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CONVERGENCE GROUPS ARE FUCHSIAN GROUPS 

DAVID GABAI 

ABSTRACT. A group of homeomorphisms of the circle satisfy­
ing the "convergence property" is shown to be the restriction 
of a discrete group of Mobius transformations of the unit disk. 
This completes the proof of the Seifert fiber space conjecture 
and gives a new proof of the Nielson realization problem. 

A Fuchsian group F is a discrete subgroup of the group of Mo­
bius transformations on the unit disc D2 in R2 . F restricts to 
a subgroup G of Homeo(5'1) which satisfies the following con­
vergence property [GM]. Given a sequence of distinct elements of 
G, then there exists x, y e S1 and a subsequence {f.} such that 
on Sl - {x, y} f. -• y, f~l -> x uniformly on compact sets. 
A group G c Homeo(5'1) with this property is called a conver­
gence group. We announce the following result. The details can 
be found in [G]. 

Theorem 1. G is a convergence group if and only if G is conjugate 
in Homeo(51) to the restriction of a Fuchsian group.* 

A Seifert fibred space is a compact 3-manifold M which is 
almost an Sl bundle over a compact surface, i.e. there exists a 
projection n : M —• TV such that for each x e N there exists 
a D2 neighborhood of x such that n~l(D2) = D2 x Sl and 
7t((r, 6X)9 (1, 02)) = (r9pOx + Q62) where p ^ O and p, q are 
relatively prime and depend on x and 6 e Rmod27t. 

Corollary 2 (Seifert Fibred Space Conjecture). Let M be a com-
pact, orientable, irreducible {i.e. every smooth embedded S bounds 
a 3-cell) 3-manifold with infinite nx, then M is a Seifert fibred 
space if and only if nx(M) contains a cyclic normal subgroup. 
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Idea of Proof. Mess [M] reduced the Seifert fibred space conjec­
ture as follows to showing that convergence groups are isomorphic 
to Fuchsian groups. If / is a cyclic normal subgroup and M 
is closed, then he first shows that the covering space of M with 

° 2 1 

fundamental group J is D x S . The action of G = n{(M)/J 
o 2 i 

on D x S via covering transformations, descends to a vaguely 
o 2 

defined action on D . It turns out that the action is (in Mess' 
words) coarse quasi-isometric to either the Euclidean plane or the 
hyperbolic plane. In the first case G is isomorphic to the fun­
damental group of an Euclidean orbifold. In the latter case G 
induces a well-defined convergence group action on the circle at 
infinity. Theorem 1 implies that G is isomorphic to a Fuchsian 
group, which is the fundamental group of a hyperbolic orbifold. 
Thus nx(M) is isomorphic to the fundamental group of a Seifert 
fibred space N. M and N are closed and aspherical, since they 
are both covered by R3, thus they are homotopy equivalent. By 
Scott [S2] they are homeomorphic. D 

The Seifert fibred space conjecture was established for Haken 
manifolds in [JS] using [Wl] and [GH]. 

The Thurston Geometrization conjecture [Th] asserts that the 
sphere [Kn, Mi] and torus decompositions [JS, J] cut an orientable 
3-manifold into geometric pieces. Thurston's monster theorem 
is the proof of this conjecture in the case that M is Haken. The 
unresolved cases were of three types: nx(M) is finite, nx(M) con­
tains an infinite cyclic normal subgroup, and nx (M) is infinite and 
does not contain an infinite cyclic normal subgroup. Manifolds of 
the first type are conjecturally quotients of S via orthogonal ac­
tions (this includes the Poincare Conjecture). The hyperbolization 
conjecture is that manifolds of the third type are hyperbolic man­
ifolds. The Seifert fibred space conjecture was that manifolds of 
the second type were Seifert fibred spaces. 
Corollary 3 (Torus Theorem). If M is an orientable, irreducible 
3-manifold and Z e Z c n^M3), then M is either Seifert fibred 
or contains an incompressible torus {Le. an embedded torus whose 
induced nx map is injective). 
Proof Waldhausen [W2] announced the (classical) torus theorem, 
i.e., if M is Haken and Z e Z c nx(M), then M is Seifert fibred 
or contains an incompressible torus. Feustel [FI, F2] wrote the 
first proofs. The torus theorem was generalized to the strong torus 
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theorem of Scott [SI] which asserts that if Z © Z c nx(M), then 
either M contains an incompressible torus or nx(M) contains a 
cyclic normal subgroup. If M is not compact, then it is easy to 
find an incompressible torus. Corollary 2 deals with the remaining 
case. D 

The following result is an immediate consequence of Corollary 
2 and [E]. 

Corollary 4. A compact, oriented, irreducible 3-manifold M with 
infinite nl has a Cn 1 < n < oo foliation by circles if and only if 
nx(M) has a cyclic normal subgroup. D 

Corollary 5 (Nielsen Realization Problem). If x(S) < 0, S a con­
nected closed surface, then every finite subgroup F ofn0 Homeo (S), 
(the group ofisotopy classes of homeomorphisms of S) can be re­
alized as a group ofisometries of a hyperbolic structure on S. 

In the celebrated paper [K], Kerckhoff obtained a positive solu­
tion to Nielsen's problem. He showed that F fixed a unique point 
of Teichmuller space, hence F acts on S as a group of isometries 
with respect to the hyperbolic metric corresponding to that point. 
See Wolpert [W] for another Teichmuller theory proof and [Z] for 
a history of the problem through 1980. 

Our proof is the one Nielsen [N] had in mind in 1942. He ob­
served that given any hyperbolic metric on S, n{(S) induces a 
Fuchsian action on the hyperbolic plane via covering transforma­
tions, hence an action on Sl. The lifts of two isotopic homeomor­
phisms to hyperbolic space induce the same map on Sl. Thus F 
induces a group G of Homeo^1) which has n{(S) as a normal 
subgroup of finite index (and hence G is a convergence group). He 
observed that the realization problem is solved if G is conjugate 
to a Fuchsian group. 

Nielsen showed that if F is cyclic and G contains a simple 
hyperbolic element, (the convergence group analogue of a simple 
closed curve in a surface), then G is conjugate to a Fuchsian 
group. Following Nielsen, Zieschang [Z] and Tukia [T] reduced 
the realization problem and more generally the convergence group 
problem to the following statement, which is what we establish. 

If G is a nonelementary, orientation-preserving convergence 
group which has no simple hyperbolic elements, then there exists 
an extension of G to a D -convergence group whose restriction 

° 2 

to D is properly discontinuous. 
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Each element of a convergence group has either 0, 1, or 2 fixed 
points and is conjugate to a rotation of finite order, a parabolic el­
ement, or a hyperbolic element, i.e., a function h with exactly two 
fixed points such that in the neighborhood of one h is expanding 
and in a neighborhood of the other h is contracting. 

We now explain the key idea. Given a hyperbolic element h, 
draw in D2 a properly embedded path (called an axis) from one 
fixed point to the other. Now draw axes for all the elements conju­
gate to h . Let X be the union of these axes. Several of these may 
appear as in Figure 1 (a), h is a simple hyperbolic element if none 
of these axes cross, as in Figure 1(b). The advantage of a simple 
element is that there is a natural extension of G \ Sl to S1 U X. 
This is one of the main observations in Nielsen, Zieschang, and 
Tukia's work. One then extends the action to the complementary 
pieces. It is the moral equivalent of chopping up a surface along 
simple curves to obtain a disc. 

In our approach, the nonsimple axes are highly advantageous. 
The idea being that if one could find a conjugacy class [h] such 

° 2 
that all the axes of the conjugates chop up D into compact discs 
and the combinatorial configuration of lines was invariant under 
the group, then one immediately obtains an extension of 6 to Ö2. 
The problem with this approach, indeed the main difficulty of the 
entire problem, is how to configure a triple of distinct axes which 
intersect each other nontrivially as in Figure 2. 

Elliptic elements, which were the nemesis of the other approaches 
are enlisted to serve as decision makers. In hyperbolic geometry, 

(a) (b) 

FIGURE 1 
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The Heart of the Problem 
How to Configure A, B , and C ? 

FIGURE 2 

if A is an oriented axis for a hyperbolic element h (oriented from 
the expanding fixed point NA to the contracting fixed point PA) 
and a is an elliptic element of order 2 with fixed point a, then 
we can determine whether a (resp. a) is to the left, right, or on 
A (resp. h) by simply asking whether a(NA) is to the left, right, 
or on A, i.e. by inspecting the action of h and a on S1. In an 
analogous way if a is an elliptic element of order 2 and h is a 
hyperbolic element of a convergence group, we can decide whether 
a is to the left, right, or on h. Thus an elliptic element would 
configure a triple as in Figure 3 on p. 400. 

The proof of Theorem 1 involves two steps. 

Step 1. There exists a good hyperbolic, elliptic pair (ƒ, a ) , i.e. for 
each a e [a] and ƒ G [ƒ ] (here [ ] denotes conjugacy class), we 
can decide whether a lies to the left, right, or on ƒ . 

Remark. The above argument shows that any pair (ƒ, a) is good 
when a = id. When G does not contain elements of order 
2 ,then it is more difficult to decide if an elliptic element lies to the 
left or right of an axis. The notion of on does not seem to make 
sense, (in an elementary way) for elliptic elements of odd order. 

2 

Step 2. Extend the action to D . 
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A Solution 
Find an a to the left of each of A , B , and C 

FIGURE 3 

Remark. This involves two substeps. First we show how to repre-
sent the elements of [ƒ ] by lines in D and how to represent the 
elements of [a] by points in D so that the geometric configura­
tion of points and lines pairwise respect the abstract notion of left, 
right, and on. This makes the configuration of axes combinatori-
ally more rigid. The geometric data allows us to put a metric space 
structure on the points corresponding to [a] where d(a, a) = the 
minimal number of axes a line must cross to get from a to a . 
It turns out that we can define a G equivariant cell structure on 

D whose vertices are essentially [a] and whose edges consist of 
shortest paths. By inspecting the action on the graph we see that 
G is in fact a triangle group. 
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