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ON so8 AND THE TENSOR OPERATORS OF sl3 

BY DANIEL E. FLATH 

Physicists motivated by problems in high energy physics have for many 
years been groping their way toward a theory of tensor operators of simple lie 
algebras. Their work, calculations, insights, theorems, and guesses have ap­
peared in the physics literature in a form not easily understood by either math­
ematicians or physicists [2, 3]. Extensive conversation with L. C. Biedenharn, 
a chief worker in this field, has convinced me that it is a mathematical gold 
mine. It has inspired the work described here. 

In this announcement the tensor operators of 5(3 are analyzed in terms of 
a beautiful algebraic structure involving sog, whose existence was previously 
unsuspected even by physicists. 

Proofs will appear in [1 and 5]. 
The fundamental problem is the explicit decomposition of all finite dimen­

sional tensor product representations V ® W of a simple lie algebra g. For 
0 = 5(2, the famous Clebsch-Gordan coefficients provide a complete solution. 

We shall study the equivalent problem of decomposing all the Homc(T^, W), 
the spaces of "tensor operators". 

A tensor operator is an irreducible subrepresentation of Homc(Vr, W) where 
V and W are irreducible ^-representations. 

Irreducible representations of g are labelled by their highest weights. To 
a tensor operator one can assign two weights: (1) the highest weight of the 
tensor operator as an irreducible g-representation; (2) the weight which is the 
difference of the highest weights of V and W, the "shift in representations" 
effected by the tensor operator. Tensor operators with the same highest 
weights but different "shift weights" map between different spaces and would 
therefore seem to be unrelated. But the fact that the shift weight of a 
tensor operator is necessarily an actual weight of the tensor operator as a 
representation suggests otherwise. Much work, including my own, can be 
described as the pursuit of the analogy between the pairs "actual weight and 
highest weight" and "shift weight and highest weight." The principal difficulty 
is that for g other than sfo irreducible representations may have weights with 
multiplicity greater than one. 

Denote by V\ a (finite dimensional) irreducible representation of g with 
highest weight X. 

The multiplicity of V\ in H o r n e d , Va+M) is bounded by the multiplicity 
of the weight /z in V\, with equality of multiplicities for generic a (i.e., for a 
far from Weyl chamber walls). 
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The multiplicity of V\ in Homc(Va,Va+M) can thus be thought of as 
"independent" of a. This suggests that there may be a construction of V\-
operators in Homc(Va, Va+ii) which is in some sense independent of a. The 
desire for such a construction motivates all that follows. 

Elements of the universal enveloping algebra U of g provide examples of 
what we want for // = 0. The algebra U can be viewed as a subalgebra of 
£ = Endc(© Va), where the sum includes exactly one finite dimensional 
irrep of g from each isomorphism class. Each element of U maps each Va into 
itself. What we seek is a suitable enlargement A of U within £ which contains 
transformations mapping each Va to each V/3. 

A theory for general g does not yet exist. One must now begin with a 
concrete realization of 0 Va and describe the algebra A by giving explicit 
generators. So far, A has been constructed only for g equal to si2 or 5I3. 

For g = sl2, one takes © Va = C[x,2/], the ring of polynomials in two 
variables. The action of si2 is given by £"12 = xdy, E2\ = ydx. We take 
for A the Weyl algebra of all polynomial differential operators on C[x,2/]. 
Through the adjoint action, A becomes an s^-representation which is easily 
decomposed. That decomposition yields the Clebsch-Gordan coefficients, as 
is well known [4]. 

For g = s[3, we begin with W = Sym([/i © IT2), where U\ and U2 are 
the two fundamental representations. Choosing bases appropriately, W = 
C[ai, a2, asy b\, 62, bs], a polynomial ring in six variables, with sis action given 
by Eij = didaj — bjdbi- The subalgebra of all highest weight vectors in W, 
namely those which are annihilated by n+ = span{JEi2,£,23?-E,i3}j is generated 
by the three elements ai, 63, and M = a\b\ -\-a2b2 + CI3&3. From this it follows 
easily that the sl3-subrepresentation V = kernel(A) of W, with A = ]T) daidbn 
decomposes as a multiplicity free sum of finite dimensional irreducible repre­
sentations containing a representative from each isomorphism class. 

The algebra A will be a subalgebra of Endc(^). 

We pause for some notation. Let I) be the Cartan subalgebra of diagonal 
matrices in sl3, the lie algebra of all 3 X 3 traceless complex matrices. A vector 
X = (xi, £2,2:3) £ Z3 will be identified with a weight of sis by the formula 
X(#) = 2 xiVi f o r H = E ViEa € f>. 

For weights UJ and \i which are permutations of (10 0) we will write (£) for 
a specific transformation (to be defined shortly) in Endc(T^) which has the 
following two properties: 

W GJXVy C Va+M for each irrep Va C V. 

(ii) Upon commutation with 5(3, (£$) transforms as a vector of weight u in 
a representation isomorphic to V(ioo)-

The nine (£$) are called elementary operators. By definition, A is the 
subalgebra of Endc(V) generated by the nine elementary operators. 

Now for the formulas. 
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(100) — dbi> 

(lOo) = &3da2 —b2da3 

Goo) = a i ( 2 + J2 aidai + £ M b , ) - (j2 * k ) * i -

The other six elementary operators are generated from these by commuta­
tion with £[3. 

We comment only on the formula for (ioo)> f° r ^ *s the 0Tity o n e which 
may require more than a moment of fiddling to discover. A first guess for 
(100) w o u ld be simply ai, but a\ does not map V into V; that is, Aai does 
not vanish on V, But it nearly does so in the sense that A2ai vanishes on 
V. Notice that A, M, and [A,M] span a lie algebra isomorphic to s^- The 
representation theory of 5(2 suggests that one modify the formula by adding 
to a\ a scalar multiple (depending on Va) of MAa±. This idea leads to a 
correct formula for (ioo)-

The algebra A is large enough for our purposes. It contains the universal 
enveloping algebra U of 5I3; and every T in every Hom(V^, Vp) is the restriction 
of some element of A. 

THEOREM 1. The lie algebra {under commutation) generated by the nine 
elementary operators is isomorphic to the twenty-eight dimensional lie algebra 
so%. The dimension is accounted for by the nine elementary operators, nine 
conjugates to them, the eight-dimensional sl$, and two sis-invariant operators. 

Thus A is isomorphic to a quotient of the universal enveloping algebra of 
508- Using this fact as a starting point, the representation of 5(3 on A via the 
adjoint action can be decomposed explicitly. 

Let B denote the commutant of the raising operators {^12,^23} in A. For 
weights //, X of sl3 let B(£) be the space of all T e B such that (i) T{Va) c 
Va+M for all a, and (ii) T is of 5I3 -weight X. 

Our main result is 

THEOREM 2. 

(i) 3(0) = c[R, S] with fl = £ a{dai andS = ^ b^. 
(ii) B(£) is a free B(o)-module of rank equal to the multiplicity of the weight 

\x in the representation V\. An explicit S(§)-basis for B(£) can be given. 

The basis of B(£) referred to in (ii) constitutes the a-independent construc­
tion of V-operators in Hom(Va, Va+M) originally sought. 

Biedenharn and Louck [2] earlier constructed some operators on V by giving 
matrix entries. Their operators can be obtained by doing Gram-Schmidt 
orthonormalizations on the above bases for the B(£). We next describe the 
inner product with respect to which the orthonormalization is taken. 

The algebra A contains 50s which acts on V. Thus V is an irreducible 
infinite dimensional 50s-representation with a highest weight. Results of 
Enright, Howe and Wallach [6] imply the unitarizability of V as a repre­
sentation of an explicitly given real form of 50g isomorphic to 50(6,2). The 
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inner product on V induces a Hilbert-Schmidt inner product on each 

Hom(Va,Va+/u). 

Via the adjoint action, A is itself an sog-representation. 

THEOREM 3. The sog-representation A decomposes as a multiplicity free 
sum of finite dimensional irreducible representations. The 30%-highest weight 
operators in A are polynomials in a single operator. 

The two-sided ideals of A are sog-subrepresentations. By Theorem 3 there 
cannot be many. 

THEOREM 4. A contains no nonzero proper two-sided ideal. 

We note that the Weyl algebra A associated to s^ also has the property of 
Theorem 4. 

Does the theory described here generalize to other simple lie algebras? The 
case of sl4 is under active investigation and seems significantly more complex. 
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