ON A CONJECTURE OF FROBENIUS

NOBUO IIYORI AND HIROYOSHI YAMAKI

ABSTRACT. Let G be a finite group and e be a positive integer dividing the order of G. Frobenius conjectured that if the number of elements whose orders divide e equals e, then G has a subgroup of order e. We announce that the Frobenius conjecture has been proved via the classification of finite simple groups.

Let G be a finite group and e be a positive integer dividing |G|, the order of G. Let $L_e(G) = \{x \in G | x^e = 1\}$. In 1895 Frobenius [4] proved the following result:

$$|L_{c}(G)| = ke$$
 for an integer $k \ge 1$

and he made the following conjecture.

Frobenius conjecture. If k = 1, then the e elements of $L_e(G)$ form a characteristic subgroup of G, that is, a subgroup of G that is invariant under the automorphism group of G.

If the e elements of $L_e(G)$ form a subgroup, then $L_e(G)$ is necessarily a characteristic subgroup by the definition of $L_e(G)$. If e is a power of a prime, the conjecture is true by Sylow's theorem. M. Hall [6] gives a proof of the conjecture when G is solvable. It is proved by Zemlin [16] that the minimal counterexample to the conjecture is a nonabelian simple group. The purpose of this note is to announce the following

Theorem. The conjecture of Frobenius is always true.

Because of the classification of finite simple groups we may assume that G is isomorphic with

- (1) A_n $(n \ge 5)$, the alternating group on n letters,
- (2) a simple group of Lie type, or
- (3) one of the twenty-six sporadic simple groups.

Received by the editors January 29, 1991 and, in revised form, March 29, 1991. 1980 Mathematics Subject Classification (1985 Revision). Primary 20D05, 20D06, 20D08; Secondary 20B05.

The second author was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education, Science, and Culture.

We refer to [11] for the alternating groups, [7, 8, 11, 15] for the simple groups of Lie type and [14] for the sporadic simple groups. In order to verify the conjecture two lemmas play crucial role.

Lemma 1 [10, 11, 16]. Let G be a finite group and e be a positive integer dividing |G|. Assume that $e = |L_e(G)|$. If p is a prime divisor of e and |G|/e, then Sylow p-subgroups of G are cyclic, generalized quaternion, dihedral, or quasidihedral.

Lemma 2 [11, 15]. Let G be a finite simple group and S be a nilpotent Hall π -subgroup of G. Suppose that S is disjoint from its distinct conjugates and $C_G(x)$ is contained in $SC_G(S)$ for all x in S^{\sharp} . If e is minimal such that $e = |L_e(G)|$ divides |G| and e > 1, then |S| divides either e or |G|/e.

Remark. We apply this lemma only when S is abelian.

Basic idea of the proof can be found in [15]. Let e be minimal such that $e=|L_e(G)|$ divides |G| and 1< e<|G|. Since G is simple we have to prove that there exists no such e.

Suppose that there exists a prime p that divides both e and |G|/e. Let P be a Sylow p-subgroup of G. If p=2, then P is dihedral or quasidihedral by Lemma 1 and G is isomorphic with A_7 , M_{11} , $L_2(q)$, $q \equiv 1(2)$, q > 3; $L_3(q)$, $q \equiv -1(4)$; or $U_3(q)$, $q \equiv 1(4)$ (see [5]). By [7, 11, 14, 15] the conjecture holds for these simple groups. If p is an odd prime, then Pis cyclic by Lemma 1. Blau [1] yields that P is disjoint from its distinct conjugates since G is simple. Let x be a nontrivial element of P. Then $C_G(x)$ is p-closed and every p'-element acts trivially on $\Omega_1(P)$. It follows that $C_G(x) = C_G(P)$. However Lemma 2 implies that |P| divides either e or |G|/e, which is a contradiction by the choice of p. It follows that e is a Hall divisor of |G|, that is, (e, |G|/e) = 1. In order to illustrate briefly our proof we consider the cases that $G = E_7(q)$, the simple Chevalley group of type E_7 and $G = P\Omega_{2m}(-1, q)$, the orthogonal simple group with nonmaximal Witt index (see [7, 8]).

Let G be a simple Chevalley group $E_7(q)$. By [2] G contains Hall abelian subgroups H in a maximal torus $T(E_7)$ and K in a maximal torus $T(E_6(a_1))$ such that $|H| = (q^6 - q^3 + 1)(3, q + 1)^{-1}$, $|K| = (q^6 + q^3 + 1)(3, q - 1)^{-1}$, $(N_G(H): C_G(H)) = (N_G(K): C_G(K)) = 18$, $|C_G(h)| = (q^6 - q^3 + 1)(q + 1)$, $h \in H^{\sharp}$ and

 $|C_G(k)|=(q^6+q^3+1)(q-1)$, $k\in K^{\sharp}$ (see also [9, 13]). H and K satisfy the condition of Lemma 2. It follows that either $L_e(G)$ contains all conjugates of H or not and either $L_e(G)$ contains all conjugates of K or not. Now we have four possibilities: (i) $e\equiv 0(|H||K|)$, (ii) $e\equiv 0(|H|)$ and (e,|K|)=1, (iii) $e\equiv 0(|K|)$ and (e,|H|)=1, (iv) (e,|H||K|)=1. Case (ii) (resp. case (iii)) yields that $e=|L_e(G)|>|G|/19(q+1)$ (resp. e>|G|/19(q-1)), a contradiction. Case (iv) cannot happen since G contains $(|G|_q)^2=q^{126}$ unipotent elements by [12]. In case (i) let $\pi=(q-1,|G|/e)$ and $\rho=(q+1,|G|/e)$. If $\pi=1$ or $\rho=1$, then e>|G|/20. This is impossible since e is a Hall divisor of |G|. If $\pi\neq 1\neq \rho$, the counting arguments, which are slightly more complicated than those of [15], yield that $e=|L_e(G)|>|G|/15\,\mathrm{Max}\{\pi,\rho\}$. Now we can prove e>|G|/11. This is a contradiction since e is a Hall divisor of |G|. This implies that e=1 or e=|G|.

Let G be the orthogonal simple group $P\Omega_{2m}(-1, q)$. If q = 2and m = 4 or 5, then the conjecture holds by [3]. Thus we assume that $G \neq P\Omega_8(-1, 2)$, $P\Omega_{10}(-1, 2)$. By [2] G contains a torus $T(C_{m-i})$ $(0 \le i \le [m/2])$ of order $(q^m + 1)(q^m + 1, 4)^{-1}$ or $(q^{m-i}+1)$ (see also [9, 13]). Let $g_j(q)=(q^j+1,\prod_{k|j}(q^k+1)^N)$ for a sufficiently large integer N. Let $h_i(q) = (q^j + 1)/g_i(q)$. $T(C_{m-i})$ contains a Hall subgroup H_{m-i} $(0 \le i \le [m/2])$ in G with $h_{m-i}(q) = |H_{m-i}|$ and $C_G(H_{m-i}) \supseteq T(C_{m-i})$. H_{m-i} satisfies the condition of Lemma 2. It follows that either $L_e(G)$ contains all conjugates of H_{m-i} or not. We note that $(N_G(H_m))$: $C_G(H_m)$) divides 2m. The counting arguments for $E_7(q)$ can be piled up using H_{m-i} . If $h_m(q)$ divides e, then $e = |L_e(G)| >$ $(|H_m|-1)|K|(G:N_G(H_m))/\nu$ where $C_G(H_m)=H_m\times K$ and $\nu=$ (|K|, |G|/e). We can easily get a contradiction, which yields that $h_m(q)$ divides |G|/e. We can successfully prove that e is a power of 2 if q is odd and e = 1 if q is even by the similar counting arguments. This contradiction shows that e=1 or e=|G|.

ACKNOWLEDGMENT

Both authors would like to thank the anonymous referees for suggestions that helped make the paper clearer and more readable.

REFERENCES

- 1. H. I. Blau, On trivial intersection of cyclic Sylow subgroups, Proc. Amer. Math. Soc. 94 (1985), 572-576.
- 2. R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1-59.
- 3. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, *Atlas of Finite Groups*, Clarendon Press, Oxford, 1985.
- 4. G. Frobenius, Verallgemeinerung des Sylowschen Satze, Berliner Sitz. (1895), pp. 981-993.
- 5. D. Gorenstein, *The Classification of Finite Simple Groups*, Vol.1, Plenum Press, New York, 1983.
- 6. M. Hall, The Theory of Groups, Macmillan, New York, 1959.
- 7. N. Iiyori, A conjecture of Frobenius and the simple groups of Lie type, IV, J. Algebra (to appear).
- 8. N. Iiyori and H. Yamaki, A conjecture of Frobenius and the simple groups of Lie type, III, J. Algebra (to appear).
- 9. N. Iiyori and H. Yamaki, Prime graph components of the simple groups of Lie type over the field of even characteristic, Proc. Japan Acad. 67 (1991), 82-83.
- 10. M. Murai, On a conjecture of Frobenius, Sugaku 35 (1983), 82-84. (Japanese)
- 11. J. Rust, On a conjecture of Frobenius, Ph.D. Thesis, Univ. of Chicago, 1966.
- 12. R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc. 80 (1968).
- J. S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981), 487-513.
- H. Yamaki, A conjecture of Frobenius and the sporadic simple groups,
 I, Comm. Algebra 11 (1983), 2513-2518; II, Math. Comp. 46 (1986),
 609-611; Supplement, Math. Comp. 46 (1986), S43-S46.
- H. Yamaki, A conjecture of Frobenius and the simple groups of Lie type, I, Arch. Math. 42 (1984), 344-347; II, J. Algebra 96 (1985), 391-396.
- 16. R. Zemlin, On a conjecture arising from a theorem of Frobenius, Ph.D. Thesis, Ohio State Univ., 1954.

Institute of Mathematics, University of Tsukuba, Ibaraki, 305 Japan