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NOT ALL LINKS ARE CONCORDANT TO BOUNDARY LINKS 

T. D. COCHRAN AND K. E. ORR 

0. INTRODUCTION 

A link is a smooth, oriented submanifold L = {Kx, . . . , Km} 
of Sn+ which is the ordered disjoint union of m manifolds each 
piecewise-linearly homeomorphic to the «-sphere (if m = 1, L 
is called a knot). Knots and links play an essential role in the 
classification of manifolds and, in this regard, perhaps the most 
important equivalence relation on links is that of link concor­
dance. LQ and L{ are concordant if there is a smooth, oriented 
submanifold C = {Cx, . . . , Cm} of Sn+2x [0,1] which meets the 
boundary transversely in dC, is piecewise-linearly homeomorphic 
to L0 x [0, 1] and meets Sn+2 x {/} in L. for / = 0, 1. The 
particular situation which led to the introduction of this equiva­
lence relation and which indicates its importance is as follows. If 
S is an immersed 2-disk or 2-sphere in a 4-manifold X, x0 is a 
singular value and B is a small 4-ball neighborhood of x 0 , then 
S n B is a link in *S3. If L were concordant to a link whose 
components bound disjoint 2-disks in S3 (the latter is called a 
trivial link) then the singularity at x0 could be removed. Thus 
the fundamental problem is to classify (for fixed m, n) the set of 
concordance classes. 

In the mid-1960s M. Kervaire and J. Levine gave an algebraic 
classification of the high-dimensional (n > 1) knot concordance 
groups [L2]. For even n these are the trivial group and for odd 
n they are infinitely generated. In a sequence of papers S. Cappell 
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and J. L. Shaneson showed that these groups play the role of a 
natural coefficient system for the general study of piecewise-linear 
immersions and embeddings (see [CS2] for a survey). A com­
putable classification of link concordance should prove equally en­
lightening. More recently, M. H. Freedman has shown that certain 
three-dimensional link concordance problems constitute a univer­
sal surgery problem in dimension four, and lie at the heart of the 
unresolved four-dimensional topological surgery conjecture [FQ]. 
Thus these problems are obstacles to classification results for topo­
logical 4-manifolds. 

One serious dilemma has been the apparent lack of a group 
structure on the set of equivalence classes. For knots, the following 
"connected-sum" operation does induce an abelian group structure. 
Given knots K and K' in Sn+2 separated by a hyperplane P, 
choose two embedded arcs which begin at K (respectively, K'), 
end at P and are otherwise disjoint from ^ U ^ ' u P . The knot 
K$Kl is given by "tubing" K to K' along the arcs. The obvi­
ous analogue for m > 1 (choosing m pairs of arcs) fails to be 
independent of the arcs. 

Extending Levine's knot classification to links is also difficult 
because it is known that the fundamental group of the exterior of 

~ O /% 

the link (n^S"* - ( I x ö 2 ) ) ) carries vital information, but these 
groups are large, typically containing non-abelian free subgroups. 
Moreover these groups are not invariant under concordance. The 
inclusion of a link exterior into a concordance exterior induces an 
isomorphism on integral homology but not on fundamental group. 

However, the knot classification techniques do extend to a spe­
cial class of links called boundary links. Recall that a Seifert man­
ifold for a component Kt of L is a compact, oriented, connected 
submanifold of Sn+1 whose boundary is Kt. A boundary link is 
one which admits a collection of pairwise disjoint Seifert mani­
folds, one for each of its components. Since Kervaire and Levine 
relied heavily on Seifert manifolds, their techniques extend. More­
over, connected-sum can be used to define a group operation on 
this class of links. Cappell and Shaneson were the first to classify 
boundary links modulo a similarly restricted type of concordance. 
Their techniques of homology surgery suggested further progress, 
culminating in the work of J. Le Dimet (see §3) [CS1, LD]. 

The only heretofore realized obstructions to a links being con­
cordant to a boundary link were Massey products in the link ex-
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terior (so called higher-order linking numbers) or, equivalently, 
Milnor's /^-invariants (see [H]). These always vanish if n > 1. 

In this paper we give infinite classes of counterexamples to the 
long-standing conjecture that every higher-dimensional link is con­
cordant to a boundary link and the analogous conjecture for the 
3-sphere. 

Theorem A. There are infinitely many concordance classes of links 
in S n+ , (with vanishing Massey products if n = 1), containing 
no links concordant to boundary links. 

Among these are infinite families (e.g., Fig. 1) with the prop­
erties that framed surgery on the components of the link yields 
a manifold homeomorphic to framed surgery on a boundary link, 
and that (if n > 1 ) nx of the link exterior is the free group of rank 
m . If arcs are chosen for each of these links, so that connected 
sum is well-defined, then these infinite families form linearly inde­
pendent sets. This is to say that the family comes from an infinite 
linearly independent set of disk links (see §3). Note that we have 
no results for even-dimensional links. 

A careful analysis of a result of Hillman along with the classifi­
cation results of Le Dimet sparked our thinking [LD] [H; Thm. 5, 
p. 150]. The precise relationship between our work and Le Dimet's 
is given in §3. Our results were first obtained by these techniques. 
However § 1 gives a presentation of our simplest invariants using 
only linking pairings on metacyclic covering spaces. 

We are indebted to Jim Davis and Bruce Williams for their help 
with various aspects of L-theory. 

§ 1. SOME INVARIANTS 

If L = (K{, K2) is a link in S2n+l, let M denote the two-fold 
cover of S2n+l branched over K{, and J = {Jx, J2} denote the 
lifts of K2 ordered arbitrarily. «7 is a link in a Z(2)-homology 

sphere. We call this the covering link of L and denote it by L. 
The covering link can be used to distinguish links from bound­

ary links. If L is a boundary link, then the meridians of L gen­
erate Hx (M - L) /torsion. However this is not true in general. In 
the following, ju • is a meridian for J.. 

Lemma 1. There is a unique epimorphism p: nl(M - L) —• Z 
such that p(/ux) = -p(ju2) and such that p(jux) is an odd positive 
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integer. Reordering the components of the covering link does not 
change \p(iix)\. If L is a boundary link then p{^x) = 1. 

Define the complexity of the link to be the number p(fil ) given 
by this lemma. 

Outline of the proof of Theorem A. First observe that if L is con­
cordant to L' by a concordance (Cx, C2), and if M is the twofold 
branched cover of C{, then M is a Z(2)-homology S2n+l x [0, 1], 
and C2 lifts to a concordance between the covering links of L and 
L'. We define invariants of the concordance class of the covering 
link L of L and, a fortiori, of the concordance class of L. 

Let (N,X) be the Blanchfield pairing associated to the Z-cover. 
M, of the exterior of the covering link of L guaranteed by Lemma 
1. If n = 1 then let M be the cover of zero surgery on I in M . 
N = T*(M), the S-torsion part of Hn(M), and X is a (-1)"+1-
Hermitian linking pairing, X: T%(M) x T%(M) -• S"1 A/A, where 
A = Z[r, r 1 ] and S = 1 +ker{s: Z(2)[f, t~l] -• Z ( 2 ) }. For 

each odd integer / , let W. = L^(Z{2)[t, T 1 ] , S). J^ is the 
Witt group of linking forms on (homological dimension one), S-
torsion Z,2)[t,t~l] modules. Let W = ^ ( Z ^ J Z ^ J , T) where 
T = 1 + ker{e: Z(2)[Z(2)] ^ Z ( 2 ) }. Define k{L) = (N,X)e Wc{L) 

and A(L) to be the image of k(L) under the natural homomor-
phism Wc(^L)-+W defined by sending 1 to 1 / C ( L ) G Z ( 2 ) C Q . 

The complexity of a link is not a concordance invariant, so 
neither is À(L). However, one can define the complexity of a 
concordance. Furthermore, the complexity of the link divides the 
complexity of any concordance of the link. Using this observation, 
one shows that X(L) is an invariant of the concordance class of L. 
By Lemma 1, if L is a boundary link then X(L) € Image{Wj —• 
W}. 

To study X(L) G W, we look at its image under the map 

L,(Z(2)[Z(2)], T) - L.(Q[Z(2)], T) = limL,(Q[r, C \ S). 

If Wt = L^{Q[t, r 1 ] , S), the map Wi -+ Wj in the above sys­
tem, is induced from the map of rings sending t to tj'1. Since 
Q|7, t~l] is a principle ideal domain, a form over Q[J, t~l] can 
be decomposed into its primary parts. These parts, in turn, are 
equivalent to forms in the L-theory of number fields, and may be 
detected by signatures. A careful analysis proves this proposition. 
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Proposition 2. W jW contains an infinitely generated free sum-
mand. 

It remains to calculate some examples. It happens that the above 
invariant is always zero if n is even, so in this case invariants 
associated to three-fold branched covers must be used. 

§2. EXAMPLES 

We describe a construction of a family of homology boundary 
links L — {K{, K2} in S2n+{ which realizes a broad range of el­
ements of W (independent of c(L)). These examples work for 
all n. Consider a knot K in S n+l and an untwisted /-bundle 
over it as shown schematically in Figure 1. Consider the ambient 
plumbing with S1 x D2n~l whose core circle can wrap arbitrar­
ily, algebraically linking the first band m times. (The simplest 
example is shown in Figure 1.) 

Let K{ be the boundary of this plumbing and let K2 be as 
shown. This is a homology boundary link (by [C]) with complexity 
2m + 1 whose Blanchfield pairing is independent of m and is 
closely related to the ordinary pairing of K. 

In the above examples, if m ^ 0 and K is any representative 
of a non-torsion class in the subgroup of the algebraic knot con­
cordance group, then the resulting link is not concordant to any 

S^xI^KxI 

^xD^" 1 

Ko 

FIGURE 1 
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boundary link. (Neither is it concordant to a link whose first com­
ponent is unknotted!) Note that (zero framed for n = 1) surgery 
on these links gives a manifold which does not depend on m . For 
m = 0, this is surgery on a boundary link! 

§3. RELATION TO LE DIMET'S WORK 

In [LD], Le Dimet classifies higher-dimensional m-component 
disk links up to disk link concordance. An m-component «-
dimensional disk link is a piecewise linear locally flat embedding 
{I, ... , m} x Dn ^ Dn+2 , transverse to the boundary and induc­
ing a fixed trivial embedding on the boundary. Concordances are 
assumed to be constant on the boundary. 

Consider the diagrams below where F is the Vogel localization 
of the free group, F, on m letters: 

ZF -+ ZF ZF -+ ZF 
j O j i *F i 

ZF -• Z ZF -+ Z. 
Le Dimet defines a homotopy invariant and shows that a quotient 
of the Cappell-Shaneson homology surgery group r / î+3( lF) clas­
sifies disk links with vanishing homotopy invariant. By Cappell-
Shaneson [CS1], boundary links (up to boundary link concordance) 
are classified by rw+3(<I>). Thus, to find disk links not concordant 
to boundary links, it suffices to show that (p: Fn+3(Z[F] —• Z) —• 
Tn+3(Z[F] —• Z) is not onto where the target group is the appro­
priate quotient of Tn+3(Z[F] -» Z) (see [LD]). 

We consider two component links and calculate the Vogel local­
ization D of the infinite dihedral group D. D fits into the exact 
sequence Z(2) —• D —• Z 2 , where Z2 acts by negation on Z ( 2 ) , 
the integers localized at 2. Any epimorphism a: F —• D induces 
an epimorphism a: F —• D so that, for n odd, the cokernel of 
cp maps onto the cokernel of y/: Tn+3(Z[D] —• Z) -» Tn+3(Z[D] -+ 
Z) . 

There are sequences of homomorphisms 

r„(Z[/>] - z) - r,(z(2)[Z] - z(2)) -, L„(Z ( 2 )[Z] , s) 

and 

r , ( z 0 ] -̂  z) - r.(z(2)[z(2)] - z(2)) -, L , (Z ( 2 ) [Z ( 2 ) ] , r ) . 
In these sequences, the first homomorphisms are transfers to the 
index two subgroups. The second homomorphisms take the asso­
ciated Blanchfield pairings (see [R]). 
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Theorem C. The invariant X(L) defined in § 2 is related to Le 
Dimet's surgery invariant via the composition 

r 4 w (z [F] -z ) - r 4 w (z0] -z ) 

"> L4«(Z(2)[Z(2)] > S) - • L W(Z(2)tZ(2)] > S)' 

Boundary links come from the analogous composition 

r4n(Z[F]^z)-+r4n(Z[D]-+z) 
-+L4n(Z{2)[Z],T)-.L4n(Z{2)[Z],T). 

4. FURTHER COMMENTS 

The above invariants and examples are special cases of very gen­
eral techniques. Besides twofold covers, we consider //-fold cov­
ers for prime p, or even more general nilpotent covers. In all of 
these cases the covering link will have many components so we con­
sider Blanchfield pairings associated to the maximal free Abelian 
cover. Each of these corresponds to constructing a nilpotent-by-
free Abelian quotient of the free group (like the infinite dihedral 
group), localizing this group, and transferring between homology 
surgery groups to enable computation. If one can calculate with­
out transferring, one accesses even more general invariants. More 
importantly, we can iterate this process, since /?r-fold branched 
covers of Z(/?)-homology spheres are Z ( , -homology spheres. This 
leads to irregular covering spaces which detect information even 
when each component of L is unknotted. There are many ex­
amples detected by iterated covers but not by any single cover. 
The breadth of these techniques gives hope that, with more work, 
one can calculate the algebraic disk link concordance group, clas­
sifying concordance of sublinks of homology boundary links (see 
[L, LMO]), and combined with the results of Cappell, Shaneson, 
and Le Dimet, classify all counterexamples to the conjecture, now 
known to be false, that all higher-dimensional links are concordant 
to boundary links. 
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