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THE TAIT FLYPING CONJECTURE 

WILLIAM W. MENASCO AND MORWEN B. THISTLETHWAITE 

ABSTRACT. We announce a proof of the Tait flyping conjec­
ture; the confirmation of this conjecture renders almost trivial 
the problem of deciding whether two given alternating link di­
agrams represent equivalent links. The proof of the conjecture 
also shows that alternating links have no "hidden" symmetries. 

In the nineteenth century, the celebrated physicist and knot tab­
ulator P. G. Tait proposed the following conjecture: given reduced, 
prime alternating diagrams D{, D2 of a knot (or link), it is pos­
sible to transform Dj to D2 by a sequence of flypes, where a 
flype is a transformation most easily described by the pictures of 
Figure 1 on p. 404. 

In performing a flype, the tangle represented by the shaded disc 
labelled SA is turned upside-down so that the crossing to its left is 
removed by untwisting, and a new crossing is created to its right; 
if the tangle diagram SA has no crossing, the flype leaves the link 
diagram unchanged up to isomorphism, whereas if the tangle dia­
gram SB should have no crossing, the flype amounts merely to a 
rotation of the complete link diagram about an axis in the projec­
tion 2-sphere. During the last few years, some partial results have 
appeared; in particular it follows from the analysis of [B-S] on ar­
borescent links that any two alternating diagrams of a link which 
are algebraic (i.e. which have Conway basic polyhedron 1*) must 
be related via a sequence of flypes. A slightly stronger version of 
this result is set forth in [T4], where the conclusion is obtained for 
a pair of alternating diagrams only one of which is given as alge­
braic. It follows from the results of [B-M] that the Tait conjecture 
holds for link diagrams which are closures of alternating 3-string 
braid diagrams. K. Murasugi and J. Przytycki [M-P] have proved 
a number of results on graph polynomials which have lent support 
to the conjecture. Very recently, A. Schrijver [S] has announced 
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(i) (ü) 

FIGURE 1 

a proof for those alternating diagrams which do not admit any 
decomposition into two nontrivial tangle diagrams. 

The purpose of this article is to announce a proof of a strength­
ened form of Tait's conjecture, set forth as Theorem 1 below; by 
considering a flype as being a certain kind of homeomorphism of 
(3-sphere, link)-pairs, rather than a mere transformation of dia­
grams, we are able to gain information on symmetries of alter­
nating links. The proof of Theorem 1 is mostly elementary: it 
stems from three sources, namely (i) work of the first author on 
4-punctured 2-spheres in alternating link complements [M], (ii) 
work of the second author on properties of the Jones and Kauffman 
polynomials [T1-T4], and (iii) techniques developed jointly by the 
authors for handling incompressible surfaces with nonmeridional 
boundary in alternating link exteriors [M-Tl]. The incompressible 
surfaces exploited here are the two spanning surfaces arising nat­
urally from a checkerboard coloring of the link diagram (see for 
instance [G]). Since we consider the complex which is the union 
of these two surfaces, the analysis is considerably more intricate 
than that of [M-Tl]. The most basic use of polynomials is in en­
suring that any two reduced alternating diagrams of a given link 
have the same number of crossings, but more subtle use of polyno­
mials is made at various other stages of the proof. Thus, although 
the proof of Theorem 1 has a strong geometric flavor, it is not 
entirely geometric; the question remains open as to whether there 
exist purely geometric proofs of this and other results which have 
been obtained with the help of the new polynomial invariants. Full 
details of the proof of Theorem 1 are given in [M-T2]. 

As in [M-Tl], for each «-crossing diagram Ö of a link L , 
we take small "crossing-ball" neighborhoods Bx, . . . , Bn of the 
crossing-points of D, and then assume without loss of generality 
that L coincides with D, except that inside each B. the two arcs 
of D n B- are perturbed vertically to form semicircular overcross-
ing and undercrossing arcs which lie on the boundary of B.. We 
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express this relationship between the link L and its diagram D 
by writing L = X(D). 

We may assume that the Bt are Euclidean balls of fixed (unit) 
radius, and that each pair (Bi, Bt n A(-D)) is isometric to a "stan­
dard pair" (B, L), where i? is the unit ball in IR3 and L = 
{(x, y, z) e 3 5 | (x = 0 and z > 0) or (y = 0 and z < 0)} . 

It is convenient to introduce the notion of a fr/p/e y = 
(JDj, D2, f) ; the entries D j , Z>2 in ET are oriented, alternat­
ing link diagrams, and ƒ is an orientation-preserving homeomor­
phism of pairs (S3 , A(DX)) —• (S3 , A(Z)2)). We consider that such 
homeomorphisms fQ, fx are equivalent if they are connected by 
an isotopy of pairs ft : (S3, JL(DX)) -^ (5 3 , À(D2)) (0 < t < 1). 
Thus, if Dx = D 2 , an equivalence class of homeomorphisms is 
simply an element of the mapping class group of the pair of ori­
ented spaces (*S3, k{Dx)). 

In order to give a precise definition of "flype", we need to con­
sider a certain "trivial" kind of homeomorphism of link pairs. 

Definition. A homeomorphism g : (S3 , X(DX)) -+ (*S3, A(Z)2)) *s 

flat if it is pairwise isotopic to a homeomorphism h for which 
there exists a product neighborhood N = S2 x [ - 1 , 1] of the 
projection 2-sphere S , containing both links A(Dl)9X(D2), 
such that /* maps N onto itself and h = h0x idr j „ for some 

orientation-preserving homeomorphism A0 : S —•S . 

If we regard 5 as being the suspension of the projection 2-
sphere 5 , then any flat homeomorphism is pairwise isotopic to 
the suspension of an orientation-preserving autohomeomorphism 
of S . Note that a composite of flat homeomorphisms is also flat; 
also, since the complement of N in S consists of two disjoint 
open 3-balls, it is clear that any two flat homeomorphisms be-
tween given pairs (S , X(DX)) and (S 9 X(D2)) must be pairwise 
isotopic. 

We define the term flype in two stages. First, let us consider a 
diagram Dx conforming to the "standard" pattern of Figure l(i), 
where the circles illustrated in that figure represent Euclidean 2-
spheres meeting the (extended) projection plane in their respective 
equators. Thus the 2-spheres SA, SB enclose tangles which may 
or may not have crossings, Sx is the boundary of a crossing-ball 
for the crossing x , and S bounds a ball meeting the link X(DX) 
in two parallel straight line segments. 
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Definition. Let Dx be a diagram with standard pattern as in the 
previous paragraph. A standardflype of (S , k(D{)) for that pat­
tern is any homeomorphism ƒ which maps (S3, X(DX)) to a pair 
(S3, A(Z>2)) where D2 conforms to the pattern of Figure l(ii), in 
such a way that (i) ƒ maps the tangle bounded by SA into itself by 
a rigid rotation through n about an axis in the projection plane, 
(ii) ƒ fixes pointwise the tangle bounded by SB, (iii) ƒ maps 
each of the tangles bounded by Sx, S into itself by a half-twist. 

It is easy to see that if fx, f2 are two standard flypes of a pair 
(S3, A(Z)1)), with given standard pattern for Dx, then f2

l o /J 
is pairwise isotopic to a homeomorphism of (S3, A(Z>1)) to itself 
which fixes pointwise all crossing-balls of D{, and which maps 
each complementary region of Dx into itself; therefore ƒ2"1 o f{ 

is pairwise isotopic to the identity, and so /j is pairwise isotopic 
to f2. 

In the following generalized definition, the flat homeomor-
phisms gx, g2 constitute "choices of coordinates" for the link 
A(D1) and its image under the flype. 

Definition. Let Dx be any diagram. Then a flype is any homeo­
morphism ƒ : (S3, X(DX)) - (S3, A(D2)) of form f = g{offog2 

where ƒ is a standard flype and ^ , g2 are flat. 

We can now state the main result. 

Theorem 1. Let D{, D2 be reduced, prime, oriented, alternating 
link diagrams, and let there be an orientation-preserving 
homeomorphism of pairs ƒ : (S3, A(D1)) -• (S3, A(D2)). Then ƒ 
is pairwise isotopic to a composite of flypes. 

It follows at once from this Theorem that if D satisfies the con­
ditions of the hypothesis, the link A(D) can only be amphicheiral 
if the diagram D can be flyped to its mirror-image in the projec­
tion plane, and that k(D) can only be reversible if the diagram D 
can be flyped to its reverse. Thus we now have a trivial criterion 
for determining whether an alternating diagram presents an am­
phicheiral or reversible link. Also, it follows that any element of 
the mapping class group of the pair (S3, A(D)) must be "obvious", 
in the sense that it must arise from flypes and symmetries of the 
planar graph underlying the diagram D. In particular, if the graph 
underlying D has no nontrivial symmetry and D does not admit 
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any nontrivial flype, then any orientation-preserving homeomor-
phism of (S , A(Z>)) to itself is pairwise isotopic to the identity. 

The broad plan is to prove Theorem 1 by induction on the num­
ber of crossings of D, but to obtain an inductive argument it is 
necessary to enlarge the scope of the Theorem to the more general 
category of 4-valent rigid-vertex graphs; one can think of the ver­
tices of such a graph as flat square-shaped disks which are mapped 
isometrically by morphisms of the category. We assume that in any 
diagram of such a graph the vertices lie on the projection 2-sphere, 
and we say that such a diagram is alternating if it is possible to 
obtain an alternating link diagram by substituting a single crossing 
for each graph vertex. An orientation of a graph consists simply 
of an orientation of each edge of the graph, and a link is simply 
a rigid-vertex graph with no vertices. As with link diagrams, a di­
agram of a graph is said to be reduced if it contains no nugatory 
crossing. 

Many of the standard rigidity results for reduced alternating 
link diagrams (e.g. invariance of crossing-number) may easily be 
extended to alternating 4-valent rigid-vertex graph diagrams, by 
means of the device of substituting either single crossings or ap­
propriate tangle diagrams for the rigid vertices. Ironically, substi­
tution of the 5-crossing tangle diagram s0s for each graph vertex 
will instantly prove Theorem 1 for alternating rigid-vertex graph 
diagrams, given the conclusion of Theorem 1 for alternating link 
diagrams; however, this is not inconsistent with the above induc­
tive procedure, as the deduction of Theorem 1 for a graph diagram 
with n crossings and v vertices requires the knowledge that Theo­
rem 1 holds for link diagrams with more than n crossings (namely 
n + 5v crossings). 

The notion of flype extends naturally to rigid-vertex graph di­
agrams with at least one crossing; in the case where Dx, D2 are 
rigid-vertex graph diagrams with no crossing, we have k{D.) = 
D. {i = 1,2), and we say that a flype of (S3, X(DX)) to 
(S3, A(D2)) is simply a homeomorphism between those pairs 
which maps the projection 2-sphere S to itself. Given such 
diagrams D{,D2, let ƒ : (S3, À(D{)) -• (S3, A(D2)) be any 
orientation-preserving homeomorphism. Then by Lemma 1 of [D-
T] the embedding of X(DX) is uniquely determined up to home-
omorphism of S , so we can pairwise isotope ƒ so that it maps 
each region of D{ in S2 to a region of D2 in S2 ; thus ƒ is 
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a flype according to the above definition, and the conclusion of 
Theorem 1 holds in this special case. 

The basis of the induction is therefore established. The proof 
contains three distinct methods for achieving the inductive step, to 
which we shall refer as Inductive Arguments A, B, and C. Each of 
these arguments uses polynomial techniques; the simplest, namely 
Inductive Argument B, applies whenever there is a simple closed 
curve in one of the diagrams Dx, D2 meeting a vertex and a cross­
ing, in the manner of Figure 3(i) on p. 410. Inductive Argument C 
applies whenever one of the pairs (S , A(Z>.)) admits an essential 
Conway sphere which is "visible" in the sense that it meets the pro­
jection 2-sphere in a circle separating the diagram into two tangle 
diagrams; it is shown by means of a delicate geometric argument 
that Inductive Argument A applies in all other cases. 

There now follows a brief description of Inductive Arguments A 
and B. Before outlining Inductive Argument A, we need to describe 
the "black" and "white" spanning surfaces, which consititute the 
main tool for keeping track of maps of link or graph pairs. If we 
color the complementary regions of a link or graph diagram D al­
ternately black and white, then there is a spanning surface /? which 
coincides with the black regions outside the crossing-balls B(, and 
which intersects each Bt in a "twisted rectangle." In the case of 
a graph, we exclude from P the interiors of the graph vertices. 
In similar fashion, the white regions of D give rise to a spanning 
surface co ; ft, œ are the black and white spanning surfaces re­
spectively for k(D), associated with the diagram D. In the case 
of a knot, if such a surface should happen to be orientable, it is 
simply the Seifert surface obtained from D by Seifert's algorithm. 
An example is illustrated in Figure 2(ii), (iii). 

Since the ambient space S is equipped with an orientation, 
we may unambiguously decree which complementary regions of 
D are black, and which are white, by means of the convention 
illustrated in Figure 2(i). Of course, this convention also decrees 
which spanning surface is black, and which is white. The following 
easy result explains partly why the surfaces P, co are useful in 
achieving the inductive step. 

Proposition 2. Let 3T = (Dl9 D2, f) be a triple, and let fit, coi 

be the black and white spanning surfaces respectively for D., i = 
1,2; also, for each i let B( be a crossing-ball for Dt. If the 
homeomorphism ƒ: (S , k(D{)) -> (S , A(D2)) maps (Bl,Bln 
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(0 (ü) (in) 

FIGURE 2. (i); (ii) fi =punctured torus; 
(iii) co =Mobius band. 

fix) onto (B2, B2n/J2), or (B{, Bxnco{) onto (B2, B2C\co2) then ƒ 
is pairwise isotopic to a homeomorphism mapping Bx isometrically 
to B2. 

As already mentioned, in the proof of Theorem 1 it is necessary 
to look at both black and white surfaces simultaneously; note that 
they intersect transversely in arcs which we may assume to be the 
vertical "polar axes" of the crossing-balls. Also, note that the Eu­
ler characteristic of a black or white spanning surface is equal to 
the number of regions of the color of that surface minus the num­
ber of crossings of the diagram; therefore the sum of the Euler 
characteristics of the two spanning surfaces is equal to 2 — c + v9 

where c, v are the numbers of crossings and graph vertices of the 
diagram, respectively. This last fact is of crucial importance in 
the proof that the hypotheses of at least one of the three inductive 
arguments is fulfilled. 

Suppose we are given a triple !T - (Dl9 D2, ƒ) ; let fi., co( 

be the associated black and white spanning surfaces. Then in the 
exterior of A(D2) we have four surfaces f(fix)9 f((ox)9 fi2, co2. An 
essential preliminary step in the proof of Theorem 1 is to show 
that the homeomorphism ƒ can be pairwise isotoped so that these 
four surfaces intersect transversely in a "nice" manner, similar to 
"standard position" in [M-Tl]. As a very first step, it is necessary 
to show that the surfaces are incompressible. This, however, is a 
routine exercise; to show incompressibility of fi , for instance, one 
examines the (transverse) intersection of a purported compressing 
disk with co. 
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Definition. Let F be one of f{Px), f(cox), and let G be one of 
/?2, co2, considered as surfaces properly embedded in the exterior 
X of A(Z)2) • A double arc a of i7 n G is excellent if 

(i) a contains no triple point; 
(ii) there is a neighborhood iV of a in I such that the 

quadruple (N, NndX, NC\F, NnG) is homeomorphic 
to (BnX,Br\dX,BnXnp,BnXnco), where 5 is 
a crossing-ball for Z>2 . 

Thus the two surfaces F, G intersect at a in the same way 
that the black and white spanning surfaces intersect at the polar 
axis of a crossing-ball. 

We may produce two new links (or graphs) by cutting F, G re­
spectively along a, and taking the boundary of each cut surface. 
By comparing polynomials of these links and examining nugatory 
crossings, we can establish Inductive Argument A, which asserts 
that up to alteration of ƒ by flypes, the existence of an excellent 
arc guarantees that ƒ maps some crossing-ball for D{ rigidly to 
some crossing-ball for D2\ we can then replace these crossing-balls 
by rigid vertices, thus reducing the number of crossings. The hard­
est part of the proof of Theorem 1 is in producing an excellent arc 
in the case where Inductive Arguments B, C do not apply. 

We conclude with an outline of Inductive Argument B. As ex­
plained above, this argument deals with the situation illustrated 
in Figure 3(i), which we may assume to occur in the diagram Dx 

without loss of generality. 
Inductive Argument B then asserts that, after a possible flype, 

we can find a crossing-ball of Dx mapped rigidly to a crossing-ball 
of D2. As with Inductive Argument A, we can then replace these 
crossing-balls with graph vertices, thus reducing crossing-number. 

(i) (ii) (ifi) 

FIGURE 3 
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Sketch proof of Inductive Argument B. First, observe that if we re­
place in Figure 3(i) the vertex v by the vignette, the crossing x 
becomes nugatory; therefore, by rigidity of vertices and invariance 
of nugatory crossings, the corresponding replacement of the vertex 
f(v) by the same vignette in D2 must also render some crossing 
y say of D2 nugatory. But then there must be a circle in the 
projection plane meeting f(v) and y in the same way that C 
meets v and x . Now it is easy to see that there are flypes of the 
diagrams which "transfer" the crossings x, y to crossings x , y 
immediately adjacent to the graph vertices v, f(v) respectively 
(Figure 3(ii)). A minor technicality arises at this stage; it is nec­
essary to show that the crossings x , y are twisted in the same 
sense in relation to v, f(v) respectively, but this is fairly easy to 
accomplish. Let us suppose that the crossings x , y are such that 
there are black regions between the crossings and the vertices, as il­
lustrated in Figure 3(ii). It is then a routine matter to show that ƒ 
can be pairwise isotoped so that the "rectangular" part of the black 
spanning surface for D{, between v and the arc e illustrated in 
Figure 3(iii), is mapped onto a rectangular part of the black span­
ning surface for D2 which is similarly positioned in relation to 
f(v). By adjusting ƒ further if necessary, we may assume that 
the hypothesis of Proposition 2 is satisfied for the crossings x , y . 
It then follows from Proposition 2 that ƒ is pairwise isotopic to 
a homeomorphism mapping the crossing-ball at x rigidly to the 
crossing-ball at y . 
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