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1. Introduction

Let (X , Y ), (X1, Y1), (X2, Y2), . . . be independent, identically distributed (Rd 3 R)-valued

random vectors with EY 2 , 1. No assumptions are made about the distribution of X, which

can be discrete or continuous or a mixture of the two. In regression estimation the

distribution of (X , Y ) is unknown. Given a sequence Dn ¼ f(X 1, Y1), . . . , (Xn, Yn)g of

independent observations of (X , Y ), our goal is to construct an estimate mn(x) ¼ mn(x, Dn)

of the regression function m(x) :¼ EfY jX ¼ xg such that the L2 errorð
jmn(x) � m(x)j2 PX (dx)

is small.

It was demonstrated by Stone (1977) that there exist estimates mn with the property thatÐ
jmn(x) � m(x)j2 PX (dx) ! 0 in probability for all distributions of (X , Y ) with EY 2 , 1.

Unfortunately, distribution-free rates of convergence for the L2 error do not exist. In order

to obtain non-trivial rates one has to impose restrictions on the class of distributions

considered; see Devroye et al. (1996, Chapter 7) and Devroye and Wagner (1980).

For p-smooth regression functions, by the results of Stone (1982), there is no estimate
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which converges in the minimax sense in L2 faster than n�2p=(2pþd). He demonstrated that

the L2 error of a local polynomial kernel estimate converges to zero in probability with the

rate n�2 p=(2pþd) for all distributions of (X , Y ) such that the regression function is p-smooth,

X has a density bounded away from zero and infinity and EY 2 is finite.

Kohler (2000) showed that the L2 error of suitably defined least-squares spline estimates

achieves the rate n�2p=(2pþd) for all distributions of (X , Y ) with p-smooth regression

function ( p bounded above by some fixed upper bound on the smoothness) and (X , Y )

bounded with probability one. The definition of his estimates does not depend on p, hence

the estimates automatically adapt to the smoothness of the regression function. This

adaptation is achieved by an application of Vapnik’s principle of structural risk

minimization. The basic idea is to define a family of least-squares estimates, to derive

upper bounds on the L2 error of these estimates depending on the empirical L2 risk

(1=n)
Pn

i¼1j f (X i) � Yij2 together with a measure of the complexity of the underlying

function space, and finally to choose the estimate whose upper bound on the L2 error for a

given set of data is minimal.

In this paper we use a similar idea to define adaptive smoothing spline estimates. We

show that the estimates automatically adapt to the unknown smoothness of the regression

function and that their L2 errors achieve the optimal rate of convergence up to a logarithmic

factor. This result is valid without any regularity assumption on the distribution of the

design.

1.1. Discussion of related results

Smoothing spline estimates have been studied by many authors; see, for example, the

monographs by Eubank (1988) and Wahba (1990) and the literature cited therein. Most of the

results in the literature are derived for fixed design regression (where the X i are non-random)

and cover the case d ¼ 1 only.

In the context of random design regression, consistency and rate of convergence of

univariate smoothing spline estimates have been studied by means of empirical process

theory by van de Geer (1987; 1988; 1990). Further results can be found in the monograph

of van de Geer (2000), which is also an excellent source for the techniques of empirical

process theory used in this paper. The results of van de Geer cited above are derived for

estimators which use parameters dependent on the smoothness of the regression function.

For fixed design regression, estimates similar to the one in this paper are studied by van de

Geer (2001).

The principle of structural risk minimization which is behind the definition of the

adaptive estimates in this paper was introduced by Vapnik and Chervonenkis (1974) in the

context of pattern recognition; see also the recent monograph by Vapnik (1998). In Krzyżak

and Linder (1998) and Kohler (1998; 2000) it was applied to various least-squares

estimates. These estimates are similar to adaptive least-squares estimates investigated in

Barron et al. (1999) and Baraud (1997), although the estimates in these papers have

different motivations. They obtain the optimal rate of convergence but under some

regularity condition on the distribution of the design. (One should note that Baraud (1997)
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and in part also Barron et al. (1999) use the L2 error with integration with respect to the

Lebesgue–Borel measure, whose analysis requires regularity conditions on the design.)

Krzyżak and Linder (1998) and Kohler (1998) impose no conditions besides boundedness

on the distribution of the design, but, as in the present paper, they obtain rates of

convergence that are optimal up to a logarithmic factor. In Kohler (2000) the optimal rate

of convergence is shown for adaptive least-squares spline estimates under no assumptions

on the distribution of the design. There, in contrast to the results in the present paper, it is

assumed that the derivatives of order p � 1 satisfy a global Lipschitz condition (rather than

that the derviatives of order p are square-integrable) and that p is bounded from above by

some fixed upper bound on the smoothness.

1.2. Notation

Throughout the paper we will use the following notation: N, R and Rþ denote the set of

natural numbers, real numbers and non-negative real numbers, respectively. For x 2 R, we

denote the greatest integer less than or equal to x by bxc. For L . 0 and z 2 R, set

TLz ¼ sgn(z)minfL, jzjg. For a function f : Rd ! R, define TL f : Rd ! R by (TL f )(x)

¼ TL( f (x)), x 2 Rd . The partial derivative of order (Æ1, . . . , Æd) of a function f : Rd ! R is

denoted by @ Æ1þ...þÆd f =@xÆ1

1 . . . @x
Æd

d . L2([0, 1]d) is the set of all square-integrable functions

f : [0, 1]d ! R, and for k 2 N, W k([0, 1]d) is the Sobolev space containing all functions

f : [0, 1]d ! R whose derivatives of total order k are in L2([0, 1]d). log(x) denotes the

natural logarithm of x . 0. jAj is the cardinality of the set A and IA the corresponding

indicator function.

1.3. Outline of the paper

In Section 2 we give the exact definition of the estimate. The main result is stated in Section

3 and proven in Section 4.

2. Definition of the estimate

We will assume that (X , Y ) takes with probability one only values in some bounded subset of

Rd 3 R. Without loss of generality this bounded subset is [0, 1]d 3 [�L, L], that is, almost

surely, (X , Y ) 2 [0, 1]d 3 [�L, L] for some L 2 Rþ.

Let k 2 N with 2k . d. The condition 2k . d implies that the functions in W k([0, 1]d)

are continuous and hence the value of a function at a point is well defined. Set

J2
k( f ) ¼

X
Æ1,:::,Æd2N,
Æ1þ...þÆd¼k

k!

Æ1!" . . . "Æd !

ð
Rd

���� @ k f

@xÆ1

1 . . . @x
Æd

d

(x)

����2dx:

Let º 2 Rþ. First define the smoothing spline estimate ~mmn,(k,º) by
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~mmn,(k,º)(") ¼ arg min
f 2W k ([0,1[d )

1

n

Xn

i¼1

j f (Xi) � Yij2 þ ºJ 2
k( f )

 !
: (1)

By the results in Duchon (1976, Section V) the minimum exists; for our purposes, however,

we do not require it to be unique. Also observe that ~mmn,(k,º) depends on the data Dn and that

we have suppressed this in our notation.

The estimate ~mmn,(k,º) is parametrized by k 2 N and º 2 Rþ. We next describe how one

can use the data Dn to choose these parameters. The basic idea is related to Vapnik’s

structural risk minimization principle: in Lemma 1 below we give an upper bound on

L2 error of (a truncated version of) the estimate ~mmn,(k,º). We then choose (k�, º�) by

minimizing this upper bound.

Lemma 1. Let 1 < L , 1, º 2 Rþ and � 2 (0, 1]. Then for

penn(k, º) ¼ L5(log(n))2

n " ºd=2k

and n sufficiently large, one has, with probability greater than or equal to 1 � �,ð
Rd

jTL ~mmn,(k,º)(x) � m(x)j2 PX (dx) < L4 log(n)

n
þ 2 penn(k, º) þ 2

1

n

Xn

i¼1

jTL ~mmn,(k,º)(X i) � Yij2
(

þ ºJ2
k( ~mmn,(k,º)) �

1

n

Xn

i¼1

jm(X i) � Yij2
)

for every distribution of (X , Y ) with (X , Y ) 2 [0, 1]d 3 [�L, L] almost surely.

The proof of Lemma 2 is similar to the proof of Theorem 1 given below and is therefore

omitted.

Set

Kn :¼
2

d

2

3
, . . . ,

2
d

2

3
þ b(log(n))1=2dc

( )
and

¸n :¼ log(n)

2n
,

log(n)

2n�1
, . . . ,

log(n)

1

� �
:

For (k, º) 2 Kn 3¸n, define mn,(k,º) by

mn,(k,º)(x) ¼ TL ~mmn,(k,º)(x), x 2 Rd : (2)

Depending on the data Dn, we choose the member of the family fmn,(k,º): (k, º) 2 Kn 3¸ng
that minimizes the upper bound in Lemma 1. More precisely, we choose

(k�, º�) ¼ (k�(Dn), º�(Dn)) 2 Kn 3¸n
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such that

1

n

Xn

i¼1

jmn,(k�,º�)(X i) � Yij2 þ º�J2
k� ( ~mmn,(k�,º�)) þ penn(k�, º�)

¼ min
(k,º)2K n3¸n

1

n

Xn

i¼1

jmn,(k,º)(Xi) � Yij2 þ ºJ2
k( ~mmn,(k,º)) þ penn(k, º)

( )
and define our adaptive smoothing spline estimate by

mn(x) ¼ mn(x, Dn) ¼ mn,(k�(D n),º�(D n))(x, Dn):

An upper bound on the L2 error of the estimate is given in the next section.

3. Main result

In Section 4 we prove the oracle-style inequality

E

ð
jmn(x) � m(x)j2 PX (dx) < 2 inf

º2¸n

(ºJ2
p(m) þ penn(m, º))

� �
þ const:

n
(3)

(2p . d) for the above estimate mn from which the following theorem can be derived:

Theorem 1. Let p 2 N with 2p . d be arbitrary. Let the estimate mn be defined as in

Section 2.

(a)

E

ð
jmn(x) � m(x)j2 PX (dx) ¼ O

(log(n))2

n

� �
for any p . d=2 and any distribution of (X , Y ) with (X , Y ) 2 [0, 1]d 3 [�L, L] almost

surely, m 2 W p([0, 1]d) and J2
p(m) ¼ 0.

(b)

E

ð
jmn(x) � m(x)j2 PX (dx) ¼ O (J2

p(m))d=(2pþd)(log n)2 n�2p=(2pþd)
� �

for any p . d=2 and any distribution of (X , Y ) with (X , Y ) 2 [0, 1]d 3 [�L, L] almost

surely, m 2 W p([0, 1]d) and 0 , J 2
p(m) , 1.

Remark 1. It follows from the proof given in Section 4 that in inequality (3) the factor 2 can

be replaced by 1 þ �, where � . 0 is arbitrarily small.

Remark 2. The condition J 2
p(m) ¼ 0 in Theorem 1(a) implies that m is a multivariate poly-

nomial of degree p � 1 (or less, in each coordinate). In this case the estimate is within a

logarithmic factor of the parametric rate O(1=n). Furthermore, it follows from Stone (1982)

that the rate of convergence in Theorem 1(b) is optimal up to the logarithmic factor (log(n))2.

Multivariate smoothing spline regression 479



Remark 3. The definition of the estimate does not depend on p or J 2
p(m), hence it

automatically adapts to the unknown smoothness of the regression function measured by p

and J2
p(m).

Remark 4. We wish to emphasize that in Theorem 1 there is no assumption on the underlying

distribution of X besides X 2 [0, 1]d with probability one. In particular, X is not required to

have a density with respect to the Lebesgue–Borel measure.

Remark 5. We use truncation of the estimate in order to ensure that the estimate is bounded

in supremum norm on [0, 1]d , a property which is required in Lemma 3 below. It should be

noted that in the general setting considered here truncation is indeed necessary. For example,

consider random variables X with PfX ¼ 0g ¼ 1
2

and PfX < xg ¼ (1 þ x)=2 for x 2 [0, 1]

and Y independent of X with PfY ¼ �1g ¼ PfY ¼ þ1g ¼ 1
2
. Hence m(x) ¼ 0 for all x.

Now draw an independent, identically distributed sample (X1, Y1), . . . , (X n, Yn) from the

distribution of (X , Y ). If the event A :¼ fX 1 ¼ . . . ¼ X n�1 ¼ 0; Y1, . . . , Yn�1 ¼ �1;

X n 6¼ 0; Yn ¼ 1g occurs, then the smoothing spline mn, obtained with penalty J 2
k for

k > 2, is the straight line through (0, �1) and (X n, 1), mn(x) ¼ �1 þ 2x=X n. Using this, the

L2 error satisfies

E

ð
jmn(x) � m(x)j2 PX (dx) > E IA "

1

2

ð1

0

����� 1 þ 2x

Xn

����2dx

 !

¼ p

2
" E IfX n 6¼0g "

X n

6
�1 þ 2

X n

� �3

þ 1

 ! !

¼ p

4

ð1

0

u

6
�1 þ 2

u

� �3

þ 1

 !
du ¼ 1,

where p ¼ PfX 1 ¼ . . . ¼ Xn�1 ¼ 0; Y1 ¼ . . . ¼ Yn�1 ¼ �1; Yn ¼ 1g . 0. In other words,

if no restrictions are imposed on the distribution of the regression design, the untruncated

smoothing spline estimate with penalty of order k > 2 is not even weakly universally

consistent. In view of this example, some sort of truncation cannot be avoided.

4. Proofs

In the proof of Theorem 1 we will need two auxiliary results. To formulate these results we

need the concept of covering numbers.

Definition 1. Let q > 1, l 2 N and let F be a class of functions f : R l ! R. The covering

number Nq(E, F , xn
1 ) is defined for any E . 0 and xn

1 ¼ (x1, . . . , xn) 2 (R l)n as the smallest

integer k such that there exist functions g1, . . . , g k : R l ! R with
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min
1<i<k

1

n

Xn

j¼1

j f (xj) � gi(xj)jq
 !1=q

< E

for each f 2 F .

Lemma 2 (Kohler 2000, Theorem 2). Let Z n
1 ¼ (Z1, . . . , Z n) be independent, identically

distributed random variables with values in some set X . Let K1, K2 > 1 and let F be a class

of functions f : X ! [�K1, K1] such that

Ef f (Z1)2g < K2E f (Z1): (4)

For 0 , E , 1 and Æ . 0, letffiffiffi
n

p ffiffiffiffiffiffiffiffiffiffiffi
1 � E

p ffiffiffi
Æ

p
> 288 maxf2K1,

ffiffiffiffiffiffiffiffiffi
2K2

p
g (5)

and, for all z1, . . ., zn 2 X and all � > Æ=4, let

ffiffiffi
n

p
(1� E)�> 288 maxf2K1, K2g

ð ffiffi�p

Æ=8K2

logN2 u, f 2F :
1

n

Xn

i¼1

f 2(zi) < 4�

( )
, zn

1

 ! !1=2

du:

(6)

Then

P sup
f 2F

����(1=n)
Xn

i¼1

f (Zi) � E f (Z1)

����
Æþ E f (Z1)

. E

8>><>>:
9>>=>>; < 50 exp

nÆE2(1 � E)
128 " 2304 maxfK2

1, K2g

 !
: (7)

If one replaces Æ=8K2 by zero (6) then Lemma 2 follows from Theorem 2 in Kohler (2000).

The version given here can be proven analogously by an application of Lemma 3.2 in the

general version of van de Geer (2000), instead of the more specific form given in Lemma 3

in Kohler (2000).

Lemma 3. Let L, c . 0 and set

F ¼ fTL f : f 2 W k([0, 1]d) and J 2
k( f ) < cg:

Then there exists a constant cd 2 Rþ depending only on d, such that, for any E . 0 and all

x1, . . ., xn 2 [0, 1]d,

logN2(E, F , xn
1 ) < cd(kd þ 1)

ffiffiffi
c

p

E

� �d=k

þ 1

 !
" log

64eL2 n

E2

� �
" IfE<Lg: (8)

Proof. The proof is a straightforward modification of the proof of Lemma 3 in Kohler and

Krzyżak (2001), therefore we give only an outline.

For E . L the bound (8) is trivially satisfied for the cover f0g, so assume 0 , E < L. Let
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G be the set of all piecewise polynomials of degree k � 1 (or less, in each coordinate) with

respect to a rectangular partition of [0, 1]d consisting of at most

K < c1(2d þ 1)

ffiffiffi
c

E

r !d=k

þ 2d

rectangles, and set TLG ¼ fTL g : g 2 Gg. It follows from the proof of Lemma 3 in Kohler

and Krzyżak (2001) that, for c1 ¼ c1(d) 2 Rþ sufficiently large, for any f 2 F, there exists

p f 2 TLG such that

sup
x2[0,1]d

j f (x) � p f (x)j , E
2
:

From this one easily concludes

N2(E, F , xn
1 ) < N2

E
2

, TLG, xn
1

� �
: (9)

For arbitrary functions f , g: Rd ! [�L, L],

1

n

Xn

i¼1

j f (xi) � g(xi)j2
 !1=2

<
ffiffiffiffiffiffi
2L

p 1

n

Xn

i¼1

j f (xi) � g(xi)j
 !1=2

,

which implies

N2

E
2

, TLG, xn
1

� �
< N1

E2

8L
, TLG, xn

1

� �
: (10)

Finally, it is shown in the proof of Lemma 3 in Kohler and Krzyżak (2001) that

logN1

E2

8L
, TLG, xn

1

� �
< c2

ffiffiffi
c

p

E

� �d=k

þ 1

 !
(kd þ 1)log

64eL2 n

E2

� �
: (11)

Then (9), (10) and (11) imply the assertion. h

Proof of Theorem 1. Let Dn ¼ f(X 1, Y1), . . . , (Xn, Yn)g be the collection of observed data.

We divide the proof into five steps.

Step 1. We start with the error decompositionð
Rd

jmn(x) � m(x)j2 PX (dx) ¼ T1,n þ T2,n,

where
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T1,n ¼ E[jmn(X ) � Y j2jDn] � E(jm(X ) � Y j2) � 2
1

n

Xn

i¼1

jmn(X i) � Yij2
(

þ º�J2
k�( ~mmn,(k� ,º�)) �

1

n

Xn

i¼1

jm(Xi) � Yij2 þ penn(k�, º�)

)

and

T2,n ¼ 2
1

n

Xn

i¼1

jmn(Xi) � Yij2 þ º�J2
k�( ~mmn,(k�,º�)) �

1

n

Xn

i¼1

jm(Xi) � Yij2 þ penn(k�, º�)

( )
:

We show that

T2,n < 2 inf
º2¸n

ºJ 2
p(m) þ penn( p, º)

n o
: (12)

By the definition of mn, the Lipschitz property of TL and jYij < L almost surely, which

implies Yi ¼ TLYi (i ¼ 1, . . . , n) almost surely and J2
p(m) , 1,

T2,n < 2 inf
º2¸n

1

n

Xn

i¼1

jTL ~mmn,( p,º)(Xi) � Yij2 þ ºJ 2
p( ~mmn,( p,º))

(

� 1

n

Xn

i¼1

jm(X i) � Yij2 þ penn( p, º)

)

< 2 inf
º2¸n

1

n

Xn

i¼1

j ~mmn,( p,º)(X i) � Yij2 þ ºJ 2
p( ~mmn,( p,º))

(

� 1

n

Xn

i¼1

jm(X i) � Yij2 þ penn( p, º)

)

< 2 inf
º2¸n

1

n

Xn

i¼1

jm(X i) � Yij2 þ ºJ 2
p(m) � 1

n

Xn

i¼1

jm(X i) � Yij2 þ penn( p, º)

( )

¼ 2 inf
º2¸ n

ºJ 2
p(m) þ penn( p, º)

n o
:

Step 2. Let t . 0 be arbitrary. We show that
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PfT1,n . tg <
X

(k,º)2Kn3¸n

X1
l¼1

P 9 f ¼ TL g, g 2 W k([0, 1]d), J2
k(g) <

2 l penn(k, º)

º
:

8>>><>>>:
Ej f (X ) � Y j2 � Ejm(X ) � Y j2 � (1=n)

Xn

i¼1

fj f (Xi) � Yij2 � jm(X i) � Yij2g

t þ 2 l penn(k, º) þ Ej f (X ) � Y j2 � Ejm(X ) � Y j2 .
1

2

9>>>=>>>;:

To see this, write

R( f ) ¼ j f (X ) � Y j2 � jm(X ) � Y j2, Rn( f ) ¼ 1

n

Xn

i¼1

fj f (Xi) � Yij2 � jm(X i) � Yij2g

and observe that

PfT1,n . tg

< P E[R(mn,(k� ,º�))jDn] � Rn(mn,(k�,º�))

(

.
1

2
t þ 2º�J2

k�( ~mmn,(k�,º�)) þ 2 penn(k�, º�) þ E[R(mn,(k�,º�))jDn]
� ��

<
X

(k,º)2Kn3¸ n

P 9 f ¼ TL g, g 2 W k([0, 1]d):
ER( f ) � Rn( f )

t þ 2ºJ2
k(g) þ 2 penn(k, º) þ ER( f )

.
1

2

( )

<
X

(k,º)2Kn3¸ n

X1
l¼1

P 9 f ¼ TL g, g 2 W k([0, 1]d),

�

2 l penn(k, º) < 2ºJ2
k(g) þ 2 penn(k, º) , 2 lþ1 penn(k, º):

ER( f ) � Rn( f )

t þ 2ºJ 2
k(g) þ 2 penn(k, º) þ ER( f )

.
1

2

�

<
X

(k,º)2Kn3¸ n

X1
l¼1

P 9 f ¼ TL g, g 2 W k([0, 1]d), J2
k(g) < 2 l penn(k, º)

º
:

�

ER( f ) � Rn( f )

t þ 2 l penn(k, º) þ ER( f )
.

1

2

�
:

Step 3. Now fix (k, º) 2 Kn 3¸n and l 2 N. We show, for n sufficiently large, that

484 M. Kohler, A. Krzyżak and D. Schäfer



P 9 f ¼ TL g, g 2 W k([0, 1]d), J2
k(g) <

2 l penn(k, º)

º
:

ER( f ) � Rn( f )

t þ 2 l penn(k, º) þ ER( f )
.

1

2

( )

< c3 exp �c4

n " (t þ 2 l penn(k, º))

L4

� �
:

This inequality follows directly from Lemma 2 provided we can show that the assumptions of

Lemma 2 are satisfied. Set

F ¼ f : Rd 3 R ! R: f (x, y) ¼ jTL g(x) � TL yj2 � jm(x) � TL yj2 ((x, y) 2 Rd 3 R)

�

for some g 2 W k([0, 1]d), J2
k(g) < 2 l penn(k, º)

º

�
and Zi ¼ (X i, Yi) i ¼ 1, . . . , n. Then the above probability can be rewritten as

P sup
f 2F

E f (Z1) � (1=n)
Xn

i¼1

f (Zi)

t þ 2 l penn(k, º) þ E f (Z1)
.

1

2

8>>><>>>:
9>>>=>>>;:

Hence it suffices to show that, for the set Fn of functions, Æ ¼ t þ 2 l penn(k, º), E ¼ 1
2

and

suitable values of K1 and K2, the assumptions of Lemma 2 are satisfied. Recall that the

penalty is defined by

penn(k, º) ¼ L5(log (n))2

n " ºd=2k
(k, º) 2 Kn 3¸n:

We first determine K1 and K2. For f 2 F , we have j f (z)j < 4L2, z 2 Rd 3 R, and

Ej f (Z)j2 ¼ Efj j(TL g)(X ) � Y j2 � jm(X ) � Y j2j2g

¼ Efj((TL g)(X ) � Y ) � (m(X ) � Y )j2 " j((TL g)(X ) � Y ) þ (m(X ) � Y )j2g

< 16L2Ej(TL g)(X ) � m(X )j2 ¼ 16L2E f (Z):

So we can choose K1 ¼ 4L2 and K2 ¼ 16L2.

Next we show that (5) holds for n sufficiently large. Using º < log(n) for º 2 ¸n, this

follows from

ffiffiffi
n

p ffiffiffiffiffiffiffiffiffiffiffi
1 � E

p ffiffiffi
Æ

p� �2¼ n

2
" t þ 2 l L5(log (n))2

n " ºd=2k

� �
>

L5(log (n))2

(log (n))d=2k
! 1 n ! 1,

because of 2k . d for k 2 Kn.

So it remains to show that (6) holds for n sufficiently large. In order to bound the

covering number, we observe that
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1

n

Xn

i¼1

����(jTL g1(xi) � TL yij2 � jm(xi) � TL yij2) � (jTL g2(xi) � TL yij2 � jm(xi) � TL yij2)

����2

¼ 1

n

Xn

i¼1

jTL g1(xi) � TL g2(xi)j2 " jTL g1(xi) þ TL g2(xi) � 2TL yij2

< 16L2 1

n

Xn

i¼1

jTL g1(xi) � TL g2(xi)j2

and obtain

N2(u, F , zn
1 ) < N2

u

4L
, TL g : g 2 W k([0, 1]d), J2

k(g) < 2 l penn(k, º)

º

� �
, xn

1

� �
:

This, together with Lemma 3, implies, for any u > 1=n:

logN2 u, f 2 F :
1

n

Xn

i¼1

f (zi)
2 < 4�

( )
, zn

1

 !
< logN2(u, F , zn

1 )

< logN2

u

4L
, TL g : g 2 W k([0, 1]d), J2

k(g) < 2 l penn(k, º)

º

� �
, xn

1

� �

< cd(kd þ 1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 l penn(k, º)=º

p
u=4L

 !d=k

þ 1

0@ 1Alog
64eL2 n

u2=16L2

 !

< cd(kd þ 1) 4L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 l penn(k, º)=º

p
u

� �d=k

þ 1

 !
log 1024eL4 n3ð Þ:

Using k < d=2 þ (log(n))1=2d for k 2 Kn, we obtain, for n sufficiently large,

logN2 u, f 2 F :
1

n

Xn

i¼1

f (zi)
2 < 4�

( )
, zn

1

 ! !1=2

< c5(log (n))3=4 2 l penn(k, º)=º
� �d=4k " u, �d=2k þ 1

� �
and ð ffiffi�p

Æ=8K2

logN2 u, f 2 F :
1

n

Xn

i¼1

f (zi)
2 < 4�

( )
, zn

1

 ! !1=2

du

< c5(log (n))3=4 2 l penn(k, º)=º
� �d=4k

ð ffiffi�p

0

u�d=2kdu þ
ffiffiffi
�

p
 !

¼ c6(log (n))3=4((2 l penn(k, º)=º)d=4k�1=2�d=(4k) þ
ffiffiffi
�

p
Þ:
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Hence (6) is implied byffiffiffi
n

p
� > c7(log (n))3=4 2 l penn(k, º)=º

� �d=4k
�1=2�d=4k þ

ffiffiffi
�

p� �
(13)

for all � > Æ=4. Sinceffiffiffi
n

p
Æ

(log (n))3=4 2 l penn(k, º)=º
� �d=4k

Æ1=2�d=(4k)
¼

ffiffiffi
n

p
Æ1=2þd=4kºd=4k

(log (n))3=4 2 l penn(k, º)ð Þd=4k

>

ffiffiffi
n

p
( penn(k, º))1=2ºd=(4k)

(log (n))3=4
¼ L5=2(log (n))1=4 ! 1, n ! 1,

and ffiffiffi
n

p
Æ

Æ1=2
¼

ffiffiffi
n

p
Æ1=2 >

ffiffiffi
n

p
(2 l penn(k, º))1=2 ¼

ffiffiffi
n

p
2 l L5(log (n))2

n " ºd=2k

� �1=2

> 2 l=2 L5=2(log (n))1�d=4k ! 1, n ! 1,

(13) and hence also (6) hold for n sufficiently large.

Step 4. We show, for n sufficiently large, that ET1,n < c9=n. Using the results of steps 2

and 3, we obtain, for n sufficiently large, that

ET1,n <

ð1
0

PfT1,n . tgdt

<
X

(k,º)2K n3¸n

X1
l¼1

ð1
0

c3 exp � c4 n " (t þ 2 l penn(k, º))

L4

� �
dt

¼
X

(k,º)2Kn3¸n

X1
l¼1

exp � c4 n2 l penn(k, º)

L4

� �
" c3 " L4

c4 n

<
X

(k,º)2K n3¸n

X1
l¼1

exp �c42 l L5 " (log (n))2�d=2k
� �

" c3 L4

c4 n

<
X

(k,º)2K n3¸n

exp �c4 L5 " (log (n))2�d=2k
� �

" c3 L4

c4 n

< c8 n " (log (n))1=2d exp �2 log (n)ð Þ " c3 L4

c4 n

<
c9

n
:

Step 5. By the results of steps 1 and 4, we obtain, for n sufficiently large,
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E

ð
jmn(x) � m(x)j2 PX (dx) < 2 inf

º2¸n

º " J2
p(m) þ L5(log (n))2

n " ºd=2p

� �
þ c9

n
:

Clearly, this implies the assertion of part (a). Concerning (b), assume 0 , J 2
p(m) , 1 and

set

º� ¼ L5(log (n))2

n " J2
p(m)

 !2p=(2pþd)

:

Then, for n sufficiently large, there exists º 2 ¸n such that º� < º < 2º�. It follows that

E

ð
jmn(x) � m(x)j2 PX (dx) < 2 º " J2

p(m) þ L5(log (n))2

n " ºd=2p

� �
þ c9

n

< 2 2º� " J2
p(m) þ L5(log (n))2

n " (º�)d=2p

( )
þ c9

n

< 6 " (J2
p(m))d=(2pþd) L5(log (n))2

n

� �2p=(2pþd)

þ c9

n

¼ O (J2
p(m))d=(2pþd)(log (n))2 n�2p=(2pþd)

� �
:

h
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Kohler, M. and Krzyżak, A. (2001) Nonparametric regression estimation using penalized least-squares.

IEEE Trans. Inform. Theory, 47, 3054–3058.
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