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A generalization of Biggins's martingale convergence theorem is proved for the multi-type branching
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equations.
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1. Introduction

A multi-type branching random walk with p types is de®ned as follows. An initial ancestor,

, of type i 2 f1, . . . , pg resides at the origin of the real line. This individual gives birth to

a random number of offspring scattered on R according to the point process

Zi � (Zi1, . . . , Zip), where Zij is the point process counting in Borel sets the number of

individuals of type j 2 f1, . . . , pg that are born to the individual of type i: These offspring,

the ®rst generation, reproduce independently such that individuals of type j reproduce

according to the point process Z j ( j � 1, . . . , p) and so on.

In this text we shall use an Ulam±Harris labelling notation. By counting siblings from

left to right we can identify each individual, u � (k1 . . . , kn) with the understanding that u

is the knth child born to . . . born to the k1th child born to the initial ancestor. With this

formulation we write juj for the generation in which u lives, ô(u) for its type and æ(u) for

its position in R (thus ô( ) � i and æ( ) � 0). An individual is identi®ed as uv if it is a

descendent of u and, on the tree growing from u, its line of decent looks like v:
Suppose now that ìij is the intensity measure of the point process Zij such that for any

Borel measurable set A, ìij(A) � E(Zij(A)): De®ne the matrix M(è) � fmij(è)g satisfying

mij(è) �
�

R

eÿèxìij(dx),

Ù

Ù Ù
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where è 2 R: When the entries of M(è) are ®nite and it is positive regular, the Perron±

Frobenius theorem tells us that there exists a positive maximum eigenvalue r(è) and

corresponding positive right and left eigenvectors v(è) � (v1(è), . . . , v p(è)) and u(è) �
(u1(è), . . . , u p(è)) respectively whose entries are all ®nite and strictly positive. The following

assumptions will hold throughout this paper:

1. è. 0;

2. è 2 intfö : M(ö) ,1g;
3. M(è) is positive regular;

4. P(fu : juj � ng 6� Æ for all n) . 0.

Requiring that è. 0 is only a matter of convenience. For negative values of è the

arguments given in this paper are easily adjusted. The second condition, together with the

third, ensures that M(è), v(è) u(è) and r(è) all have ®rst derivatives that are ®nite. The

fourth condition implies that the process is supercritical and survives for an in®nite number

of generations with positive probability. This will happen if M(0) is positive de®nite with

r(0) . 1; see Athreya and Ney (1972, Chapter 5) for further details.

Without loss of generality, we can assume that the left and right eigenvectors of M(è)

are normalized such that Xp

i�1

ui(è) �
Xp

i�1

ui(è)vi(è) � 1:

De®ning, for each i 2 1, . . . , p,

W n
i (è) �

X
juj�n

vô(u)(è)eÿèæ(u)

vi(è)r(è)n
,

it can be shown that fW n
i (è)gn>0 is a mean-one martingale with respect to fF n

i gn>0, the ó-

algebras generated by the ®rst n(> 0) levels of the multi-type branching random walk

initiated by an individual of type i; see, for example, Rahimzadeh Sani (1999) or Bramson

et al. (1992). Being a positive martingale, it has an almost sure limit which we shall refer to

as Wi(è): When there is just one type, then we have a branching random walk and this

martingale is the same as the one which is the subject of the martingale convergence theorem

®rst proved by Biggins (1977). Biggins's theorem gives necessary and suf®cient conditions

for the aforementioned martingale to converge in mean. Further, it generalizes an older result

of Kesten and Stigum (1966) which says that if fángn>0 is a ®nite-mean, supercritical

Galton±Watson process then the positive martingale E(á1)ÿnán converges in mean if and

only if E(á1 logá1) ,1, and when this condition fails then it converges almost surely to

zero; Athreya and Ney (1972) has a full account. Both the results of Kesten and Stigum and

Biggins were recently reproved by Lyons et al. (1995) and Lyons (1997) respectively using a

method involving a change of measure on the space of (marked) trees in which realizations of

the branching process exist. The change of measure corresponds to size-biasing the

reproduction distribution on a randomly chosen line of decent. This method improved on the

existing proofs by shortening their length and using probabilistic considerations alone. The

robustness of this method has also been demonstrated given the number of other Kesten±
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Stigum type theorems for other types of branching processes that have since been reproved

using changes of measures on trees; see Kurtz et al. (1997), Olofsson (1998), Athreya (2000)

and Kyprianou (2001). The present paper now adds to this list with the following theorem.

Theorem 1. The variable Wi(è) is also an L1 limit if and only if the following two conditions

hold:

logr(è)ÿ è
r9(è)

r(è)
. 0;

E[W 1
i (è)log� W 1

i (è)] ,1, i � 1, . . . , p:

Moreover, if either of these two conditions fails, then Wi(è) is a.s. zero.

This theorem has already been proved by Rahimzadeh Sani (1999) using methods that

generalize the techniques that appeared in the original proof of Biggins's martingale

convergence theorem. The new proof we offer here is considerably quicker. Note also that

when è � 0 this result is the known Kesten±Stigum theorem for multi-type Galton±Watson

processes. For this reason assumption 1 has been imposed.

The connection between the limit of this martingale and a certain system of functional

equations should not go unmentioned. We include this as a corollary to the theorem.

Consider the class of vector functions of the form

Ö � f(ö1, . . . , ö p) : L ìi
3 öi : R� ! [0, 1] for all i � 1, . . . , f and some ìi . 0g,

where L ì is the class of Laplace transforms of positive variables with ®nite mean ì.

Corollary 2. When the two conditions in Theorem 1 are satis®ed together with the extra

condition that P(Zij(R) � 1) � 0 for all i, j 2 f1, . . . , pg, then

öi(x) � E(expfÿxWi(è)g), i � 1, . . . , p,

is the unique solution in Ö (up to a common multiplicative constant in their arguments) to

the system of functional equations

öi(x) � E
Y
juj�1

öô(u) x
vô(u)(è)eÿèæ(u)

vi(è)r(è)

 !24 35, i � 1, . . . , p: (1)

This system of functional equations can be thought of as a discrete-time analogue of

the ordinary differential equations giving travelling wave solutions to a coupled system of

K-P-P equations; see Champneys et al. (1995). The è considered in the corollary correspond

indirectly to the supercritical wave speeds in the K-P-P analogy. In principle, the method of

size-biasing we use here is equally applicable to constructing alternative solutions the

problems discussed there. The system (1) may also be considered as a multi-type version of a

smoothing transform. Such smoothing transforms and their applications have been studied,

for example, by Durrett and Liggett (1983), Liu (1997; 1998), Chauvin and Rouault (1997),

Liu and Rouault (1997), Koukiou (1997) and Waymire and Williams (1996).
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Remark 3. It follows from Corollary 2 that, for any solution to (1),

1ÿ öi(x)

x
! ì as x#0,

for i � 1, . . . , p, where ì is some constant.

Although this is a trivial observation, it is worth making in view of the comments about

(1) in relation to travelling wave solutions to the K-P-P equation and smoothing transforms.

In both the latter cases there exist analogous asymptotics to those above. See, for example,

the discussion and calculations in Liu (1998), Champneys et al. (1995), Harris (1999) and

Kyprianou (2001).

We conclude this section by giving a brief outline of the paper. In the next section we

consider the multi-type branching random walk as a process having sample paths on a

measurable space of marked trees with an associated probability measure. It is shown that

there exists a new probability measure on this space of marked trees whose Radon±

Nikodym derivative (restricted to F n
i ) with respect to the original measure is precisely

W n
i (è): Consequently, the problem of L1-convergence is transformed to studying the

martingale under the new probability measure. As mentioned earlier, the change of measure

corresponds to size-biasing the reproduction distribution along a randomly chosen line of

descent called the spine. It turns out that under the new measure, the behaviour of the

martingale is dominated by the asymptotic behaviour of the spine. In Section 3 we show

that the position and type of individuals on the spine follows a Markov additive process and

further discuss some of its basic asymptotic properties. The ®nal section is devoted to the

proof of the theorem and its corollary.

2. Measures on trees with spines

The set of possible realizations of the multi-type branching random walk with initial ancestor

of type i generates a space of trees with nodes marked in R 3 f0, 1, . . . , pg: Call this space

T i, i � 1, . . . , p, and note that if T n
i is the subspace of T i consisting of all marked trees

truncated at the nth generation, then F n
i is the ó-algebra generated by T n

i for all n > 0. The

probability measure çi on (T i, ó (T i)) corresponding to the reproduction laws outlined at the

beginning of the previous section satis®es the decomposition

dçn�1
i (t) � dç1

i (t)
Y
juj�1

dçn
ô(u)(t(u)),

where t 2 T i, çn
i is the restriction of çi to F n

i and ft(u) : juj � 1g are the independent

subtrees of t initiated by individuals in the ®rst generation.

For each t 2 T i, starting from the initial ancestor, we can distinguish (possibly ®nite)

ancestral lines of decent î � (î0, î1, . . .) (so � î0) which we shall call spines. Let ~T i be

the space of trees with a distinguished spine î, and ~T n
i the subspace of trees with spines

truncated at generation n: Call eF n
i (� F n

i ) the ó-algebra generated by ~T n
i : Consider the

measure eçi on ( ~T i, ó ( ~T i)) such that for (t, î) 2 ~T n
i (using obvious notation)

Ù
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deçn
i (t, î) �

Ynÿ1

k�0

dç1
ô(î k )(t(îk))

Y
jvj�1

u�î kv 6�î k�1

dçnÿkÿ1
ô(u) (t(u)),

which decomposes the probability measure çn
i such that

dçn
i (t) �

X
juj�n

I(în � u)deçn
i (t, î): (2)

For n > 0, let W 1
ô(în)(è, în) be the version of W 1

j(è) on the tree growing from în when

ô(în) � j. Construct a new bivariate probability measure on eði on ( ~T i, ó ( ~T i)) whose

restriction to eF n
i satis®es

deðn
i (t, î) � vô(î n)(è)eÿèæ(în)

vi(è)r(è)n
deçn

i (t, î)

�
Ynÿ1

k�0

fp(îk�1) 3 W 1
ô(î k )(è, îk)gdeçn

i (t, î), (3)

where (t, î) 2 ~T n
i and

p(îk�1) � vô(î k�1)e
ÿè(æ(î k�1)ÿæ(î k ))P

jvj�1vô(î kv)eÿè(æ(î kv)ÿæ(î k ))
, 0 < k < nÿ 1:

(The decomposition (2) can be used to show that eði is really a probability measure, and

therefore eçi is not.) Let ðn
i be its projection onto T n

i . In view of (2), this is a probability

measure that satis®es

dðn
i

dçn
i

(t) � W n
i (è): (4)

The construction (3) suggests that eðn
i corresponds to a multi-type branching random walk

that evolves generation by generation as in Section 1 except for the following modi®cation:

along the spine, given the node în in generation n > 0, the law of its reproduction with

respect to the law of Zô(î n) has Radon±Nikodym derivative W 1
ô(î n)(è, în): Further, the node

în�1 is chosen from the offspring of în with probability p(în�1): Note that this implies the

probability of no offspring for individuals along the spine is zero and therefore, under the

measure eði, spines which are ®nite form a null set.

It is worth remarking at this point that this construction of measures on trees with spines,

while consistent with Lyons (1997), differs slightly from that of Athreya (2000). In

Athreya's paper, given eF n
i , the next spinal node în�1 is chosen randomly from the entire

population in the (n� 1)th generation. However, to achieve the same Radon±Nikodym

derivative as (4), Athreya still uses the same change of measure for the law of reproduction

along the spine.

The proof of Theorem 1 in Section 4 will follow by considering the following dichotomy

relating the behaviour of W n
i (è) under the measures ði and çi: Let Wi(è) �

lim supn"1 W n
i (è), which also equals Wi(è) çi-a.s. Then (Durrett 1991, p. 210)
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Wi(è) � 1 ði-a:s:, Wi(è) � 0 çi-a:s (5)

Wi(è) ,1 ði-a:s:,
�

Wi(è)dçi � 1: (6)

3. Process on the spine

In this section we justify the claim that the process on the spine

Sn(è) :� fèæ(în)� n log m(è), ô(în)g, n > 0,

is eð-Markov additive. This property of the spine will prove to be very important in proving

Theorem 1 and Corollary 2. To begin with, we shall brie¯y recall the de®nition of a Markov

additive process and demonstrate some of its properties.

Suppose we have a family of independent random variables fX 1, . . . , X pg and an

ergodic Markov process Ë � fËngn>0 on the integers f1, . . . , pg: De®ne the process S as

follows:

S0 � 0,

Sn �
Xn

i�1

Yi

where Yi �i:i:d: Xj if Ëi � j: The pair f(Sn, Ën)gn>0 is called a Markov additive process. The

following result follows from an easy application of the classical properties of random walks

and renewal processes.

Lemma 4. Suppose that EjX ij,1 and let ìi � E(X i) for all i � 1, . . . , p: Suppose that

(Ð1, . . . , Ð p) is the stationary distribution of Ë and de®ne ÷ �P p
i�1ìiÐi. Then ÷ > 0

implies that

lim sup
n"1

Sn � 1,

and ÷ < 0 implies that

lim inf
n"1

Sn � ÿ1:

Note that this is not the strongest statement we can make about the limiting behaviour of

the spatial part of a Markov additive process, but it will suf®ce for our purposes.

Rahimzadeh Sani (1999) gives further results.

Proof. Consider ®rst the ratio

Sn

n
�
Xp

j�1

Pn
i�1YiI(Ëi � j)Pn

i�1 I(Ëi � j)

( ) Pn
i�1 I(Ëi � j)

n

� �
:

598 A.E. Kyprianou and A. Rahimzadeh Sani



The law of large numbers and ergodicity of Ë imply that

Sn

n
! ÷ :�

Xp

i�1

ìiÐi a:s:

as n tends to in®nity.

Suppose now that Ë0 � j and fN n
j gn>0 are the times that the Markov chain Ë is in state

j 2 f1, . . . , pg. Note that S j � fSN n
j
gn>0 is a random walk. Further, by the previous

observation and the ergodicity of Ë, we have the following law of large numbers:

SN n
j

n
� SN n

j

N n
j

N n
j

n
! ÷

Ð j

a:s:,

for all j � 1, . . . , p: Hence the mean increment of each S j is ÷=Ð j: (Note that this can also

be veri®ed by direct computation using standard techniques.) Consequently, the random walks

fS j : j � 1, . . . , pg are simultaneously transient or recurrent according to the value of ÷:
Since, for any j � 1, . . . , p, lim supn"1 Sn > lim supn"1 SN n

j
and lim inf n"1 Sn <

lim inf n"1 SN n
j
, the result follows. h

Consider the increments Yn � èæ(în)ÿ èæ(înÿ1)� log r(è), which by construction are

independent. Given ô(înÿ1) � j, the mean increment from type j,

ì j(è) :� E~ð j
(Y1)

� èEç j

X
juj�1

æ(u)
vô(u)(è)eÿèæ(u)P
jvj�1 vô(v)(è)eÿèæ(v)

W 1
j(è)

" #
� log r(è)

� ÿè
Xp

k�1

m9jk(è)vk(è)

r(è)v j(è)
� log r(è):

A similar calculation shows that, under assumption 2, the absolute expectation of the

increments is ®nite; see also Biggins (1977) for similar reasoning. Also, if we consider the

process of types along the spine fô(în)gn>0, we see that it is a ~ði-Markov chain with

transition probability pjk(è) which is equal to

P~ð j
(ô(î1) � k) � Eç j

X
juj�1

I(ô(u) � k)
vô(u)(è)eÿèæ(u)P
jvj�1vô(v)(è)eÿèæ(v)

W 1
j(è)

" #

� m jk(è)vk(è)

r(è)v j(è)
:

Hence it is easy to check that the stationary distribution (Ð1(è), . . . , Ð p(è)) satis®es

Ð j(è) � v j(è)u j(è) for all j � 1, . . . , p: Consequently, we conclude that the process

fèæ(în)� n log r(è), ô(în)gn>0 is Markov additive. Its drift, ÷(è), can be written more neatly

as log r(è)ÿ èr9(è)=r(è): To see this, recall that
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÷(è) �
Xp

j�1

ì j(è)Ð j(è)

� log r(è)ÿ è
u(è)M9(è)v(è)T

r(è)
:

Differentiate both sides of the equality u(è)M(è)v(è)T � r(è) and the result follows.

4. Proofs

Proof of Theorem 1. Suppose that E(W 1
i (è)log� W 1

i (è)) � 1 for some i 2 f1, . . . , pg, thus

implying that, for all c . 0, X
k>1

P~ði
(log� W 1

i (è) . cn) � 1: (7)

Using previous notation, consider the G n�1-measurable events

flog� W 1
i (è, îN n

i
) . cng,

where G n�1 :� eF N n�1
i

i : In view of (7), an application of (the conditional version of) the

Borel±Cantelli lemma to this adapted sequence of events implies that

P~ði
(log� W 1

i (è, îN n
i
) . cn infinitely often) � 1

for all c . 0, and hence

lim sup
n"1

log� W 1
ô(în)(è, în)

n
> const: 3 lim sup

n"1

log� W 1
i (è, îN n

i
)

n
� 1

~ði-a.s. where, if ô(în) � j, W 1
ô(î n)(è, în) is the version of W 1

j(è) on the tree growing from

în.

Conversely, if we assume that E(W 1
i (è)log� W 1

i (è)) ,1 for all i 2 f1, . . . , pg then a

similar argument, using again the Borel±Cantelli lemma, implies that

P~ði
(log� W 1

i (è, îN n
i
) . cn infinitely often) � 0

for all c . 0 and i � 1, . . . , p, so that

lim sup
n"1

log� W 1
ô(în)(è, în)

n
< const:3

Xp

i�1

lim sup
n"1

log� W 1
i (è, îN n

i
)

n
� 0

~ði-a.s.

Now that the ~ði-almost sure asymptotic behaviour of Sn(è) and W 1
ô(în)(è, în) have been

established with respect to the conditions of the theorem, the proof follows that of the case

p � 1 given in Lyons (1997) (but for some minor alterations). We shall include it here for

completeness.
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By decomposing W n�1
i (è) into contributions from individuals in the nth generation it can

be seen that

W n�1
i (è) > expfÿ(èæ(în)� n log r(è))g v#(è)

v"(è)
W 1

ô(î n)(è, în), (8)

where

v#(è) � minfvi(è) : i � 1, . . . , pg. 0,

v"(è) � maxfvi(è) : i � 1, . . . , pg. 0:

From the previous discussion, if ÷(è) < 0 then the diverging exponential term in (8) is

suf®cient to guarantee that

lim sup
n"1

W n
i (è) � 1 ði-a:s:

If, however, ÷(è) . 0 and E(W 1
i (è)log� W 1

i (è)) � 1 for some i 2 f1, . . . , pg, then the

lim sup of the right-hand side of (8) is dominated by the ®nal term and we conclude again

that W (è) � 1 ði-a.s.

Now suppose that both ÷(è) . 0 and E(W 1
i (è)log� W 1

i (è)) ,1 for all i 2 f1, . . . , pg:
Let G be the ó-®eld generated by the sequence fZô(î n)gn>0; then

E~ði
(W n

i (è)jG ) �
Xnÿ1

k�1

vô(î k )(è)eÿèæ(î k )

vi(è)r(è)k
W 1

ô(î k )(è, îk)ÿ
Xnÿ1

k�0

vô(î k )(è)eÿèæ(î k )

vi(è)r(è)k
:

Referring to the previous discussion, the summands in both terms above decay at worst

exponentially, and thus Fatou's lemma implies that

E~ði
(lim inf

n"1
W n

i (è)jG ) ,1 ~ði-a:s:

As [W n
i (è)]ÿ1 is a positive ði-martingale we thus have that limn"1 W n

i (è) and hence W (è)

are ®nite ði-a.s. h

Proof of Corollary 2. The proof we will give uses ideas from Doney (1972) that were also

employed in Biggins (1977) for the one-type branching random walk.

Decomposing W n
i (è) into contributions from individuals in the nth generation and taking

limits as n tends to in®nity gives the distributional identity

Wi(è) �
X
juj�1

vô(u)(è)eÿèæ(u)

vi(è)r(è)
Wô(u)(è, u)

where, if ô(u) � j, Wô(u)(è, u) is the version of W j(è) on the tree rooted at u: Taking Laplace

transforms of this identity (paying particular attention to the extra assumption in the

statement of the corollary) gives a solution to the functional equation (1) in Ö:
Suppose now we take two solutions (ö1, . . . , ö p) and (j1, . . . , j p) in Ö that satisfy the

functional equation (1). Solutions to equation (1) in Ö can equivelently be seen as random

variables (Ä1, . . . , Ä p) satisfying the smoothing transform
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Äi�d
X
juj�1

vô(u)(è)eÿèæ(u)

vi(è)r(è)
Äô(u)(u), i � 1, . . . , p,

where �d is equality in distribution and, given F 1
i , Äô(u)(u) are independent copies of Ä j

when ô(u) � j. Taking expectations in this smoothing transform, one obtains

ìi �
Xp

j�1

Pij(è)ì j, i � 1, . . . , p, (9)

where Pij(è) � mij(è)v j(è)=r(è)vi(è) is the transition matrix of the individual type on the

spine under ~ð. Since M(è) is positive regular, it can be easily checked that P(è) is, too. Thus

it follows from Kemeny and Snell (1976) that the solution to (9) is ìi � ì. 0 for all

i � 1, . . . , p.

Since we are to prove uniqueness up to a multiplicative constant in the argument, we

may now take it for granted that, for i � 1, . . . , p, öi and ji are in L 1: For all x . 0, let

gi(x) � xÿ1jöi(x)ÿ ji(x)j and

g(x) � max
jöi(x)ÿ ji(x)j

x
: i � 1, . . . , p

� �
,

so that g is bounded and positive with g(0�) � 0: We have

gi(x) <
1

x
Eçi

X
juj�1

����öô(u) x
vô(u)(è)eÿèæ(u)

vi(è)r(è)

 !
ÿ jô(u) x

vô(u)(è)eÿèæ(u)

vi(è)r(è)

 !����
0@ 1A

< Eçi

X
juj�1

gô(u) x
vô(u)(è)eÿèæ(u)

vi(è)r(è)n

 !
vô(u)(è)eÿèæ(u)

vi(è)r(è)n

0@ 1A
� E~ði

gô(î1) x
vô(î1)(è)eÿèæ(î1)

vi(è)r(è)

 ! !
:

Iterating yields

gi(x) < E~ð i
gô(în) x

vô(î n)(è)eÿèæ(î n)

vi(è)r(è)n

 ! !

< E~ð i
g x

vô(î n)(è)eÿèæ(î n)

vi(è)r(è)n

 ! !
for all n > 1: As has already been demonstrated, under the conditions of the theorem,

lim
n"1

vô(în)(è)

vi(è)
expfÿ(èæ(în)� n log r(è))g � 0 ~ði-a:s:,

and hence, since g is bounded, 0 < gi(x) < g(0�) � 0 for all x . 0. h
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