
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 21, Number 2, October 1989 

MODULI SPACES OF EINSTEIN METRICS ON 4-MANIFOLDS 

MICHAEL T. ANDERSON 

In this note, we announce some results showing unexpected similarities 
between the moduli spaces of constant curvature metrics on 2-manifolds 
(the Riemann moduli space) and moduli spaces of Einstein metrics on 4-
manifolds. Let J? denote the moduli space of Einstein metrics of volume 
1 on a compact, orientable 4-manifold M4. If J£\ denotes the space of 
smooth Riemannian metrics of volume 1 on M, endowed with a suitable 
smooth topology, then the diffeomorphism group 3 acts smoothly on «/#! 
and W is the subspace of Jf\ (3 consisting of (equivalence classes) of 
Riemannian metrics g satisfying the Einstein condition E(g) = Ric(g) -
(X/4)g = 0; here Ric denotes the Ricci curvature and X the scalar curvature. 
It is well known that A is a constant for Einstein metrics in dimension > 3. 
Concerning the coarse structure of I?, it is known [6] that % consists of 
countably many components ^ , each of which is locally the quotient of 
a finite-dimensional real-analytic Hausdorff variety by a compact group 
action. The scalar curvature variable X: & —• R is constant on fê. 

There is a natural Riemannian metric on J£\, the L2 metric, defined 
as follows: for a,/? symmetric 2-tensors in TgJ[\ = S2(M), let (a,/?) = 
fM(a(x),(i(x))gdvg(x), where ( , )g is the inner product on S2(M) in­
duced by g and dvg is the volume form given by g. This induces a Rie­
mannian metric on J[\ j3 and thus a metric on the components fê (since 
^ is real-analytically path connected). Note however that the L2 metric on 
Jf\j3J is never locally complete (i.e. small metric balls are not complete). 

In dimension 2, Einstein metrics are naturally considered to be metrics 
of constant scalar curvature. Thus, % is exactly the space of constant 
curvature metrics, or equivalently, the space of complex structures, on a 
closed oriented surface M2. Of course, this has been widely studied, see 
e.g. [5]. In this case, the L2 metric on %? is known as the Weil-Petersson 
metric. One has the following basic trichotomy for the structure of I?: 

(i) X > 0 => % = {pt}, consisting of the unique constant curvature 
metric of volume 1 on M = S2. 

(ü) X = 0 => g7 = SL{2,Z)\SL(2,R)/SO(2) is the space of flat met­
rics on the torus. The Weil-Petersson metric is the complete, bi-invariant 
metric of finite volume on I?. 

(iii) X < 0 => If is the moduli space of hyperbolic metrics on a surface 
S^ of genus g > 1, and is the quotient of an open ball B6g~6 by the 
properly discontinuous action of the Teichmüller modular group Fg. % 
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is noncompact and incomplete, in fact of Jinite diameter, in the Weil-
Petersson metric, cf. [12]. The completion If of % in the Weil-Petersson 
metric gives a compactification of the moduli space (the augmented moduli 
space [1]), with the ideal boundary points given by hyperbolic metrics with 
cusps, or Riemann surfaces with nodes, cf. [1,5]. This compactification 
agrees with the Mumford compactification in algebraic geometry. 

The results described below show that many features of this trichotomy 
continue to hold on the space of Einstein metrics on a compact 4-manifold, 
at least if one allows mild singularities in the metrics. 

DEFINITION. An Einstein orbifold (V,g) is an orbifold with a finite 
number of singular points {/?/} G F, each pt having a neighborhood Nt 
homeomorphic to the cone C(S3/r) on a spherical space form S3/T, T c 
SO(4). On the regular set V0 = V - {/?/}, g defines a smooth Einstein 
metric, and when lifted to the universal cover JVj - pt = B4 - 0, g is 
required to extend smoothly over {0}. We note that V may be given the 
structure of a real-analytic variety. Typical examples are of course the 
(singular) flat metrics on the cones C(S3/F). 

An orbifold-singular Einstein metric on a smooth 4-manifold M is a 
smooth symmetric 2-tensor on M of the form n*(g), where n: M —• V 
is a surjective real analytic map to an Einstein orbifold {V,g), such that 
if M0 = n~l(V0), then n\Mo is a diffeomorphism onto Vo and n~x{pi} 
is a connected, 2-dimensional, real-analytic subvariety Dt of M (possibly 
reducible), for each i\ in particular, Nt - pt « N(Dt) - Z>/, where iV(A) 
is a neighborhood Dt in M. Typical examples here are the maps giving 
nonsingular, complex resolutions of the singular spaces C2/T, T c SU(2), 
i.e. resolutions of rational double points. 

In contrast to the 2-dimensional case, the space I? is rarely complete, i.e. 
there exist sequences of Einstein metrics which are bounded in L2, without 
convergent subsequences in If, (even if k > 0). However, the limits are 
well-behaved. 

THEOREM A. Let (ë>x, k G R, be a connected component of the mod­
uli space of k-Einstein metrics, Ric(g) = A • g, on a compact, oriented 
4-manifold M. 

I. Ifk > 0, the closure (ê?x ofWÀ in the L2 metric is a compact Hausdorff 
space consisting of regular and orbifold singular k-Einstein metrics on M. 
Locally, fê1 is a quotient of a finite-dimensional real-analytic variety by a 
compact group action. The L1 metric extends to a complete metric on the 
compactification ^A. 

II. Ifk = 0, the closure ^ ° of fê0 in the L2 metric is a complete, generally 
noncompact, Hausdorff space, with otherwise the same properties as I above. 
The function, diameter ~l: ? ° - ^ R w a proper exhaustion function on &0. 

III. If k < 0, the closure fê1 offêx in the L2 metric is a complete, Haus­
dorff space with frontier dfêx consisting of two parts d^x = d0&

À U 9oo^A 

given as follows: 
(i) An element ofdçfêx is an orbifold singular k-Einstein metric on M, 

of volume 1 and bounded diameter. The partial completion ^x U d$?x has 
the same local structure as I above and is locally complete in the L2 metric. 
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(ii) An element of d<xfêx is a finite number of complete, noncompact 
(possibly orbifold singular), À-Einstein 4-manifolds Ni, with vol JV/ < 1, 
diameter Ni = oo. Further, E vol Ni = 1 and there are embeddings Ni c M 
for each i, with disjoint images. 

REMARKS. I. It is not true in general that ^A, for X > 0, is compact as in 
the 2-dimensional case. This was first shown by the examples of Tian-Yau 
[14], (these remain the only examples to date). In certain special cases, 
e.g. M = S4 or CP2, it is known [2] that %>l, X > 0, is compact (in the C°° 
topology). 

II. Again, examples such as flat metrics on the torus T4 show that W° is 
generally noncompact, (cf. also the discussion for K3 surfaces below). A 
divergent sequence {gi} (w.r.t. the L2 metric) in W° gives rise to a collapse 
of M in the sense of [8], on the complement (metrically) of a finite number 
of points {pj} e M. More precisely, the sectional curvature Kt of gi 
remains uniformly bounded on metrically compact subsets of M - {/?;}, 
while the injectivity radius converges to zero at every point of M and 
diamM(gï) —• oo as / —• oo. This behavior is similar to the degeneration 
of flat metrics on the 2-torus. At the points {ƒ?,}, the sequence develops 
orbifold singularities. 

III. The manifolds Ni in <9oo^ are of course analogous to the cusps that 
are formed in the 2-dimensional case. If {gi} converges, in the L2 metric, 
to a point on <9oô A, then there are (finitely many) open domains Nk c M 
such that {gi} converges, smoothly away from any orbifold singularities, to 
a complete, (orbifold-singular) ^-Einstein metric on Nk. The complement 
M - IJ Nk is a set of measure zero, which collapses, in the sense of [8], 
under the sequence {gi}. 

Although the closure ^A is complete in the L2 metric, it is unknown in 
general if ^A, A < 0, is compact, as in dimension 2. However, if <ê?x is 
noncompact, then any divergent sequence in <ë>x would have to collapse as 
in II above. 

To a certain extent, these results are also valid for moduli spaces of 
Kâhler-Einstein metrics on complex surfaces. These furnish the richest 
class of examples, via the solution of the Calabi conjecture [17] and, in 
the positive case, via [14]. The uniqueness of a Kâhler-Einstein metric 
in a given Kàhler class leads one to attempt to relate these results to the 
moduli spaces of Kàhler classes, and thus also to the moduli space of 
complex structures on a complex surface with c\ definite or zero. However, 
it is difficult in general to obtain control and convergence of the complex 
structures on M from the Kâhler-Einstein metrics. 

The case of K3 surfaces has been worked out from this point of view and 
is particularly enlightening. Let X4 be a smooth manifold diffeomorphic 
to a K3 surface. Thus, X is simply connected and L = H2(X,Z) is the 
free abelian integral lattice of rank 22 in R22 = H2(X, R). The cup product 
gives a nondegenerate bilinear form on H2(X, R), of type (3,19), and we 
let T = Aut(L) be the group of automorphisms of the lattice L, preserving 
the cup-form. Let G^ = SO(3, \9)/SO(3) x 50(19) be the Grassmannian 
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of oriented positive definite 3-planes in H2(X,R); then T acts properly 
discontinuously (but not freely) on G^ and the quotient 9 = T\G$ is a 
locally symmetric orbifold, of finite volume in the canonical bi-invariant 
metric go on GJ. 

There is a natural period map [4], 

where P(g) is the class of the oriented positive definite 3-plane in H2(X, R) 
spanned by the three self-dual harmonic forms determined by [g] e W°(X). 
We show that ^°(X) is a smooth orbifold and the period map P extends 
smoothly over ^(X) to give a map ~P into &. One obtains 

THEROEM B. The map 7: W®(X) -> 9 is an isometry between W^(X), 
endowed with the L2 metric, and the bi-invariant metric go on the locally 
symmetric orbifold *&. 

As a consequence, one obtains immediately and naturally the Surjectiv­
ity Theorem of [15] and a form of the Global Torelli Theorem of [7], for 
Kàhlerian K3 surfaces. The proof of these corollaries does not require, for 
instance, results on the density of the period map or the Torelli theorem 
for Kummer or algebraic K3 surfaces. The methods of proof are intrinsic 
from real differential geometry, except for the use of the Kodaira-Spencer 
theory of Kàhler deformations and the solution of the Calabi conjecture. 

We note that a proof of a (weaker) version of Theorem B is given in 
[10] (with some details omitted). The proof of [10] follows the classical 
proofs of the Torelli and Surjectivity theorems for K3 surfaces, and uses 
heavily the results of [7, 15] and especially [13]. 

Much of the initial work for these results appears in [2]; in particu­
lar, a large part of the proof of Theorem A(I) appears there. The basic 
reason why these results are restricted to 4-manifolds is that the Chern-
Gauss-Bonnet formula for the Euler characteristic is particularly strong on 
Einstein 4-manifolds, namely #(Af) = (1/87T2) ƒ \R\2, where R is the full 
curvature tensor. The orbifold singularities that arise in the limit of a se­
quence of Einstein metrics are the loci where the curvature 'blows up', i.e. 
goes to infinity. As in [16], one shows this can happen only in a neighbor­
hood of a finite number of points in M, by the use of elliptic differential 
inequalities satisfied by the curvature, and by control of the Sobolev con­
stant of M. On the other hand, on domains where the curvature remains 
bounded, one has smooth convergence by the Gromov compactness the­
orem. The main ingredients necessary to produce the results above are 
then to obtain control on the structure of the singular set for the orbifold 
projections n: M —• V, and more importantly, to control the local Sobolev 
constants for domains in M in terms of the L2 metric on I?. This allows 
one to essentially localize the techniques used above. The details of these, 
as well as further results will appear in [3]. 
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