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Officially, model theory was created in 1950 by Alfred Tarski [Ta], who 
described it as a subject that lies on the "borderline between algebra and 
metamathematics." Many see it, nowadays, as generalized algebra, a point 
of view that is strongly emphasized in this book. 

There is one obvious connection between algebra and the concept of 
model. The familiar classes of algebraic structures are usually described as 
the class of models of a given list of axioms. Such are, for instance, the 
class of groups, the class of fields, the class of algebraically closed fields. In 
these examples and in many more, the axioms can be stated as first order 
sentences in a suitable language. Let us explain what we mean by this. A 
logical language L comes equipped with a supply of operation and relation 
symbols of given arities (thus, we have a language for groups, another one 
for fields, a third one for ordered fields, etc.); one of them is always the 
equality symbol '='. The first order sentences of L are statements that use 
these symbols as well as variables and are constructed by means of logical 
connectives ("not", "and", "or", etc.) and quantifiers ("for all xn

9 "there 
exists .x", where x is a variable). The variables are required to be of the 
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first order, i.e., ranging over individual elements rather than, say, over sets 
of elements (by the way, this is a serious limitation as, for example, one 
cannot describe in this way the notion of simple group). Model theory 
studies the class of models of an arbitrary set T of first order sentences. 
Notice that L and, hence, T are allowed to have not only countable but also 
uncountable cardinalities, a fact that increases the scope of model theory. 
The set T of L-sentences that are true in all models of T is called the (first 
order) theory axiomatized by T (a trivial exercise: T and T have the same 
models). 

The previous paragraph contains a very brief description of the frame­
work of model theory. It would be premature to state, on the basis of this 
tiny bit, that model theory is generalized algebra. There are marked differ­
ences between the two fields. Model theory strives for the general, while 
algebra seeks properties peculiar to specific classes. Algebra is preoccupied 
with notions related to structural properties of models such as dimension, 
for example, while model theory cannot limit itself to such notions, as for 
many first order theories there is no satisfactory way to define them. On the 
other hand, model theory considers seriously cardinalities of models, while 
algebra is not really concerned with these. As an example, Tarski proved 
in 1928 (based on earlier partial results of Löwenheim and Skolem) a the­
orem of stunning generality. It says that if a theory T has an infinite model 
then it has one in every cardinality that is greater than or equal to \T\, the 
cardinality of T. Algebraists never considered such problems. To speak in 
more general terms, let /(A, T) be the number of nonisomorphic models 
of T having cardinality A. Thus, given a first order theory T, ƒ (A, T) is 
a function of A. Tarski's theorem and many other model theoretic results 
deal with properties of ƒ (A, T), while algebraists find this function of little 
or no interest. But, surprise! Since the early sixties it was realized that cer­
tain assumptions about ƒ (A, T) imply structural properties of the models 
of T, i.e., properties of the kind that interests algebraists. This develop­
ment led to the creation of a rich mathematical theory, a significant part 
of which is expounded in this book. The subject has been stimulated by a 
few fortuitious questions, all related to /(A, T). 

A theory T is called categorical in power À if /(A, T) = 1. The first 
question was: Is it true that if T is categorical in some A > \T\ then it is 
categorical in every cardinality greater than \T\1 It was asked for countable 
T by Los in 1954, [Lo], and answered in the positive by Morley in 1962, 
[Mo]. Morley's beautiful answer came somewhat as a surprise since Los' 
conjecture was formulated on the basis of very few examples (the major 
one was the theory of algebraically closed fields of characteristic 0). Even 
less expected was the wide scope of the methods initiated in that work. In 
fact, Morley laid the cornerstone of a magnificent edifice. He showed that 
all countable theories categorical in some uncountable power have a cer­
tain property called by him "total transcendentality." Nowadays, we prefer 
the shorter name of "w-stability." co-stable theories are not necessarily cat­
egorical in some uncountable power but have good algebraic properties. 
One can define in their models quite satisfactory notions of independence 
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of elements (generalizing algebraic independence) and of a model prime 
over a set (generalizing the notion of a structure generated by a set). 

Morley left open the question whether Los' conjecture is true for un­
countable theories as well. Partial answers were obtained by Rowbottom 
(in an unpublished work in which he coined the term "stability"), Ressayre 
[Re] and, independently, Shelah [Shi]. The full positive answer was estab­
lished by the last mentioned author in 1971, [Sh2]. As emphasized also in 
the introduction of the book under review, stability theory as we know it 
today is the almost singlehanded creation of Saharon Shelah. 

A few additional problems provided the impetus for further develop­
ment. A most remarkable one, judging by its implications, was the fol­
lowing question asked by Morley: is I(k,T) a monotonically increasing 
function of A, for A > \T\1 Let us remark that we may restrict this ques­
tion to complete first order theories ( a theory T in a logical language L is 
called complete if, for any L-sentence q>, T implies either cp or the negation 
of cp). 

It took Shelah more than ten years to establish Morley's conjecture for 
countable theories (the uncountable case is still open). At a quite early 
stage, he made the bold conjecture that any complete theory T falls into 
one of the following two disjoint cases: 

(a) ("nonstructure case") ƒ (A, T) = 2X for all X > \T\, i.e., T has the max­
imal number of models in every power greater than \T\9 or: (b) ("structure 
case") the structure of all models of T can be described in a way that is 
detailed enough to allow us to count the number of models and conclude 
that Morley's conjecture holds. 

There is no common ground, according to Shelah's conjecture, between 
having the maximal number of models and having a good-structure de­
scription. There is therefore, a gap between the theories of the first kind 
and those of the second; Shelah called it "the main gap." 

It is instructive to compare the two conjectures. Morley's is a precisely 
formulated mathematical statement; Shelah's is not. The vagueness of the 
latter turned out to be an advantage because it gave the fertile imagination 
of Shelah the latitude to crystallize the precise content of the "structure 
case" gradually, as the work progressed. As it turned out, every model 
could be characterized by a set of cardinal invariants, a sort of generalized 
dimensions. 

According to Shelah's plan, the complete theories should be classified, 
i.e., divided into finitely many classes and each class of theories shown to 
belong either to the nonstructure or to the structure case. Whenever the 
latter occurs, the structure description should be elaborated until it allows 
us to "pass the test" of establishing Morley's conjecture. 

This plan has been carried out in stages that have been described, over 
the years, in various publications. Thus, the landmark book [Sh3] con­
tained only a partial solution. Stronger results were established in [Sh4, 
Sh5] and the full countable case of Morley's conjecture awaits its publica­
tion in the second edition of [Sh3]. 

The book under review is concerned with the structure case only. This 
is the context in which model theory can be best viewed as generalized 
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algebra, because the main preoccupation is with structure description. The 
nonstructure theorems are stated without proofs. Even considering this 
limitation of scope, it is amazing how much material has been amassed in 
this booklet. The determined reader with a background in general model 
theory can start reading the book and if he labours his way through 183 
small typewritten pages, he will find himself familiar with most notions and 
with the spirit of a field that is currently active. The main "structure case" 
results of [Sh3, Sh4, Sh5] are presented. Inevitably, some "hot" topics 
had to be left out; these include recent work on the structure of countable 
models as well as the subject of stable groups. Still, the principal tools are 
present. 

The careful exposition is heavily influenced by the author's own con­
tributions. This is felt especially in Chapter 3-4 and 7-8; in particular, 
Chapters 2 and 3 present the elegant Lascar-Poizat definition of forking. 
One should also mention the author's preference for using the language of 
topology. 

The general reader who is interested in more details at a nontechnical 
level, should read the nice introduction of the book. Here are two com­
ments meant to bridge between this review and Lascar's account. 

First of all, Morley's conjecture is not mentioned at all in the book. In 
contrast, Shelah's is given the deserved prominence. This approach, which 
is quite customary among the researchers in the field, is justified by the 
fact that the latter conjecture was the immediate motivation for the whole 
theory. 

The second comment concerns nomenclature. Shelah introduced the 
term "classification theory" to indicate that first order theories are divided 
into classes. Lascar and other authors give "classification" a different mean­
ing by saying that the "structure case" theories are those whose models can 
be "classified." 

There is one omission of a technical nature that, in my opinion should 
have been avoided. Shelah devised a construction that yields, given any 
theory T, another theory Teq that is closely related and more pleasant to 
work with. This construct is absent from the book; thus, the author shows 
us that it is not necessary, at least for the results that he describes. On 
the other hand, Tcq occurs frequently in research papers (see [La], for 
example). 

The worthy task of presenting Shelah's deep theory in an expository 
form is a difficult one and this small book is a welcome addition to the 
voluminous and more ambitious [Sh3 and Ba]. 
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The theory of Hubert modular surfaces is a generalisation of the classi­
cal theory of automorphic forms, and in many ways it is one of the easiest 
generalisations. It was started by D. Hubert at the end of the last century, 
with the motivation to enhance the theory of analytic functions of several 
complex variables. He inspired O. Blumenthal to take up the subject, and 
sometimes his name is added to that of Hilbert. However, neither man got 
very far, and only after the general theory of complex manifolds had ad­
vanced sufficiently could progress be made in this special case. In modern 
times the subject has been revived by M. Rapoport and F. Hirzebruch. The 
theory of Hilbert modular surfaces mixes the theory of automorphic forms, 
arithmetic algebraic geometry (especially Shimura-varieties) and the the­
ory of classical complex algebraic surfaces. It thus seems appropriate to 
give short overviews of recent developments in these subjects, and after 
that we try to explain how they specialize to the case of Hilbert modular 
surfaces. Needless to say, I tend to oversimplify the situation; for details 
one should consult the literature. 

The theory of automorphic forms started with the classical elliptic mod­
ular functions (for a modern account see [La]), and has developed into a 
theory about reductive groups. Let us try to explain how this happened: 
Classically one considers the upper halfplane H of complex numbers with 
positive imaginary part, on which the group SL(2,R)/{±1} acts by the 
usual (az + b)/(cz + rf)-rule. One further chooses a subgroup T of finite 
index in SL(2, Z), and considers holomorphic functions ƒ (z) which trans­
form under F according to a certain factor of automorphy, and which 
are holomorphic at infinity (this amounts to a certain growth-condition). 


