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1. INTRODUCTION 

Let %? be a separable Hubert space and !T c 3§(J%f) be an 
algebra of bounded operators. Say F is triangular if ^ n ^ * 
is a maximal abelian self-adjoint subalgebra (m.a.s.a.) of 3B{%?) 
and call this m.a.s.a. the diagonal of J7". A triangular algebra is 
maximal triangular if it is not properly contained in any triangu­
lar algebra. Triangular algebras of operators have been studied for 
30 years now, since the seminal paper of Kadison and Singer [6]. 
In this, they proposed the maximal triangular algebras as infinite-
dimensional generalizations of the upper triangular matrices and 
as the non-self-adjoint analogues of the von Neumann algebras. 
However, general questions on maximal triangular algebras have 
proved highly intractible and a theory of non-self-adjoint algebras 
based on these algebras has not developed. Nevertheless, special 
classes of triangular algebras have provided much of the motiva­
tion in the subsequent study of non-self-adjoint algebras, in the 
areas of nest algebras and CSL algebras (see [3]), algebras con­
nected with ergodic actions [1] and non-self-adjoint subalgebras of 
certain C*-algebras and von Neumann algebras [10, 11]. Specifi­
cally, the study of nest algebras is now well developed and, as we 
show here, it is now possible to use the techniques of this subject to 
answer some of the hard questions which arose early in the study 
of triangular algebras. 

In particular, it was hoped that, just as Murray and von Neu­
mann essentially reduced the study of von Neumann algebras to 
the study of factors, analogous "primitive" maximal triangular 
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algebras might be identified. Ultimately this simplification in the 
case of von Neumann algebras rests on the regular behavior of a 
von Neumann algebra and its commutant under compression to 
the range of a projection in the center. Thus, the lack of answers 
to the following questions, first raised by Kadison and Singer and 
repeated by Erdos in [5], has been an obstacle to the development 
of a structural theory of maximal triangular algebras. 

Let ZT be a maximal triangular algebra and P a 
projection in its core (resp. diagonal). Is the com­
pression of J' to the range of P always maximal 
triangular*} 

(The core of a triangular algebra is the von Neumann algebra 
generated by the projections onto its invariant subspaces.) We shall 
answer both of these questions in the negative. Since the core of 
a triangular algebra is contained in its diagonal, it will suffice to 
construct a counterexample for the question for the core. 

Another obstacle to a deeper understanding of maximal trian­
gular algebras is the dearth of concrete examples. Although max­
imal triangular algebras very unlike nest algebras were known to 
exist, the example (1) used in §2 below is the first concrete descrip­
tion of a maximal triangular algebra which is not a nest algebra. 
In fact, this example is a special case of a construction based on 
tensor products of nest algebras first suggested in a privately cir­
culated addendum to [6] and described in §3 below. Potentially 
this construction yields many new triangular algebras. However, 
nothing could be said about any such algebras other than those 
which are nest algebras without some knowledge about the max­
imal diagonal-disjoint ideals of general nest algebras. (Heuristi-
cally, these are ideals of "strictly upper triangular" elements of the 
algebra; see §2 for the definition.) In §2 we see that every nest 
algebra has a unique maximum diagonal-disjoint ideal. This al­
lows us to answer our main question above and, in §3, to describe 
many maximal triangular algebras containing tensor products of 
nest algebras. In §4 we apply the techniques developed to study 
the structure of nest algebras with continuous nest. We describe 
the class of ideals which is generated by the maximal ideals and 
we give a connectedness result which is related to the connectivity 
problem for the group of invertibles of a nest algebra. 

A fuller discussion of these and other related results will 
appear elsewhere. I would like to express my deep gratitude to 
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Dr. J. A. Erdos for his constant advice and encouragement through­
out this work. 

2. DIAGONAL-DISJOINT IDEALS 

A nest is a set of projections on %f which is totally ordered 
under the comparison of ranges, contains 0 and I (the identity 
operator) and is closed in the strong operator topology. If JV is a 
nest, then the nest algebra, AlgyT is the set of bounded operators 
on %? leaving invariant the ranges of the projections of JV. If 
the commutant, JV', of JV is a m.a.s.a., then AlgyT is triangular 
and we say that JV is multiplicity-free. A nest JV is continuous 
if it is order isomorphic to the interval, [0, 1]. A two-sided ideal, 
*f , of AlgyT is said to be diagonal-disjoint if J rDyT / = {0} . Let 
JV be a multiplicity-free nest. We connect with triangular algebras 
by observing that the set of operators on %f 0 %? given by 

(Mgjr A l g ^ \ 
K } \ <J K\%Jf) ' 

where S is a diagonal-disjoint ideal, is a triangular algebra, and 
if S is maximal as a diagonal-disjoint ideal then the algebra is 
maximal triangular. We now identify the largest diagonal-disjoint 
ideal of Algyf . Let JV be a nest and let 31™ be the set of oper­
ators X in Algyf such that, for each e > 0, there is a collection 
of pairwise orthogonal projections, Ea = Ga- Fa where Ga , Fa 

are in JV, such that HJ^XEJI < e for all a . 31™ is a diagonal-
disjoint ideal of AlgyT which was introduced by Larson in [8]. 
Our main result on diagonal-disjoint ideals is the following: 

Theorem 2.1. For any nest JV, 31™ is the largest diagonal-disjoint 
ideal of MgyV. 

The major difficulties in the theorem are present when we con­
sider JV a continuous nest. We may parameterize JV as {Nt:te 
[0, 1]} in such a way that the induced projection-valued Lebesgue-
Stieltjes measure on [0, 1] is mutually absolutely continuous with 
Lebesgue measure [4]. For each X in AlgyT we define an upper 
semicontinuous function, j x , on the interval (0,1) (in the spirit 
of the functions defined by Ringrose [12]) by 

jx{t) = l i n w | | ( A ^ - Nt_a)X(Nt+a - Nt_a)\\. 

Heuristically, this function should be thought of as measuring the 
size of X "on the diagonal." The behavior of the function j x is 
sufficient to determine whether or not X lies in 31™ . 
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Lemma 2.2. l Let JV be a continuous nest. Then 

<%™ = {Xe K\%JT :jx = 0 

almost everywhere in Lebesgue measure}. 

Conversely, if j x is nonzero on a large (i.e. nonnull) set, we 
can interpolate from X to a projection in the core of AlgyT. 

Theorem 2.3. Let JV be a continuous nest, X e «\%JV and r\ > 
0. Let W be the Lebesgue-Stieltjes measure on [0,1] such that 
%((a, b]) = Nb - Na . Then, if S = {t : jx(t) > rj}, there are A, 
B in Alg./f such that 

AXB = %(<9?)eyy'". 

Theorem 2.3 is at the heart of this work and its proof makes 
frequent use of the deep Similarity Theorem for nests [2]. Briefly, 
we construct an idempotent, Q, which is algebraically equivalent 
to g?(S*) (using the recent work of Larson and Pitts [9]) but which 
is a sum of idempotents in 3Z™ . Each of these idempotents and 
hence, as it happens, Q, can be factorized by shift-type operators 
and the problem is reduced to simultaneously interpolating these 
fairly concrete operators. When Jf is continuous, Theorem 2.1 
is then immediate from Theorem 2.3 and Lemma 2.2. 

We now return to our question on triangular algebras. Let JV 
be continuous and multiplicity-free. For any projection, F e JV1, 
note that FJV = {FN\F^ : Af e J^} is also a continuous nest on 
Fffî. We need a technical lemma. 

Lemma 2.4. Let JV be a continuous nest. Then there is a projec­
tion, F, in JV" such that 

Recalling the construction ( 1 ) of a triangular algebra, we take 
^ — <%™ and note that the projection, (£ £) (where F is as in 
the last lemma), is in the core of this maximal triangular algebra 
and that the compression to its range is equal to, 

/ AlgFyT AlgFyTX 
\F&%\F„ AlgF^J' 

This is properly contained in a maximal triangular algebra of form 
(1), with entries form AlgFyT and 32^ , and we are finished. 

This has been independently observed by X. Dai (personal communication). 
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3. TENSOR PRODUCT CONSTRUCTIONS 

If &[, ^ are triangular nest algebras, then their spatial ten­
sor product is triangular [7]. In the case that ET2 is the algebra 
of 2 x 2 upper triangular matrices, Theorem 2.1 shows that ex­
ample ( 1 ) is a maximal triangular algebra containing £7[ ® <5£. In 
an unpublished final chapter to [6], Kadison and Singer proposed 
a construction for maximal triangular algebras, by taking tensor 
products of triangular nest algebras and enlarging by "lower trian­
gular terms" coming from a maximal diagonal-disjoint ideal. We 
can realize this program as follows: 

Theorem 3.1. Let AlgJ^ and KXgJC, be triangular nest algebras 
acting on spaces, %?x, %?2, respectively. Then there is a unique 
maximal triangular algebra, £F, satisfying 

Algy^ ® A l g ^ Ç y Ç A l g ^ ®&{jr2). 

Furthermore, F admits a concrete description. The set of 
elementary tensors, N{ ® I2 (for N{ e J^), is a nest, written 
JVX®I2, and & is the set of all operators X e AA%Jfx®& (%£ such 
that (i) whenever N2EJ/

2 has both an immediate predecessor and 
successor in JV2 , then 

and (ii) whenever N2> N'2> N2 are in JV2 , then 

This construction and its extensions yield many new maximal tri­
angular algebras related to, but rather different from, nest algebras. 
Further properties of these algebras will be discussed elsewhere. 

4. IDEALS AND CONNECTEDNESS 

Let Jf be continuous but not necessarily multiplicity free. We 
define an ideal in analogy to the description of 3i™ in Lemma 
2.2. Define J ^ ° to be the set of operators, {X e AlgyP" : jx(t) 
vanishes outside a meager set}. There is a correspondence between 
ideals of Algyf* which contain J^J° and certain families of upper 
semicontinuous functions on the interval (0, 1 ) . 

Theorem 4.1. Let W be a uniformly closed hereditary cone {under 
pointwise ordering) of positive-valued upper semicontinuous func­
tions on (0,1) which contains the characteristic functions of all 
the closed sets with empty interior. Then {X e AlgyF : j x e %*} 
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is a norm-closed, two-sided ideal of Algyf containing J ^ ° . Fur­
thermore, every such ideal arises in this way and the maps, 

W^{Xe K\%JV : j x e &} 

S^{jx:Xe<S) 

are mutual inverses. 

Corollary 4.2. Every closed ideal of Alg^f which contains J ^ ° is 
equal to an intersection of maximal two-sided ideals. In particular, 
J ^ ° is equal to the intersection of all the maximal two-sided ideals 
of k\%yy {i.e. it is the strong radical of AlgyF). 

It is a longstanding and intractible problem whether the invert-
ible elements of a nest algebra are path-connected. Because Theo­
rem 2.3 gives a sharp condition on X for the existence of operators 
A , B such that AXB = I in the algebra of a continuous nest, we 
can prove the following analogous result. 

Theorem 4.3. Let Jf be a continuous nest. Then the set of 
operators X in Alg^f for which there exist A, B e Alg^f with 
AXB = I is path-connected by norm continuous paths. 

In particular, every invertible element of Alg«/F is connected 
to the identity by a path which never intersects a proper ideal of 
Aig^r. 
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