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THE TENSOR PRODUCT PROBLEM 
FOR REFLEXIVE ALGEBRAS 

JON KRAUS 

It was observed by Gilfeather, Hopenwasser, and Larson in [1] 
that Tomita's commutation formula for tensor products of von 
Neumann algebras can be rewritten in a way that makes sense for 
tensor products of arbitrary reflexive algebras. The tensor prod­
uct problem for reflexive algebras is to decide for which pairs of 
reflexive algebras this tensor product formula is valid. 

Recall that a subalgebra jtf of the algebra B(3P) of all bounded 
operators on a Hubert space %? is said to be a von Neumann 
algebra if it is closed in the weak operator topology, contains the 
identity operator I, and is self-adjoint (i.e., A t ^ implies A* e 
J?). The commutant J?1 of Jt is the set of all operators B e 
B{^) such that BA = AB for all A e Jf. The commutant of a 
von Neumann algebra is again a von Neumann algebra. Moreover, 
it follows from von Neumann's double commutant theorem that 
a self-adjoint subalgebra Jf of B(J%f) is a von Neumann algebra 
if and only if Jf = Jf" . 

Let Jf c B(jr) and JV c B[X) be von Neumann algebras, 
and let %? ® 3t denote the Hilbert space tensor product of %f 
and 3?. If A e Jf and B € JV, there is a unique operator 
A ® B in Bffi ® 3t) such that (A ® B)(x ®y) = Ax®By for 
all x e %? and J / G J . The von Neumann algebra generated by 
{A ® B\A e J? and B e J^} is denoted by J? ® J^. Tomita's 
commutation theorem asserts that for any pair of von Neumann 
algebras J? and Jf the following commutation formula is valid: 

(l) Jt'®Y = {Jt®jrj. 

A number of results concerning tensor products of von Neumann 
algebras follow from Tomita's theorem. (See, for example, §IV.5 
of [13].) 
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A sublattice of the lattice of (self-adjoint) projections in B(Jf) 
is said to be a subspace lattice if it is strongly closed and contains 
0 and I. If J ? is a subspace lattice, we let 

alg-S* = {Ae B(<T)\PAP = AP for all P e -S*}. 

Note that alg Jz? is a unital a-weakly closed subalgebra of B{%f). 
If sf is a subalgebra of B(£f), we let lat sf denote the subspace 
lattice consisting of all the projections that are left invariant by 
every element of sf . An algebra sf is reflexive if sf = alglat sf . 
It is easy to see that the reflexive algebras are precisely the algebras 
of the form algJ? for some subspace lattice S?, and that the self-
adjoint reflexive algebras are precisely the von Neumann algebras. 
Moreover, if we let Jz^ and <5̂  be the projection lattices of the 
von Neumann algebras J£ and Jf, respectively, then ( 1 ) becomes 

(2) a l g ^ ® alg^2 = alg(-2J ® &2), 

where JŜ  ® «Ŝ  is the subspace lattice generated by {Px ® P2\Pt e 

-2J>. 
Equation (2) makes sense for any pair of reflexive algebras 

algJS^ and algJz^, and the tensor product problem for reflexive 
algebras is: for which pairs of reflexive algebras is equation (2) 
valid? As noted above, this problem was first raised in [1], where 
it was shown that (2) is valid when both subspace lattices are nests 
(totally ordered). It has since been shown that (2) is valid for 
large classes of reflexive algebras [3-8]. However, it has remained 
an open question whether (2) is always valid. The main purpose 
of this note is to announce that the answer to this question is no. 
Perhaps surprisingly, (2) can fail even when one of the reflexive 
algebras is a von Neumann algebra. In fact, we can prove the 
following result. 

Theorem 1. Let %? be a separable infinite-dimensional Hilbert 
space. Then for each of the types II {, 11^, and HIA (0 < k < 1), 
there is a factor J? of that type acting on %? and a reflexive alge­
bra srf c B{^) such that if alg<5^ = Jf and alg-S^ = sf , then 
a l g ^ ® alg^2 î a lg (^ ® &2). 

The proof of Theorem 1 and the other results announced in 
this note will appear in [9]. The proof of Theorem 1 depends on a 
reformulation of Tomita's commutation theorem in terms of slice 
maps, due to Tomiyama [14]. If %? and 3t are Hilbert spaces, 
and (p is in the predual Bffi) of B{%?), the right slice map 
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R2 is the unique cr-weakly continuous map from B{^) ® B{3£) 
to B{X) such that R2(A ® B) = <p(A)B for all A e B{^) and 
B E B(3T). The /é# slice maps L¥ are similarly defined. If ^ c 
2?(^) and y c B(JT) are cr-weakly closed (linear) subspaces, 
then S? ® y is the a-weakly closed linear span of {5® r | 5 G ^ 
and r G &}. The FMWW promue* F(S*,&r) of ^ and ^ 
is the cr-weakly closed subspace of Bffi) ® 2?(e3T) consisting of 
those operators A all of whose right slices R2(A) are in ET and 
all of whose left slices L (A) are in S?. It is immediate that 

Tomiyama showed in [14] that Tomita's theorem is equivalent 
to the statement that F(Jt 9 Jf) = Jt ® J^ whenever J? and 
yf* are von Neumann algebras. The slice map problem is: find all 
pairs of (cr-weakly closed) subspaces 5? and «7* for which 

(3) F ( ^ , ^ ) = ^ ® ^ . 

As we observed in [6], 

(4) F(algJ^ , alg-2£) = a lg (^ ® &2) 

for any pair of reflexive algebras alg«2J and algJz^ , so (2) is valid 
if and only if (3) holds with S? = a l g ^ and F = alg<5^ . 

A subspace S? of B(J%?) is said to have Property Sö [6] if 
for every Hubert space 3£ we have that F{S^9 9~) = S? ® <r 
for every subspace F of B(3?). It is immediate from (4) that 
if algJ?j has Property Sa, then (2) is valid for algo2J and any 
alg-2^. We showed in [8] that the converse is true. Moreover, 
using various stability properties of the class of von Neumann al­
gebras with Property Sa , we can show that if for any of the types 
II j , 11^ , and IIIA (0 < k < 1) all separably acting factors of that 
type have Property Sa , then every von Neumann algebra has Prop­
erty Sa . Hence to prove Theorem 1 it suffices to show that there 
is a von Neumann algebra without Property Sa . The proof of the 
existence of such a von Neumann algebra depends on a charac­
terization of Property Sa in terms of an approximation property 
which we will now describe. 

First, some notation. If S? is a subspace of Bffi), and O is 
a bounded (linear) map from S? to 5?, then for each positive 
integer n we let On denote the map from 5? ® Mn(C) to itself 
defined by 0/I([5'J..]) = [O(S^)] (where we make the usual identifi­
cation of S? ® Mn(C) with Mn{5^) ). We say that <I> is completely 
bounded if | | 0 | | ^ = sup{ | |*J : n e N} is finite (cf. [11]). Let X 
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be a fixed Hilbert space, and suppose Q> is a cr-weakly continu­
ous completely bounded map from S? to 5?. Then there is a 
(unique) cr-weakly continuous map O from S ® B(3?) to itself 
such that 

oos®r) = <D(S)®r (Sey, TeB(jr)). 

Moreover, | |0| | = | |0 | | ^ . 
We let F(S?) denote the collection of all cr-weakly continu­

ous finite rank maps from ^ to » ? , and for A e S?lèB(3?), 
we let F (A) denote the a-weak closure of {&(A)\& e F(&)}. 
(Note that a bounded finite rank map is automatically completely 
bounded.) We say that S? has the (weak*-) complete pointwise 
approximation property (CPWAP) if there is a net {<I>a} in F(<5") 
such that ®a(A) -> A cr-weakly for every A e S? ® B{3£). 
(This definition appears to depend on 3?, but it can be shown 
that if such a net exists for some separable infinite-dimensional 
Hilbert space, then such a net exists for any Hilbert space.) A 
subspace 5? has the (weak*-) completely bounded approxima­
tion property (CBAP) [2] if there is a net {<S>J in F{<9*) such 
that sup \\®J\cb < oo and such that 4>a(5) -• S cr-weakly for all 
S e y . It is not hard to show that the CBAP implies the CPWAP. 
However, it follows from results in [2] that if T is the semidirect 
product of Z by SL(2, Z) under the natural action, then the 
group von Neumann algebra J^(F) has the CPWAP but does not 
have the CBAP. It follows from our next result that Jt{T) has 
Property Sa. 

Theorem 2. Let S? be a subspace of B{%*), and let Jf be an 
infinite-dimensional Hilbert space. Then the following are equiva­
lent: 

(a) S? has Property S0 . 
(b) A e F {A) for every Ae^® B(&). 
(c) <¥ has the CPWAP. 

The key step in the proof of Theorem 2 is the following propo­
sition. 

Proposition. Let S? be a subspace of B(W), and let J? be a 
Hilbert space. Let A G S? ® B(Jf), and let J' denote the a-weak 
closure of {R2{A)\tp e B{J^)J. Then F{S^,^) = F [A). 
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The next result, which plays an essential role in the proof of 
Theorem 1, is due to Uffe Haagerup, and we are grateful to Pro­
fessor Haagerup for allowing us to include this result in [9]. 

Theorem 3 (Haagerup). If 5? has Property S^, then the predual 
S^ of <9* has the approximation property. 

Recall that a Banach space X is said to have the approximation 
property (AP) if for every compact subset K of X and every 
e > 0 there is a finite rank bounded linear map T from X to 
X such that \\Tx - x\\ < e for all x G K. There are a number 
of conditions on X that are equivalent to the AP. The proof of 
Theorem 3 consists of showing that if 5? has the CPWAP, then 
^ satisfies one of these conditions (condition (iv) of Theorem 
l.e.4in[10]). 

In [12], Szankowski proved the remarkable result that B(J%?) 
does not have the AP if & is infinite dimensional. Moreover, it 
is a standard fact that if X* has the AP, then so does X. Hence 
the von Neumann algebra J3(^)** does not have Property 5CT. 
As noted above, this implies Theorem 1. 
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