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THE TRIANGLE CONDITION FOR PERCOLATION 

TAKASHI HARA AND GORDON SLADE 

ABSTRACT. Aizenman and Newman introduced an unverified condition, 
the triangle condition, which has been shown to imply that a number of 
percolation critical exponents take their mean field values, and which is 
expected to hold above six dimensions for nearest neighbour percolation. 
We prove that the triangle condition is satisfied in sufficiently high di­
mensions for the nearest neighbour model, and above six dimensions for 
a class of "spread-out" models. The proof uses an expansion which is 
related to the lace expansion for self-avoiding walk. 

Percolation is a simple probabilistic model for which many interesting 
problems remain unsolved. The basic objects in percolation are random 
graphs on an infinite lattice. Typically there is a critical density for the 
graph edges (known as bonds) below which there is zero probability that a 
fixed point in the lattice is part of an infinite connected graph, but above 
which this probability is strictly positive. This abrupt change in behaviour 
has been used in chemistry and statistical physics to model phase transi­
tions in a variety of physical systems, such as fluid flow through a porous 
medium (hence the name percolation), random resistor networks, and the 
gelation of branched polymers. For an introduction, see [15, 20]. 

To define the models we are interested in, we consider the of-dimensional 
integer lattice Z^ (whose elements are referred to as sites) and the set of 
pairs b = {x,y} of distinct sites (the bonds). To each bond b is associated 
an independent Bernoulli random variable nb9 with nb = 1 with probability 
p • Jb and nb — 0 with probability \ - p - Jh. The Jb are fixed and Zd-
invariant, and p is a parameter. The nearest-neighbour model is defined 
by taking Jb = 1 for those b = {x,y} such that \\x - y\\i = 1, and Jb = 0 
otherwise. Expectation with respect to the joint distribution of the {nb} is 
denoted by (•••)/?• 

If nb = 1 we say b is occupied, and otherwise b is vacant. Given a bond 
configuration {nb}, two sites x and y are said to be connected if there is a 
path from x to y which consists of occupied bonds. The set of sites which 
are connected to x is called the connected cluster of x and is denoted C(x). 
The probability that x is connected to y is written Tp(x,y), 

(1) ip(x,y) — (I[x and y are connected])^ = {I[y e C(x)])p, 
where I denotes the indicator function. Denoting by \C(x)\ the number 
of sites in C(x), the expected cluster size or susceptibility is given by 
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The percolation density P^ is defined to be the probability that the origin 
is connected to an infinite cluster 

Poo(p) = </[|C(0)|=oo])p. 

If PQO > 0, then percolation is said to occur. 
It has been known for thirty years that under quite general conditions, 

for general dimension d > 2, there is a critical value pc G (0,1) such that 
P<x>{p) = 0 for p < pc and Poo(p) > 0 for p > pc [8, 11]. Such a critical 
point exists in particular if 0 < J2X J{o,x} < °°. It has recently been shown 
that Pc can also be characterized by pc = sup{p:x(p) < oo} [16, 2]. By 
analogy with other statistical mechanical models, and in agreement with 
numerical simulations, x and Poo are expected to satisfy power laws near 
pc of the form 

(2) X(P) ~ (Pc ~P)~y MP/Pc 
(3) Poo(p) ~(p- PcY as p \ pc. 

The precise interpretation of (2) is that there are positive constants C\ and 
C2 such that C\{pc - p)~y < X(P) < CiiPc -p)~y for p < pc, and similarly 
for (3). In addition to y and fi other critical exponents can be defined, 
such as S, defined by 

(4) M(pc,h)~h{/0 a s / * \ 0 

where M(p, h) = 1 -Ei<«<oo e~An(J[|C(0)| = n])p and the ~ is interpreted 
as in (2). Formally S is related to the decay rate of (7[|C(0)| = n])Pc as 
n —> oo. 

The existence of these critical exponents remains unproved, apart from 
the results stated below. The critical exponents are expected to be dimen­
sion dependent in low dimensions, but are expected not to depend on the 
short-range behaviour of the J^ or on the structure of the lattice. This 
lack of dependence on the J^ or the lattice is known as universality, and 
different models which lead to the same critical exponents are said to be 
in the same universality class. In addition, it is believed that for the near­
est neighbour percolation model for d > 6, all critical exponents are also 
dimension independent and take their so-called mean-field values, i.e., the 
corresponding values for percolation on the Bethe lattice (the infinite tree 
with all vertices having the same number (at least three) of branches), also 
known as the Cayley tree. On the Bethe lattice it is not difficult to prove 
the above power law behaviour, with y = l , / ? = l ,£ = 2. On the other 
hand, it is known that for d < 6 it is not possible for all critical expo­
nents (assuming they exist) to simultaneously take their mean-field values 
[10, 21], and hence the upper critical dimension, i.e., the dimension above 
which mean-field behaviour takes over, is expected to be six. 

Aizenman and Newman [4] introduced an unverified condition, the tri­
angle condition, which is expected to hold above six dimensions for mod­
els in the universality class of the nearest neighbour model, and which 
was shown by them to imply that (2) holds with y = 1. This condition 
is analogous to the finiteness of the "bubble diagram" for Ising, (pA [1], 
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and self-avoiding walk [7] models. Subsequently Barsky and Aizenman [5] 
showed that the triangle condition implies that (3) and (4) hold with /? = 1 
and 5 = 2. Related results were obtained by Nguyen [17] for the so-called 
gap exponents. In particular, (3) implies that Poo(pc) = 0, which has been 
proved before now only for the two dimensional nearest neighbour model 
[18]. 

We prove that the triangle condition is satisfied in two situations, and 
hence the above consequences of the triangle condition follow. To state 
the triangle condition we first define the "triangle diagram" V(/?), which is 
defined in terms of the two-point function rp(x,y) of equation (1), 

VCP) = £*p(0,*)Tp(x,y)Tp(;y,0). 

It is useful to write the triangle diagram also in terms of the Fourier trans­
form 

Tp(k) = ^Tp(0,x)eikx. 
x 

Using the fact that the Fourier transform of a convolution is a product of 
Fourier transforms, 

V(P) = [ SrMk)'-
J[-n,nY (2 t f r 

The triangle condition states that V(pc) < oo. This statement is not without 
content, as it is known that fp(0) = x(p) -+ oo as p /* pc [4]. 

THEOREM 1. The triangle condition and the infrared bound rp(k) < 
const. k~2, uniformly in p < pc, hold in the following situations: (a) for 
d > 92 for the nearest neighbour model, and (b) for d > 6 and J{o,x} = 
L~dg(x/L), if L is sufficiently large and g:Rd —• [0,oo) is Zd-invariant, 
eâ\\x\\2g e £oo for some s > 0, and all first order partial derivatives of g 
with respect to the x^ (considered as distributions) are integrable. 

A basic example for (b) is g(x) = 1 if ||x||oo < 1, and = 0 otherwise. 
The dimension 92 in (a) can doubtless be reduced, but a new idea will 
be needed to lower it all the way down to six. However, since the mod­
els in (a) and (b) are expected to be in the same universality class, (b) 
supports the conjecture that the triangle condition is also satisfied for the 
nearest neighbour model in more than six dimensions. Similar methods 
can be used to prove that the critical exponent v for the correlation length 
equals 1/2 in (a) and (b) [12], and to study lattice trees and lattice ani­
mals above the expected upper critical dimension of eight [14]. We expect 
these methods can also be used to prove that the triangle condition is satis­
fied above three dimensions for a "spread-out" version of percolation with 

The details of the proof will appear in [13]. Here we give a very brief 
outline of some of the important ideas in the proof of (a). The proof of 
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(b) is similar. We define 

(5) T(p) = V(p) - 1 =^Tp(09x)Tp(x9y)Tp{y90) - 1 
x,y 

(6) W{p) = J2\xW(0,x)2. 
X 

We also introduce the gaussian quantities TG and WG defined by replacing 
Xp by the massless gaussian propagator 

in (5) and (6). It can be shown that there are constants KT and Kw such 
that TG < KT/d and WG < Kw/d9 for d > 6 + e. The proof of (a) is 
accomplished by showing that the following three statements hold. 

(i) Forp < pc, T(p) and W(p) are continuous functions of/?. 
(ii) Forp < {2d)-\ T{p) < TG and W{p) < WG. 
(iii) Let d be sufficiently large and fix any p e [l/2d9pc). If T(p) < 

4KTd~l and W{p) < AKwd~x then in fact T(p) < 2KTd~l and W{p) < 
2Kwd-\ 

It then follows from(i)-(iii) that forp < pc the graphs of T{p) and W(p) 
must lie below 2KTd~l and 2Kwd~l. It is not difficult to show (using the 
monotonicity and continuity of rp in p [3]) that this uniform bound on 
T(p) forp < pc implies the same bound for T(pc)9 and hence by definition 
of T the triangle condition holds if d is sufficiently large. 

The continuity in (i) follows from the continuity of the two-point func­
tion in p [3] and the monotone convergence theorem, and the proof of 
(ii) is elementary. The proof of (iii) (whose statement has been simplified 
here—the complete statement will appear in [13]) is the significant part of 
the analysis. For the self-avoiding walk the analogue of step (iii) was ob­
tained in [19] using the lace expansion [9]. For percolation we derive and 
use a related expansion, which is based on the inclusion-exclusion relation. 
The derivation of the expansion hinges on the concept of the pivotal bond, 
and convergence of the expansion is obtained by taking d~~x small. The 
van den Berg-Kesten inequality [6] plays the role played by the repulsive 
interaction for the self-avoiding walk. 
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