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1. INTRODUCTION 

In this note we consider the set of metric spaces which are the 
limits with respect to Lipschitz distance dL of compact connected 
C°°-Riemannian manifolds of curvature uniformly bounded above 
and below. We call this set "bounded curvature closure" (BCC). 

It is well known that the limit spaces need not be C2-Rieman-
nian manifolds [P, Example 1.8]. Hence, the problem arising is to 
give a geometrical description of the BCC. 

We solve this problem with the help of the theory of metric 
spaces of bounded curvature which A. D. Aleksandrov introduced 
more than 30 years ago [A] to construct the synthetic generalization 
of Riemannian geometry. Our principal result (Closure Theorem) 
states that the BCC consists of all compact Aleksandrov's spaces 
of bounded curvature. 

A consideration of the BCC is definitely of independent inter­
est, but due to Gromov's compactness theorem it has proved to be 
useful to consider the BCC in connection with different problems 
of Riemannian geometry. Now we are going to formulate the com­
pactness theorem and explain the ways of its applications. First 
let us give necessary definitions. 

Let {Jtx , px)9 (J?2 ' Pi) b e m e t r i c spaces with metrics p{ and 
p2, ƒ: (^#j, px) —• (yk2, p2) a Lipschitz map. Then 

dil ƒ = sup{/?2(/(x), f{y))lpx{x, y)\x 9yeJt{,x^y} 

is called dilatation of ƒ . 
Suppose that (Jtx 9 p{)9 (Jf2, p2) are compact. Then 

dL(Jtx, Jt2) = infflln dil f\ + |In dil f~l\ \f bi-Lipsch.hom.} 
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is the Lipschitz distance between ^fj and J[2 provided that bi-
Lipschitz homeomorphisms exist. Otherwise dL(Jtx, Jf2) = +00 
(see [G]). 

M. Gromov considered the class M(n, d, V, A) of n-dimen-
sional compact connected C°°-Riemannian manifolds ^# with 
diameter d iam(^) < d, volume Vol(^#) > V > 0 and sectional 
curvatures \K^\ < A. Gromov's compactness theorem states (see 
Theorems 8.25 and 8.27 of [G]): 

Given a sequence {J£k , k = 1 ,2 , . . . } in M(n, d, V, A), 
there exists a subsequence {^k , / = 1, 2, . . .} and a C -Rieman-
nian manifold ^^^ such that {J£k } converges to Jt^ in Lips­
chitz distance dL ; that is, M(n, d, V, A) is precompact in a 
larger class of nonregular Riemannian manifolds. 

As a typical and important example of an application of Gro­
mov's theorem, let us consider the following result due to Berger: 

Berger's theorem on almost 1/4-pinched manifolds [B2]. Let «̂ f be 
a compact simply connected C°° -Riemannian manifold of even 
dimension n. There exists a universal constant En depending 
only on n such that if 1/4 - En < K^ < 1, then Jf is either 
homeomorphic to a standard sphere Sn or diffeomorphic to a 
symmetric space of rank 1. 

Berger's theorem is proved by contradiction. He assumes to 
have a sequence of C°°-Riemannian manifolds {J?k, k = 1, 
2, . . . } with pinching constants converging to 1/4 which are not 
homeomorphic to Sn or diffeomorphic to a symmetric space of 
rank 1. The compactness theorem is used to yield a "1/4-pinched" 
limit space Jt^ which is diffeomorphic to Jtk for large k due to 
Cheeger's finiteness theorem [Ch]. The main difficulty is to show 
that the limit space inherits the assertion of a well-known rigid­
ity theorem [Bl]. Hence, Jt^ is either homeomorphic to Sn or 
diffeomorphic to a symmetric space of rank 1, a contradiction. 

Durumeric [D] made use of the compactness theorem to gener­
alize Berger's pinching theorems. For other applications of Gro­
mov's theorem, see [Br] ("diameter-pinching") and [K] ("volume-
pinching"). 

We have seen that properties of a limit metric in the compact­
ness theorem are crucial for applications. Due to the trivial part of 
the Closure Theorem (see also [P, PI]), a far-advanced theory of 
Aleksandrov's spaces of bounded curvature (for example, see sur­
vey [ABN]) is applicable to limit spaces in Gromov's compactness 
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theorem. In particular, C^-result by Peters [P] and Greene and 
Wu [GW] follows from the earlier general Smoothness Theorem 
(§3). 

In the meantime, the Closure Theorem describes spaces of 
bounded curvature from the sequential point of view. As a con­
sequence one can carry theorems of Riemannian geometry over 
metric spaces. Examples are given at the end of §5. 

2. UPPER AND LOWER CURVATURES OF METRIC SPACE 

For metric spaces, the concepts of (shortest) geodesic, (upper) 
angle between geodesies, and triangle made up of the geodesies are 
defined (see [A, R]). 

The area s(T) of a triangle T is defined to be equal to the area 
of a Euclidean triangle of the same edge lengths. The excess S(T) 
of a triangle T is understood to be the sum of the angles at the 
vertices of T minus n. 

Define the upper and lower curvatures K(T) and E(T) of a 
triangle T as follows. If s{T) ^ 0, then 

K(T) = K(T) = S(T)/s(T). 
For a degenerate triangle (i.e. S(T) = 0 ), set 

_ N f +oo ifô(T)>0 

E(T) = { 

-oo if<S(r)<0, 

+00 ifS(T)>0 
-oo ifS(T)<0. 

The upper and lower curvatures of a locally compact metric 
space (Jf, p) with intrinsic metric p at a point P in </# are 
introduced as follows: 

K^(P)=ÜEK(T),E^(P)=IME(T), T^P, 
where triangles T contract arbitrarily to the point P. 

The upper and lower curvatures of (J?, p) are defined as 

K{Jt) = sup{K^(P)}, K{Jt) = inf{K^(P)}, P e Jt. 

3. SPACES OF BOUNDED CURVATURE 

A locally compact metric space (Jf, p) with intrinsic metric is 
called a space of bounded curvature if it satisfies the conditions: 

(i) The condition of local extendability of geodesic: For each 
point of ./# there is a ball of sufficiently small radius with 
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center at this point such that if two points lying inside the 
ball can be joined by a geodesic, then this can be extended 
so that these points become interior points of the extended 
geodesic. 

(ii) For each point P G / the upper and lower curvatures at 
P satisfy the inequalities: ~K^{P) < +00, K^{P) > -00 . 

V. N. Berestovskii proved that in spaces of bounded curvature 
it is possible to introduce a C°-Riemannian structure (see [ABN]). 
The final statement about differential properties of a metric of a 
space of bounded curvature is: 

Smoothness Theorem [NI, N2]. In a space of bounded curvature 
(</#, p) it is possible to introduce the structure o f a Riemannian 
manifold with the help of local harmonic coordinates, which form 
an atlas HQ of smoothness C3 ' a , and the metric tensor in the 
harmonic coordinates belongs at least to W^ nCi,a for each q e 
[1, 4-00), Q € ( 0 , 1). 

Here by W we denote Sobolev's class of functions having sec­
ond generalized derivatives summable to the power q . 

For further details, see survey [ABN]. 

Remark. Plaut generalized Berestovskii theorem in [PI] where he 
stated that a finite-dimensional metric space of bounded curva­
ture without the condition (i) is a manifold with boundary. A 
smoothness theorem for metric spaces of bounded curvature with 
boundary is not known. 

4. APPROXIMATION THEOREM 

Let {Jt, g) be a connected Riemannian manifold J? with 
metric tensor g . By p(g) we denote the intrinsic metric on Jl 
constructed by means of g. For a C°° -atlas containing in H0 

(which exists due to [W]) we keep the notation H. 

Approximation Theorem. Let (Jt, p{g0)) be a space of bounded 
curvature. Then there exists a sequence of C°°-Riemannian metrics 
{gm\m = 1 , 2 , . . . } on the C°°-manifold («/#, H), for which the 
following properties are realized: 

(i) The maps im:(Jt, p(gJ)-^{JT, p(g0)), 

im(P) = P, PeJT; m = 0, 1 ,2 , . . . 

are bi-Lipschitz homeomorphisms for which 

lim dil / = lim dil /~ = 1, 
m—•oo m m—•oo m 
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(ii) lim Km < K0, Inn Km > K0, m -> oo, where by Km 

and K_m we denote the upper and lower curvatures of spaces 
\ p{gm))> m = 0, 1,2, . . . . 

The approximation sequence is constructed with the help of 
Rham's smoothness operator [Rh]. 

The Smoothness Theorem enables us to define the sectional cur­
vatures Kj(uAv) of («/#, g0) which are formally calculated "al­
most everywhere" on J[ by g0 . We introduce the formal upper 

curvature as 

Kf(Jf) = inf sup sup <Kf(uAv)\ 

uAv^O 

where inf is taken over all sets (9 c J! of null n-dimensional 
Hausdorff measure (n = dim^f ) . 

In a similar way, it is possible to define the formal lower curva­
ture &f(Jf). 

One can prove (ii) for KÀJ[) and K.f(Jf) making use of the 
Smoothness Theorem and a technique of the theory of functions 
with generalized derivatives. Thus, the last problem is to prove 
that _ _ 

Kf{Jt) < ~K{J?), Kf{Jt) > K{Jt). 

These inequalities can be proved with the help of a general­
ization of second variation formula [N3] to spaces of bounded 
curvature. 

5. CLOSURE THEOREM 

A compact metric space ( ^ , p0) is said to be a bounded curva­
ture limit of the sequence of compact metric spaces {{y^m , Pm)\*n 
= 1 ,2 , . . . } (notation {JTo, p0) = (b.c.)lim(^fm, pj ) if: 

(i) The spaces (Jtm, pm) converge to the space {Jt0, p0) in 
Lipschitz distance dL. 

(ii) For some natural number m0 the following inequalities 
hold: -oo < inf{£(.#m)} < sup{Z(^m)} < +oo, m > 
rn0. 

Denote by Mc the set of all compact metric spaces with intrinsic 
metric. The notion of (b.c.)lim just defined induces in Mc a 
sequential topology thc which turns out to be a Fréchet topology 
[E]. In particular a closure of a set U ç M.in the topological space 
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(Mc, thc ) consists of all (b.c.) limits of convergent sequences of 
U. 

Let MR be the set of all connected compact C°°-Riemannian 
manifolds and MA be the set of compact Aleksandrov's spaces of 
bounded curvature. 

Closure Theorem. The closure of MR in the topological space 
(Mc, tbc ) (i.e., the BCQ coincides with MA: ~MR = MA . 

The nontrivial part of the Closure Theorem (MA ç ~MR) is a 
direct consequence of the Approximation Theorem. To prove the 
inclusion MA D JfR one has to note that the volumes of each 
(b.c.) convergent sequence of Riemannian manifolds uniformly 
differ from 0 (thus, the same is valid for the injectivity radii). 
Hence, the inclusion MA D HfR is trivial. 

Corollary 1. (Addendum to Gromov's compactness theorem.) The 
set ~M(n, d, V 9 A) of compact spaces of bounded curvature with 
the same restrictions upon dimension, diameter, volume, and cur­
vature as in the compactness theorem is compact with respect to 
Lipschitz distance dL. 

Corollary 2. (Metric Version of the Sphere Theorem.) Let (*/#, p) 
be a finitely-compact simply-connected metric space with intrinsic 
metric satisfying the condition of local extendability of geodesic. If 

1/4<K{^)<K{^)< 1, 

then Jt is a manifold homeomorphic to sphere Sn for some n>2. 
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