2k+21 | sint |g2k+21 | otherwise,
|Pig] |Prg|

where 7 is the inverse function of
2t — sin(2¢
0:[0, 2l [0, oo, (1) = 2 SNCGD
2sin? ¢

In the case of the Heisenberg group, the principal invariant diffusion on Hy is given by

kot
X, = (Bl(f), oo Bai(2), %ZJ [Bi(s)dBisk(s) — Bivi(s) dBi(S)]>,

i=1 J0

where B = (By, ..., By;) denotes a 2k-dimensional standard Brownian motion. Thus, as
discussed in Remark 3.3, it follows that the asymptotic behaviour of {D, 77"}, is the
same as
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k

1 1 n
<\/ﬁBI(ﬂ)’ T nininn Bawlm), an Inn Z L [Bi(s) dBiyk(s) — Biyi(s) dBi(s)]> .

Consider the case k& = 1. Concerning the third component, whose asymptotic behaviour
has already been investigated by Crepel and Roynette (1977), the sequence defined by

nlnlnn Z 3+ ZZ(Z!Zz Zsz)

sz

is obviously also a.s. relatively compact, and it immediately follows that the set of its limit
points is {g € R|[3(g) < 1}, where

I(g)= inf I(g)= inf 1(gi, &2, &)
geHs : g3=¢ (g1,82)€R?

Now, if ¢ = 0 then obviously 75(g) = 0. Otherwise, notice that, if P;g # 0, then

Prgp 2(4|g3|)<. <4|g3|>>2
I =2 . T sInT
28) =2l&sl 1o 17 \ [P gl

so that
inf I(g1, &, & =2[g|- inf (112(5)@1“(5))2) =2/g| ,—2 = 7|8l
(g1.£2)€R\{0} £>0\& te(O 7 6(f) sin? ¢
Therefore,
13(8) = 7| gl (33)

so that the set of the limit points is [—1/m, 1/7].

If the random variables Z/ do not have the identity as their covariance matrix, a simple
transformation easily enables the set of the limit points to be represented. Indeed, first of
all, since by the strong law of the large numbers, (nlnlnn)~'>""  Zi — 0 as. as n — oo,
it is sufficient to study

1 n i—1 o o
J 71 ] 71
DTSR 2 > (212, = BZ))
i=2 j=

Let A denote the covariance matrix of the subvector (Z{, Z5). Let M be a 2 X 2 matrix such
that A = MM™, and {Z'}; be a sequence of i.i.d. Rz-yalued random variables having the
2 X 2 identity as covariance matrix, such that Z' = M Z'. Then, it can easily be seen that

- i | i detM LS 7] Fi
2nlnlnnzz(zjz Zéz])ianenlnnzg ZéZl)'

Since the limit set of the sequence on the rlght hand side is given by [—1/m, 1 /7], then the
set of the limit points of {1/2nInlnnd_;_ 22 (Z]zE — 7) 7)), is the closed interval
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where C = 0 if detM = 0, or otherwise
C = (detM)™" = (detA)"'/* = (E[(Z}*IEL(Z3)*] — E*[Z} - Z31D) '/,

a constant which has been determined in Crepel and Roynette (1977).

Therefore, when all the moments of Z' are finite or, more precisely, when its Laplace
transform is finite in a neighbourhood of the origin, our result extends that proved by
Crepel and Roynette, since they were able to determine the asymptotic behaviour of
normalized random walks on Hj; only componentwise.

Finally, let us observe that (33) gives the rate function associated with the projection on
V, also in the case k> 1. Therefore, at least when the covariance matrix is the identity, the
closed interval [—1/7, 1/7] provides the limit set of the projection on ¥, for the random
walk on Hy, which is usually called the ‘central component’.
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