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presupposes a working knowledge of basic topics in dynamics such as sinks 
and sources, saddle nodes and period doublings, none of which are pre­
cisely defined. There is a 12 page refresher course on manifold theory, 
tangent bundles, manifolds with boundary and the like, and a 6 page sec­
tion devoted to transversality, structural stability, and genericity, but Fm 
afraid that the reader will need to be previously exposed to these topics to 
fully appreciate them. One can learn the preliminary material elsewhere, 
as for example in the book of Guckenheimer and Holmes [GH]. Holmes 
was Wiggins' thesis advisor and, because of this, their books are naturally 
complementary and provide a good "one-two punch" in applied dynamics. 

Wiggins' book is aimed primarily at the practicing applied scientist who 
has encountered chaos in his or her work. It will undoubtedly give these 
scientists an excellent bag of tricks necessary to recognize chaos and, more 
importantly, to analyze it. In this endeavor, the book succeeds admirably. 
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The modern theory of Markov processes in Rd developed out of the 
pioneering work of Kolmogorov, Feller, Levy, Itô, and Dynkin, and many 
deep properties of the basic processes such as Brownian motion and Levy 
processes have been investigated. Moveover based on the seminal work 
of Doob, the general theory of processes and stochastic calculus of semi-
martingales were systematically developed during the 1960s and 1970s (cf. 
Dellacherie and Meyer [1] for a complete exposition). On the other hand, 
the study of complex stochastic systems is still in its infancy. The book 
under review contains two chapters each devoted to an important aspect 
of this subject. The first chapter is devoted to the construction of con­
tinuous Markov processes in locally compact state spaces, including for 
example manifolds of variable dimension and manifolds with boundary. 
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This chapter is based on the theory of semimartingales and stochastic cal­
culus and in particular is based on a representation of continuous Markov 
processes in terms of weak solutions to infinite systems of stochastic dif­
ferential equations. The second chapter "Randomly interacting systems of 
particles" is a contribution the study of the collective behavior of large 
interacting systems and has its origins in statistical physics. In particular 
the limiting dynamics of the empirical measures of «-particle systems are 
studied as the number of particles n -> oo. 

1. Stochastic equations for continuous Markov processes. One of the 
most fully developed chapters of the theory of stochastic processes is that 
concerned with continuous strong Markov processes in R .̂ Such a process 
has an associated Feller-Dynkin semigroup {Pt} of contraction operators 
on Cb(R^), the Banach space of continuous functions vanishing at oo, fur­
nished with the supremum norm. If we assume that C^(Rd) (functions of 
compact support with continuous second derivatives) is contained in the 
domain of the infinitesimal generator, L, of such a semigroup, then L has 
the form 

j d d 

(l.i) L<p{x) = -j2T,bv(x)d2v/dxidxJ+T,aiWd(p/dxi 

where the coefficients are continuous (cf. Dynkin [2]). On the other hand 
Itô showed that if the matrix b has a nonnegative square root a and both 
a and a satisfy Lipschitz and growth conditions then the corresponding 
process exists and is characterized as the unique solution of the following 
system of stochastic differential equations 

m 

(1.2) dx\t) = cii(x{t)) dt + Y^°ij{x{t)) dwj(t) 

where xl(t) is the /th coordinate of the vector x(t) and Wi,...,wm are 
independent standard Brownian motions. In this approach, which was 
originally proposed by Levy, the Brownian motions serve as fundamental 
building blocks from which other processes are constructed. It is partic­
ularly important because it shows that locally such a process looks like a 
Brownian motion with drift and in fact many sample path properties such 
as nondifferentiability are similar to those of Brownian motion. On the 
other hand, it is clear that these approaches do not exhaust all interest­
ing continuous strong Markov processes in R .̂ Moreover it is desirable to 
have an approach which could be extended not only to locally compact 
metric spaces but also to infinite dimensional spaces including for exam­
ple Hubert spaces. Such an approach has been developed over the past 20 
years based on the idea of martingale problem and this is described below. 

Before going on to general locally compact spaces we should mention 
that the "building block" approach was extended to processes with jumps 
in the pioneering 1961 monograph of Skorohod [14]. In this monograph 
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he introduced equations of the form 
m 

(1.3) dx\t) = ai{x(t))dt + ^Oij(x(t))dwj(t) 
7=1 

+ / fit* x{t), u)p{du x dt) 

where p is a Poisson measure. The solution to equations (1.3) yields a 
family {Px : x e Rd} of probability measures on D^ where DE denotes the 
collection of right continuous functions having left limits from [0, oo) into 
E, furnished with the Skorohod topology. 

Now consider a continuous Markov process {xt} on a locally compact 
metric space E. Such a process is given by a family {Px : x € E} of prob­
ability measures on a filtered probability space ( Q , ^ , (&t)te[o,<x>)) where 
x: Q —• CE (the space of continuous functions from [0,oo) into E) is 
^-adapted and Px(^o = x) = 1. The function cp e Co(E), the space of 
continuous functions vanishing at infinity, is said to be in the domain D 
of the quasi-infinitesimal operator A if there exists a bounded measurable 
function g(x) such that 

(1.4) Ct(9)'•= 9(xt) - / g(xs)ds 
Jo 

is a ^-martingale (with respect to P* for all x e £ ) . The process is said 
to be a quasi-diffusion if for (p\,..., tpn e D and E e C2(Rn) then 

F ( p i ( * ) , . . . , M x ) ) € £ . 

In this case ç>2 e D and the quadratic variation of Çt(ç>) is given by 

(1.5) (C(9))t= f[Â(p2(xs)-2(p{xs)Â(p{xs)]ds 
Jo 

that is, Ct(<P)2- (£{<P))t is also a continuous martingale. Then (p(xt) satisfies 
the stochastic differential equation 

(1.6) d<p(xt) = Â<p(xt) dt + dÇt(<p). 

The main idea is now to attempt to characterize the probability laws 
{Px: x e E} of processes of interest as solutions to the martingale problem 
(1.4-1.6). Note that the martingale problem can be viewed as a collection 
of integral equations for the measures {Px : x 6 E}\ for example, if s < t, 
and g is bounded and ^-measurable, 

EMt(9) ~ U<p))g) = 0 

where Ex denotes expectation with respect to Px. 
In a striking demonstration of the power of the martingale problem ap­

proach, Stroock and Varadhan [15] established the existence of diffusions 
with generators of the form (1.1) under the assumption that the coeffi­
cients are bounded and continuous but without the Lipschitz conditions 
imposed by Itô. Since then their approach has been successfully applied to 
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infinite particle systems, infinite dimensional processes and various limit 
theorems. 

The main idea of Chapter I is to reformulate a solution to such a martin­
gale problem as the solution to a system of stochastic differential equations. 
In particular, it is established that there exists a Hilbert space //-valued 
Wiener process, w(-)9 defined on some extension of the original probability 
space and a ̂ -adapted measurable function bt(ç>) : R+ x D -• H such that 

(1.7) dq>{xt) = a((p,x)dt + (b(<p,xt),dw(t))H 

where a(<p,x) := Â<p(x). The proof of (1.7) is based on a general repre­
sentation theorem for families of continuous martingales in terms of an 
//-valued Wiener process. 

A solution to equation (1.7) is called weakly unique if any two processes 
satisfying it have the same probability laws on C^. Clearly weak uniqueness 
is essential in order to characterize a process using either the martingale 
problem or (1.7). Unfortunately in many problems the weak uniqueness is 
difficult to establish (see Ethier and Kurtz [4] for a discussion of some ap­
proaches to this problem). On the other hand, in certain cases reminiscent 
of Itô's theory it is possible to establish "strong uniqueness" which in turn 
proves weak uniqueness. For example assume that for q> € DQ, a subset of 
D that separates points, the following Lipschitz type condition is satisfied 

E{\a(v,Z) - a(9, rj)\2 + \b(f,t) - b(<p, rj)\2
H) 

<csupEMt)-v(ri)\2. 
veD0 

In this case it is proved that the solution satisfies strong uniqueness, that 
is, given any two solutions X\txi of (1.7) with X\(0) = X2(0), then X\{t) — 
xi{t) for all t a.s. Furthermore, in this case the solution xt is adapted with 
respect to the filtration generated by w. 

Chapter I also includes some convergence and Girsanov-type results in 
this setting as well as a number of applications of the above ideas to diffu­
sions on manifolds with boundary and manifolds of variable dimension. 

2. Interacting Markov systems. One of the most active areas of current 
research in the theory of stochastic processes is the study of the collective 
behavior of systems having a large number of degrees of freedom. For 
example lattice systems with nearest neighbor interactions have been in­
tensively studied—refer to the recent book of Liggett [10] for an excellent 
exposition of this direction. However many problems of lattice systems 
remain unsolved and in statistical physics many systems have been stud­
ied in the simpler mean-field approximation in which the subsystems are 
assumed to be exchangeable. This is the type of interaction to be discussed 
below. 

In statistical physics there is a long history of attempts to derive the 
Boltzmann equation of the kinetic theory of gases from the molecular 
level. Boltzmann derived his equation based on an assumption of molec­
ular chaos, namely, that the velocities of particles at fixed times are inde­
pendent. In his 1956 Berkeley symposium paper Kac [8] studied a model 
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«-particle system and proved that in the n -> oo limit Boltzmann's molecu­
lar chaos hypothesis propagates in time. This in turn stimulated a series of 
important papers including those by McKean [11] and Tanaka [12]. These 
authors studied symmetrically interacting stochastic particle systems in the 
limit as the number of particles tends to infinity. In Chapter II this circle 
of questions is studied in the context of the following system of stochastic 
differential equations of Skorohod type 

(2.1) dzt(t) = A(Zi) + J2an(Zi,Zj) 
7=1 

dt 

+ i>2[mzhzj)p<f(dexdt), 
j=lJ 

i = ! , . . . , « , 

where zt defines the state of the Zth particle in phase space Z, A is the 
external field and an{ziy Zj) is a nonrandom force of interaction between 
the Zth and 7th particles. In (2.1) the Poisson measure pff represents 
an impulsive random force that causes the particles to move via random 
jumps. The solution of (2.1) induces by a family of probability measures 
on DEI. 

In studying the limiting behavior as n —• 00 the main object of interest 
is the empirical distribution process 

tf\A) = \YtXA(Zi{t)) 

which is described by a family of probability measures on M\(E), the 
space of probability measures on E. (Here XA denotes the indicator func­
tion of the set A.) To characterize the random measures ju^ it suffices to 
determine the collection of moment measures 

m{
t
k\dz{,..., dzk) = E/i\n\dzi) • • • $\dzk)9 k e Z+. 

In fact the moment measures of m\k) satisfy the analogue of the BBGKY 
(Bogoliubov, Born, Green, Kirkwood, Yvon) hierarchy of equations which 
plays an important role in kinetic theory. Although the rigorous study of 
these equations is notoriously difficult, they were used for example in Lan-
ford's [9] derivation of the Boltzmann equation for a classical gas. 

It turns out that the collective behavior of large systems of this type 
can be best understood by first studying the asymptotic behavior as the 
number of particles, n, tends to infinity. Let us first describe the law of 
large numbers limit. The limiting behavior of the system (2.1) is obtained 
under the natural scaling conditions that an = a/n and 

E(pff(dO x dt)) = ~m(d6)dt 

where m is a finite measure on 0. Then under certain additional smooth­
ness assumptions on the coefficients, the measures f4"\') converge weakly 
to a deterministic dynamical system in the space of probability measures, 
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denoted by A*(•). The dynamical system {AJ satisfies the following system 
of nonlinear integro-differential equations 

(2.2) 

j t J At(dz)9(z) = ƒ (v'(z),A(z) + ƒ a(z, z')At(dz'f) Xt{dz) 

+ fff [<p{z + ƒ (0, z, z')) - (p(z)]m{dd)Xt{dz')Xt{dz). 

In the special case in which a(-, •) and ^4() are identically zero, it is 
also proved that the solution of this nonlinear equation is unique. Equa­
tion (2.2) is the analogue of the classical Boltzmann equation and A,() 
also represents the limiting distribution of a tagged particle. The class of 
Boltzmann-type equations (also called McKean-Vlasov equations in some 
settings) which arise in this way is of considerable current interest (cf. 
Sznitman [16]). They also describe the evolution of the marginal distribu­
tion, Aj, as a function of the time s, of a special class of nonlinear Markov 
processes, namely, non-time-homogeneous Markov processes whose tran­
sition functions P(s, x;s + t, dy) depend on s only through A5, that is, they 
have the functional form P(ks, x\ t, dy). 

Let us now consider the joint behavior of k tagged particles whose initial 
positions z\n)(0),... ,z£°(0) are assumed to converge to zi(0),..., zk(0) 
as n —• oo. Then it is proved that the joint distribution of the process 
(z[n\t),..., z^\t)) converges as n -*• oo to the joint distribution of k 
independent processes {z\{t),... ,zk(t)) each of which is a Markov process 
that satisfies the stochastic differential equation 

dzi(t) = â(t, zt{t)) dt+ f f (6, Zi(t), z')p(dd x dz' x dt) 

where â(t,z) = A(z) + ƒ a(z, z')Àt(dz') and p is a Poisson measure on 
6 x Z x [0, oo ). This is precisely Kac's propagation of chaos property for 
this system. 

This asymptotic independence property would suggest that the fluctua­
tions around the law of large numbers limit should satisfy a central limit 
theorem. There are actually two perspectives from which to view fluctua­
tions from the law of large numbers limit. In the first the «-particle system 
is viewed as an empirical measure on DE, and a central limit theorem is 
derived for functional F on DE- This is carried out in §6 and has also 
been studied for interacting diffusions in Sznitman [17] and for pure jump 
processes in Shiga and Tanaka [13]. 

In the second perspective one considers the time evolution of the signed 
measure-valued fluctuations 

v\n\A) = ^Tt[^\A)-Xt{A))' 

Then under certain conditions the random variables 

(p{z)^n\dz) / < 
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converge as n -» oo to a Gaussian distribution, i.e., !>,(•) converges weakly 
to some generalized Gaussian field vt(dz). For the case a(z) = A(z, z') = 0, 
this field satisfies 

d j <p(z)vt(dz) = ƒ ƒ ƒ [p(z + ƒ(0, z, z')) - <p(z)]m(dd)Xt(dz)vt(dz') 

+ [[[[<P(z + /(Ö, *> *')) - <P(z)]y(de xdzx dz' x A) 

where y(d0 x à x d z ' xdfr) is a zero-mean Gaussian measure with indepen­
dent values for which E(y2(dd x dz x dz' x df)) = m(dd)Xt(dz)Xt{dz')dt. 

Recently Mitoma [12] has established a stronger central limit theory for 
fluctuations from the law of large numbers limit for a system of interacting 
diffusions. In this case he constructs a nuclear space <ï>' and establishes 
weak convergence of the probability measures on C<i>/. 

The author points out two basic restrictions to his work on limit theo­
rems—first the total empirical measures must be finite and second the 
interaction forces are assumed to be bounded. Similar assumptions have 
sometimes been assumed by other authors. However the law of large num­
bers has been proved for interacting diffusions with unbounded coefficients 
by a number of authors including Léonard, Gartner and Oelschlàger. More­
over in the recent paper of Mitoma [12] the fluctuation results are obtained 
for unbounded coefficients. There is also a series of papers on branching 
particle systems beginning with the paper of Holley and Stroock [6] in 
which fluctuations are studied for spatially homogeneous (infinite) sys­
tems. 

As a further application of the ideas developed above Skorohod also 
discusses a problem that goes back to a series of papers written by Albert 
Einstein [3] between 1905 and 1908. In these papers Einstein derived the 
diffusion equation for the probability distribution at time t of a particle 
undergoing Brownian motion. However the derivation of Brownian mo­
tion can be carried out at many levels and the problem is still of interest. 
In his introduction, Skorohod writes "Finally we must point out that the 
possibility of obtaining a probabilistic Brownian motion from the equa­
tions of motion of a system of particles has interested me for a long time. 
This interest also stimulated to a significant degree all the investigations 
carried out in this book." 

Assume that the motion of a tagged particle is continuous and its veloc­
ity can vary in a jumplike manner. Moreover there exists a braking force 
(viscosity) which is directed opposite to the velocity and is approximately 
proportional to it. If the viscosity is given by (1/e) where e is a small 
parameter, then the position and velocity of the particle given by xe> ve, 
respectively, satisfy 

Xe(t) =X0+ Ve(s)ds 
JO 

dve(t) = (l/e)(-M(t, xe)ve + a(t, xe) + ae(t, xe, ve)) dt 

+ / fe(0,Xe,Ve)(le(dd X dt) 



266 BOOK REVIEWS 

where M(t, x) is a strictly positive operator, and 

ge(dd, dt) = Pe(d6 x dt) - me(t, dB) dt, 
mz{t, dd) dt = Epe{d0 x dt). 

Under the assumption xe(0) -• x(0)9 \ve(0)\ = 0(l/fi1/2) and certain as­
sumptions on efe(-, -, •), as e —• 0 xe converges in the sense of weak con­
vergence of probability measures on DE to a diffusion process which is 
characterized as the solution of the Itô equation of the form 

dx(t) = a(t, x(t)) dt + 'Bit, x(t)) dw(t). 

To conclude, just a few more comments on the nature of the book under 
review. Gihman and Skorohod [5] have written a three volume systematic 
exposition of the modern theory of stochastic processes. The present book 
is quite different—it is more of a research level monograph examining 
some basic problems of current research interest and presenting some ap­
proaches to these problems. Unfortunately, the references to the growing 
body of literature in this field are rather incomplete. Nevertheless, this 
book will be of considerable interest to researchers working on interacting 
particle systems and related topics. 
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In 1981 [9], I reviewed a book with a similar title [5] by the same author. 
There has been considerable progress in this general area since then. Both 
books focus on topics in equivariant topology, the study of spaces with 
group actions, primarily actions by compact Lie groups. 

In geometric topology, the study of high dimensional manifolds has 
more and more come to focus on problems concerning smooth, PL, and 
topological group actions. In algebraic topology, classical homotopy theory 
has moved more and more in the direction of equivariant theory, although 
there is still a little gap between those who approach problems from an 
equivariant point of view and those who approach problems from a more 
classical point of view. 

Some of the most important work in algebraic topology since 1981 has 
concerned the Segal conjecture, the Sullivan conjecture, and various gener­
alizations and applications of those results. Much of this work is intrinsi­
cally equivariant in nature. Perhaps a little discussion of these results will 
illuminate the difference in points of view one can take on these matters. 

The Sullivan conjecture, in its generalized form, starts with a finite /?-
group G, a contractible space EG with a free action by G, and a (/-space 
X. One defines the "homotopy fixed point space of X," denoted XhG, to 
be the space of G-maps ƒ : EG —• X. To say that ƒ is a G-map just means 
that f(gy) = gf(y) for g e G and y e EG. If x is a fixed point of X, so 
that gx — x for all g e G, then we have the constant G-map fx specified 
by fx(y) = x for all y € EG. There results an inclusion i: XG —• XhG. A 
special case of the "homotopy limit problem" [12] asks how near this map 
is to being a homotopy equivalence. Roughly speaking, the generalized Sul­
livan conjecture asserts that this map becomes an equivalence after p-adic 
completion when X is finite dimensional. The conjecture has been proven 
independently by Haynes Miller, Jean Lannes, and Gunnar Carlsson [4, 7, 
10], and numerous authors have obtained interesting applications. While 
the statement may seem technical and unintuitive, the fact is that the result 
opens the way to a variety of concrete calculations in homotopy theory of 
a sort unimaginable just a few years ago. 

There is a slightly different, more equivariant, way of thinking about the 
generalized Sullivan conjecture. One can consider the space Map(£G, X) of 


