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Local asymptotic mixed normality property
for elliptic diffusion: a Malliavin calculus
approach
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We address the problem of the validity of the local asymptotic mixed normality (LAMN) property
when the model is a multidimensional diffusion process X whose coefficients depend on a scalar
parameter 0: the sample (X;/,)o<k<n corresponds to an observation of X at equidistant times in the
interval [0, 1]. We prove that the LAMN property holds true for the likelihood under an ellipticity
condition and some suitable smoothness assumptions on the coefficients of the stochastic differential
equation. Our method is based on Malliavin calculus techniques: in particular, we derive for the log-
likelihood ratio a tractable representation involving conditional expectations.
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1. Introduction
Let P? be the law of the R?-valued diffusion process
t t
X0 =x+ J b(0, s, X%)ds + J S(0, s, X%)dB, (1.1
0 0

for ¢t € [0, 1], where B is a d-dimensional Brownian motion, x is fixed, and » and S are
known smooth functions of (0, ¢, x). The parameter 0 is a scalar parameter which belongs to
©, an open interval of R. In this paper, we focus on the case where S is non-degenerate. We
are interested in an estimation problem where we observe X at n regularly spaced times
tr = k/n on the time interval [0, 1]: asymptotics are taken when n goes to +oc. In this
setting, exhibiting suitable contrasts, Genon-Catalot and Jacod (1993) construct consistent
estimators 0, of 6. Furthermore, they prove the weak convergence at rate /n of their
renormalized error \/ﬁ(én — ) to a mixed Gaussian variable. Another interesting issue is
whether these estimators are asymptotically efficient: in some way, this is related to the local
asymptotic mixed normality (LAMN) property, which we now recall (see, for example, Le
Cam and Lo Yang 1990, Chapter 5). If 7, = 0(X,,: 0 < k < n), we denote the restriction of
P’ to F, by P(ZI, and the log-likelihood ratio of P(Z with respect to P(Z" by Z,(6y, 0). The
sequence ((RY)", F,, (P?l)@e@) of statistical models has the LAMN property for the
likelihood, at 6y, at rate y/n and conditional variance T'(6y) > 0 if
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NG

. P L(P%) . . .
with R, — 0 and (A,, I'(6y)) — (A, I'(6y)), where A ~ N(0, 1) is a Gaussian variable
independent of I'(6)). When the LAMN property holds true for the likelihood, one can apply
minimax theorems (see Jeganathan 1982; 1983) and derive, in particular, lower bounds for
the variance of estimators.

In this paper, we intend to prove the validity of the LAMN property for the likelihood at
rate y/n, for the model (1.1), if the diffusion coefficient S is non-degenerate, under suitable
smoothness assumptions on b and S. The result is new in a multidimensional setting, even
if it is not surprising, since the estimators exhibited by Genon-Catalot and Jacod (1993)
satisfy the LAMN condition. We observe that the one-dimensional case has been considered
by Donhal (1987): its proof relies on an expansion of the transition probability density p’
of X. Unfortunately, in higher dimensions (except for some specific cases — see Genon-
Catalot and Jacod 1994), the well-known expansion of p’ (see Azencott 1984) is not
sufficient to adapt Donhal’s proof.

To obtain our result we adopt a new strategy. The first step consists in transforming the
log-likelihood ratio Z,(6o, 6y + u/+/n) using a Malliavin calculus integration-by-parts
formula: we derive a representation of Z, as a sum of conditional expectations (see
Proposition 4.1). The second step is to get an appropriate convergence result to analyse the
weak convergence of this kind of sum: in Corollary 4.1, we give simple conditions to
achieve this purpose. Finally, simple expansions of the conditioned random variables yield
the result.

The Malliavin calculus approach we develop here is quite general and seems well suited
to the study of the likelihood: the case of degenerate coefficient diffusion (with one
hypoellipticity condition) may be treated in the same way. Furthermore, presumably, this
approach may also enable non-Markovian situations, such as hidden diffusions or stochastic
differential equations with memory, to be tackled: consideration of these is deferred to
forthcoming papers.

The present paper is organized as follows. In Section 3, we briefly introduce the material
required for our Malliavin calculus computations. Section 4 is devoted to the proof of the
result: the main steps are the representation of Z,(6y, 0y + u/+/n) involving conditional
expectations (Proposition 4.1) and the weak convergence of expectations of this kind
(Corollary 4.1); a technical result is proved in Section 5.

2. Assumptions and results

Let © be an open interval of R. We consider a map b (a map S) from © X [0, 1] X R? into
R (into RY ® R?). As usual, derivation with respect to 6 (with respect to space variables) is
denoted by a dot (by a prime). We assume that the following two hypotheses are fulfilled.

Assumption R. The functions b(0, t, x) and S(0, t, x) are of class C'** with respect to 0
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(a > 0). The functions b, S, b S’, b' and S’ are of class C'2 with respect to (t, x). Moreover,
b" and S' are uniformly bounded on ® X [0, 1] X R?.

Assumption E. The matrix S is symmetric and positive definite:

Y(0, t, x) € O X [0, 1] X R?: inf  £.5(0, t, x)E > 0.
EeRY: €] =1

Let (B,);=o be a standard Brownian motion in R? (with (G),=¢ its usual filtration), and
0¢ ?),;0 be the inhomogeneous diffusion process which solves

t t
X0 =x+ J b(0, s, X%)ds + J S0, s, X%)dB;. (2.2)
0 0

In the following, EY = denotes the expectation under the law of the diffusion X starting at x
at time s.

Remark. Our study is restricted to a scalar parameter; however, there are no additional
technical difficulties in dealing with multidimensional parameters, beyond a more
cumbersome notation. Here, the true difficulty comes from the fact that the process takes
its values in RY.

Fix 6, € ©. For n € N*, we now consider the sample (X, )o<i<, of the diffusion X

observed at equidistant discretization times #, = k/n on the interval [0, 1]. For u € R, we
introduce the log-likelihood ratio

u dPG{Hru/ﬁ
Z,,(Ho, 90—’—%) = 10g % (X(), Xl/n)“-aXl)' (23)

The main result of the paper is the following theorem.

Theorem 2.1. Under Assumptions R and E, the LAMN property holds for the likelihood in 0,
that is, there is an extra Gaussian variable A ~ N(0, 1) independent of G, such that

u '\ £(p) u?
Z,\ 6y, 6y +—= T'(6p)A — —T'(6y),
(0 o+ﬁ)—>u\/(o) 2 (6o)

where T(6p) =2 [ tr(SS™)(6y, 1, X®)dr.

The remainder of the paper is devoted to its proof: the first step of our approach consists in
transforming the log-likelihood ratio using Malliavin calculus techniques, to obtain a simple
and tractable representation of the ratio Z,(60y, 6y + u/+/n), as a conditional expectation. We
first introduce the material required for these computations.



902 E. Gobet
3. Some basic results on the Malliavin calculus

The reader may refer to Nualart (1995) for a detailed exposition of this section.

Fix a filtered probability space (Q, F, (F;), P) and let (W;);=9 be a d-dimensional
Brownian motion. Fix 7 € (0, 1]. For h(-) € H = Ly([0, T], RY), W(h) is the Wiener
stochastic integral foT h(t)-dW,. Let S denote the class of random variables of the form
F=f(W(h), ..., W(hy)) where f € C‘;O([R{N), (hy, ..., hy) € HY and N = 1. For F €
S, we define its derivative DF = (D.F)jo,r; as the H-valued random variable given by

N
DF =Y 0 f(W(h), ..., W(hy)hi(2).
i=1

The operator D is closable as an operator from L,(€2) to L,(Q, H), for any p = 1. Its
domain is denoted by D'” with respect to the norm ||F||; , = [E|F|? + E(|DF||5)]"/?. We
can define the iteration of the operator D in such a way that for a smooth random variable F,
the derivative D¥F is a random variable with values on H®F. As in the case k = 1, the
operator DF is closable from S C L,(L2) into L,(L2; H®%), p=1. If we define the norm
| Fllx,=I[E|F|? + Z;‘ZIE(HD/'F||’;,@,-)]1/1’, we denote its domain by D¥?. We will require
the chain rule property:

Proposition 3.1. Fix p= 1. If f € C})([R{d, R) and F = (Fy, ..., F;) a random vector whose
components belong to D7, then f(F) € D"“? and for t = 0, we have

d
D(f(F)) =Y _ 0. f(F)DF;.
i=1

We now introduce 0, the Skorohod integral, defined as the adjoint operator of D:

Definition 3.1. O is a linear operator on Ly([0, T] X Q, RY) with values in L,(Q) such that:

(i) the domain of & (denoted by Dom(0)) is the set of processes u € Ly([0, T] X Q, RY)
such that

T
VF e D'2, ’E(J DF - u,dt)
0

< c(u)||F|>.

(1) if u belongs to Dom(0), then d(u) = foT w,OW, is the element of Ly(2) characterized
by the integration by parts formula

T

VF e D', E(Fo(u)) = E(J

DF - u, dt) . (3.4)
0

In the following proposition, we summarize some of the properties of the Skorohod integral:
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Proposition 3.2.

(i) The space of weakly differentiable H-valued variables D'*(H) belongs to Dom(0).
(i) If u is an adapted process belonging to L,([0, T] X Q, R?), then the Skorohod
integral and the It0 integral coincide:

T T
6(”) = J utan = J u,dW,. (3.5)
0 0
(iii) If F belongs to D', then for any u € Dom(0) such that E(F? jOT u? df) < +o0, we have
T
O(Fu) = Fo(u) — J DF - u,dt, (3.6)
0

whenever the right-hand side belongs to L,(2).
(iv) For u belonging to D**(H), D and O satisfy the following commutativity rel-
ationship:

T

D) = s + L D)3, 3.7)

(v) The operator 0 is continuous from D*P(H) into D*"VP for all k=1 and p > 1.
In particular, if k=1, for p>1, we have

0@l p = epllullL, @ m + 1 Pull L .10 m)- (3.8)
Finally, we recall the Clark—Ocone formula.

Proposition 3.3. Any random variable F € D'? has the integral representation

T
F=E(F) + J E(DF|F) - dW,.
0

4. Proof of the LAMN property

4.1. Localization of the assumptions

First, let us justify the fact that it is sufficient to prove Theorem 2.1 under the following
stronger assumptions.

Assumption R'. Assumption R holds, and the functions b, S, b, S, b and S' (of class c!2
with respect to (t, x)) and their derivatives are uniformly bounded on © X [0, 1] X R9.

Assumption E'. The symmetric matrix S satisfies a uniform ellipticity condition
VO, 1, x) €O X [0, 11X R, pyinlg < X6, £, %) < pmax La

for some real numbers 0 < Upmin < Umax < +00.
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Lemma 4.1. [f the result of Theorem 2.1 holds true under Assumptions R’ and E’, it also
holds true under Assumptions R and E.

Proof. This is more or less standard and we only give the main arguments (see Delattre
1997). For ¢ integer, consider two functions b, : ® X [0, 1] X R?+— R? and oy, :
0 X [0, 11 X R? — R? ® R?, which, on the one hand, coincide with » and o on the set
® X [0, 1] X {z : |z| =< ¢}, and, on the other hand, satisfy Assumptions R’ and E’. Denote by
PZ the law of the stochastic differential equation with the coefficients b, and o, and by Pg,n
its restriction to J,. Denote by ||u|| the total variation of the signed measure x4 and put
Agn(0) =[P — P ||: it is straightforward to prove that for any bounded sequence (6,),,
one has limy limsup, A, ,(0,) = 0. Moreover, Proposition 4.3.2 in Le Cam (1986) yields

q,n
0 B 0
dP, dP an

gpPotu/Vn dptotu/vn
[{1n]

)d(P?;‘ + P,

u
= Aq,n(QO) + ZAqqn (60 + \/_ﬁ> + 2\/ Aq,n(eo).

The proof of the lemma is now easily completed: we omit the details. O

As a consequence of the above lemma, we can consider for the rest of the proof of
Theorem 2.1 Assumptions R’ and E’, instead of R and E.

4.2. Transformation of Z,(6y, 6y + u/\/n) using Malliavin calculus

Under Assumptions R’ and E’, the law of X ? conditionally on X f =x (¢ > s) has a strictly
positive transition density p%(s, ¢, x, y), which is smooth with respect to 6 (see Proposition
5.1). Thus, the Markov property enables us to write

N 6o

We now derive a new expression for the term being integrated in (4.9), as a conditional
expectation, using Malliavin calculus. For this purpose, let us consider, throughout this
subsection, the solution of (2.2) starting at x at time #;, that is, the R?-valued process denoted
by (X ?k +)e=0 solving

n—1 cO+u//n ;0
u
Zn (005 00 + > - E J %(tka tk+l’ th’ th+1)d9' (49)
k=0

t d ot
X0 =x+ J b(O, t; + s, X!, )ds + ZJ SO, te + s, X0 )dW ., (4.10)
0 0

J=1

where S; is the jth column vector of S, and (W,),=0 a new Brownian motion with its usual
filtration (F;)=0 (W corresponds to the shift of B at time #: although it depends on &, we
suppress this dependence in the notation because there is no possible cause for confusion).
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We associate with (X 1+)r=0 its flow, that is, the Jacobian matrix Y9 ¥.=v.Xx fA 4 and its
derivative with respect to 6 denoted by X 0

Remark. Our notation with X ? o ¥ f and X ? is not homogeneous with respect to the time
variable: denoting X9 ., by X? would have been convenient at this stage of the proof, but
nevertheless, the notation Wlth X% will be clearer for the purpose of the following

computations.

tp+t

Under Assumption R’, it is clear (see Kunita 1984) that Y¢ and X 9 solve

Y§:1d+Jb(0 o+ s, X”+\)Y9ds+ZJS(0 o+ s, X0, )Y0dw
j=1

J(b(e te+s, X0 )+ b0, i +s, X0 )X)ds

d ot
+ZJ (SHO, t + 5, X0 )+ S)O, tr +5, X0 )XW . 4.11)
j=1

For any ¢ = 0, the random variables X' [ 0 Y% and X? are weakly differentiable (see Nualart
1995, Section 2.2): actually, we have X! € ﬂp>1|]]> P Y0 e p=D?P, X0 € N p=1D>P,
with the following estimates

forj=1,2,3, sup E,.( sup D, X, I")=<¢c (4.12)
71,0-,7€[0,T] nV.vrstsT

forj=1,2, sup B, .( sup |D. .Y <ec, (4.13)

71,...,7€[0,T] nV.Vrjst<T
forj=1,2, sup E,.( sup |[D,.. X)) =<c (4.14)

71,0, 75€[0,T] nV..Vr;st<T

for some constant ¢ (uniform in x, k, 6 and 7 < 1). Finally, D, X" 1,4+ 18 given by:

DX = YYHTISO, ti + 5, X0, )l=. (4.15)

Proposition 4.1. Suppose that Assumptions R' and E' hold. Set T > 0. For 1 <i < d, let us
deﬁne u = (”1 Jo<s<71, the R7-valued process whose jth component is equal to
ub = (SO, t+5, X0 )YUYD i) Then

(,(rk, i+ T, x, y) = Z Ef, [OXT rud)| XY 7 = )1, (4.16)

Proof. Let f and g be two smooth functions with compact support. Then
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J 40O’ [VA(X* 1) X0] = —J d0g'OF [f(X° )]
= —J ng’(O)J dyp?(te, ti + T, x, )£ ()
) R4

- J degw)J (e 11+ T 5 SO,
€] R4

where we have used a simple integration by parts in two different ways. It remains to prove
that

EY [VAXY ) Z B LS(XY, DoX Y pub)]. (4.17)

Indeed, the proof of Proposition 4.1 can now easily be completed by comparing both
expressions obtained for — [¢ dfg’ (G)E‘?‘ LS (X )

The derivation of the formula (4.17) for E(,’kx[V f(x° ) X %] is based on the duality
relat1onsh1p (3.4) between D and 0. First, the chain rule (Proposition 3.1) leads to
Dy(f(XY 1) =D, X‘,’k+TVf(Xt Lp) for s <T, D X?N =Y(Y)TSO, tr + s, X§ ) is
invertible, so that 9, f(X? ) = Ds(f (x° ) u . Then, it follows that the left- hand side

of (4.17) is equal to
d

d
Zl WU D, f(X° k+T)Xszs] = Z%E U Dy(f (X ) - (X0 pul )ds
i=1

i=1

d
1
= Z i, X[f(X k+T)6(X1 TU; )]
i=1

by (3.4). This completes the proof. O

4.3. On the convergence of a sum of conditional expectations

Owing to Proposition 4.1 and equality (4.9), Z,(6y, 6o + u/+/n) is represented as a sum of
conditional expectations. To analyse its convergence, we need an appropriate convergence
result (Corollary 4.1 below). To prove it, we first state an intermediate result, the proof of
which is postponed until Section 5.

Proposition 4.2. Suppose that Assumptions R' and E' hold. Fix T > 0. Let us consider H, an
Fr-measurable random variable. For any 6 € © and any a > Umax/Umin

O,
E® EY [H| X0 p=XP 1< B |H|) (4.18)

[E% (B [HIXO ,=XP ) —E! [H]|<clo—6|E] |HN (419

for some constant ¢ uniform in x, k, 0 and T < 1.
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The next result is our basic tool in the analysis of the convergence of the sum of
conditional expectations.

Corollary 4.1. Let (H, )o<k<n-1 be Fi;,-measurable random variables which satisfy, for
some o > Umax/Umin, the conditions

EY [H,]=0(n?% and (E’

tr,X

|Htk|2a)1/2a — O(n73/2)

th,x
uniformly in x, k and 6. Then, under Assumptions R' and E',

=1 (Oo+u//n ) P
J nEth’ H,k|X =X,.,,]1d0— 0.

Lrs
=0 00

Proof. Set & = [t/ v nE) v, [Hi|X7, =X, ]d0: these are G, -measurable random
variables. Using Proposmon 42 with T=n"' and the conditions of the statement of
Corollary 4.1, it is easy to check that E®[£}|G,,] = O(n—>/?) and E%[(£})?|G,,] = O(n~?),
uniformly in k. Application of the following classical convergence result (Genon-Catalot and
Jacod 1993, Lemma 9) on triangular arrays of random variables completes the proof. (I

Lemma 4.2. Let Ek, U be random variables, with Ek being G;,. -measurable. The two
P
following conditions imply Zk osr— Ut

n—1 n—1
SCEIENG U and Y EEDHG,] 0.
k=0 k=0

4.4. Convergence of Z,(6y, 6y + u//n) under P%

From (4.9) and Proposition 4.1, we deduce that

nE} y, [0(X7,), udIX] =Xy, 1d0.  (4.20)

1

d n—1 (6g+u/\/n
200, 00+ /=33 j
i=1

The rest of the proof of the LAMN property consists in expandmg (3(X T ul) into several
random variables M (correspondmg to the main term) and H; l; , the latter satisfying the
two conditions E? [H() ]=0(n?) and (EY |H(l) |y = O(n‘3/2) for all o > 1, uni-

t,X itk t,x Lk
formly in x, k, 6. Thus, by Corollary 4.1, we conclude that their contributions converge to 0

in P%-probability:
=1 6p+u/y/n P
J nE?k X, [H(l) ‘X _ka+1]d0_>0'

(27 [F38]

6o
Set a¥ = (ak s oo Uig, ,)0<t<l/n with uj = (S~ 1),](0 tk + t, X,Ht) Since #¥ is adapted,
6(uk) is 51mply an Ito integral (see (3.5)), that is, > ; fo : Af;tde ¢~ Using (3. 6) we deduce
that
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1/n
6(X11/nul)_th/n6(ut{c)_ JO DX!I/I’! : zktdt

1/n

d_rl/n .
B <ZJ 8i(0, 1+ 1, tk+l)dW] t> 6(”k) - J DX?,t : ﬂ,(ft ds
0 0

=

: d_ (l/n
+ (Xﬁl I ZL S; (0, t + 1y, X‘jﬁt)de,,) itk

=
1 .
tl/na(u — i )_JO (Dth/n it _DfX?,t'ai,t)dt

— D _y® g gD o

ity ity ity itk (A7

4.21)

4.4.1. Main contributions

Let us write AX) 0.— x?

Lit1
Since S is invertible, it readily follows that

— X% and AX; =X, — X,,. We first consider terms MY
k +

ity

AW, =570, t + 1, X0 )dX0 ., — SN0, 1+ 1, X0 )b(O, 1t + 1, X0, )dr

trtt trt+t

= Sil(aa tr, X )dth+r + (Id - Sil(ea tr, X )S(6 Iy + 2, th+t))th

— SN, tr, XO)b(O, 1+ 1, X, )dt.

Thus, easy computations using standard It6 calculus techniques yield

Jym=1

d 1/n
Mg,lz)k = (Z Sij(0, tr, X?k)L (S0, tr, X )de tk+t>

d 1/n
X (Z (S0, 1, ka)JO (S0, tr, X9 )dXE, . ) +H,

Jym=1

d d
= (Z(ssl)i,m(e, t, X?,[)Axfn,k> <Z(S2),-,m<e, trs X'?,()AXZ,,,{> +HY  (4.22)
m=1

m=1

with B [HY 1= 0(n™?), (B! ,|H')) |)V/¢ = O(n=3/2) for all @ > 1, uniformly in x, k, 6.

tr,X ity ity

_ Turning  to  terms M(lzt) , we first deduce from (4.11) that (DX gt) ;=
Si (0, t + 1, X ) T (SHO, g+t X,kﬂ)X?)j, so that it readily follows that
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d l/n .
M), :ZL (Sij(O, tx+ 1, X0 )+ (SUO, 15+ 1, X0 )X NS0, 1+ 1, X0 e
Jj=1

<. . - 1 .
=7 Sis0, 11, XS D10, 11, X0+ HE =~ (S0, 10, X0+ HE),
j=1

(4.23)

with the required estimates on the mean and the L,-norms of H; (5) to ensure that it gives a
negligible contribution in Z,(6y, 6y + u/+/n).

4.4.2. Negligible contributions

We must verify that, for /=1, 2,3, E? [HY) 1= 0(n?) and (E? |H) |*)!/* = O(n=3/?)
for all a > 1, uniformly in x, k&, 6. We only sketch the proof of these estimates.

For terms HE,) , recall that 6(@i¥) is an It6 integral, so that standard It6 calculus enables
us to prove the required estimates.

Turning to terms HE), the L,-norms of order n can be directly obtained using
HXl/an = O(n'/?) and inequality (3.8) combined with the estimates (4.12), (4.13). To
obtain the O(n~?)-estimate for the mean, first transform the random variable
6(uf‘ — ﬁf) € D'? into an Ito integral using the Clark—Ocone formula (Proposition 3.3),
taking into account relation (3.7), and then use It6’s calculus combined with the estimates
(3.8), (4.12) and (4.13). )

Finall, for terms Hi,, it is enough to prove that DXY, In U

DX9 Ak = 1/"( ) ds +f1/” (- )dWS, with adequate L, controls on the adapted
1ntegrands For this, if we put X, = (X X 6) (this is a R?>?-valued diffusion process), note
that D,Xl/n = Yl/,,(Y,) S(G t+1, X)) (see equahty (4. 15)) where Y (or S) is the flow of
X (or its diffusion coefficient): thus, DX 1 Jn U - DX -u" can be decomposed using

it
It6’s formula between ¢ and 1/n.

-3/2

i,

4.4.3. Conclusion of the proof of the LAMN property

Plugging (4.22) and (4.23) into (4.21) and (4.20), we have proved that Z,(6, 6y + u/+\/n) is
equal to

d_ n=1 6y+u/\/n d_ d
> J [ (Z(Ssl),-,m(e, b th)AXm,k> (Z(S%i,m(e, rk,X,k)AXm,k>

i=1 k=0 m=1 m=1

- (S’Sil)i,i(es tky th)

do+ R, = i&k—i-R,,

with
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bl |
Sk = J [n(SS™')O, ti, X, )AX ( (ST2NO, tx, X, )AX — te(SS™')(O, 1, X,,)1dO
0o

0 .
and R, 2o. Now, if we set I'(6y) = 2]01 tr(SS™1)2(6y, t, X®)dt, it is easy to check that

n—1 n—1

SEYEIG D —TO0/2 S EPEIG,] - EEIG, D T 6,

k=0 k=0

n—1 n—1

P P
D> E®[ENG, 10, > EM[EAW |G, 1= 0
k=0 k=0

for j=1, ..., d. Hence, we complete the proof of the result using a central limit theorem for
triangular arrays of random variables (see Jacod 1997, Theorem 3-2). ]

5. Proof of Proposition 4.2

We first state some preliminary estimates for the transition density of X?. For u >0,
we denote by Gy(?, x, y) the transition density of the scaled Brownian motion (x+
(1/ /W) W:) =0, that is, the Gaussian kernel G,(t, x, y) = (2mt)~2u/? exp(—ul|y —x|]?/21).
The density p?(s, ¢, x, y) satisfies the following estimates:

Proposition 5.1. Under Assumptions R' and E', for any w, and u, such that pu; <
Umin < Umax < U, there exists ¢ > 0 such that

1
;Gm(t— 5, % ») < pP(s, t, x, ) < ¢G, (t — 5, X, ¥), (5.24)

1%, t, x, p)| < ¢Gy (t — s, x, ¥), (5.25)

for 0<s<t<1and (0, x, y)€O®XRXR

Proof. These estimates are classical: they can be found, for example in Azencott (1984,
p. 478). Note that Azencott (1984) assumes in his context more smoothness with respect to 0
than do we, but, with a little care, we see that Assumptions R’ and E’ are sufficient for our
purpose.

Another way to derive (5.25) consists in expressing p? as the expectation of some
random variable, using similar Malliavin arguments to those in Proposition 4.1, and
applying standard estimates. O

We now return to the proof of estimates (4.18) and (4.19). It is easy to see that

Ao
E% (B [H|XC . = X% ,])=E H‘;_e(zk, b+ Tox X0 )| (5.26)

LhX thX ty+T Lk, X
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Using the Holder inequality (with a and B conjugate) and (5.24), it follows that the right-
hand side of (5.26) is bounded by

1/8
C(E! | H|' (J Gh (T, x, »GL AT, x, y)dy) < C'(B! | H|'",
. - | ,
since the integral with respect to y is finite as soon as fu; + (1 — fux > 0 a > ui/us:
this condition is satisfied up to modifying u; and u, from the beginning. It completes the
proof of the estimate (4.18).
To obtain (4.19), we deduce from (5.26) that

6o 0’
o , P
Ef W(Bf L LHIX, = X7, 7)) = EJ[H] + L do'E [Hp(,ak, o T,x X0 ).
We estimate the last expectation using the same arguments as before, exploiting the upper
bound (5.25) for p? instead of those for p®. O
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