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By what we learned about the author and his book, we of course wish we 
could have had the opportunity to talk with him before we wrote the first two 
chapters in [3] and he wrote his nine chapters plus two appendices. 
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Potential theory and probability theory began a symbiosis in the 1940s and 
1950s which continues to yield some of the deepest insights into the two 
subjects. On the surface, they seem quite dissimilar; fundamentally, certain 
aspects are identical. 

The genesis of modern potential theory was H. Cartan's investigation of 
Newtonian potential theory in the 1940s. If /x is a distribution in R3, then the 
potential generated by JU, is the function Un(x) = ƒ \x - y\~l[i(dy). Some hint 
of the richness of this class of potentials rests in the observation that every 
positive superharmonic function in R3 can be represented as the sum of a 
positive constant and the potential of a positive measure ft. This collection S of 
superharmonic functions is the potential cone of Newtonian potential theory: 
it is closed under addition and scalar multiplication, and the minimum of two 
functions in S is again in S. 

Many of the problems of potential theory are rooted in the problems of 
electrostatics in the classical case. Place a unit charge on a conductor B in R3. 
The electrons will rush to the skin of B and assume an equihbrium distribution 
IT so that the potential UTT(X) of this distribution is constant for x in the 
interior of B. We can obtain UTT(X) from S as follows. Let ƒ = inf{g e S: 
g > l o n 5 } . There is a unique element Uy in S which agrees with ƒ almost 
everywhere. The total mass of y is called the Newtonian capacity of the 
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conductor B and is denoted cap(U). Then IT = y/cap(i?) and UTT = 
Uy/cap(B). The function ƒ is called the réduite of 1 on B9 and Uy is its 
regularization. More generally, the function inf{ge S: g> Up on B) is 
called the réduite of Up on B9 and its regularization is called the balayage of 
Up on B. This regularization has the form Uv9 and v is called the balayage of p 
on B. 

The balayage (or "sweeping") operation is the central one in potential 
theory. One well-known way in which it appears is in solving the Dirichlet 
problem. If D is a smooth open domain in JR3 and if ƒ is a continuous 
function defined on its boundary, then a function h defined on D solves the 
Dirichlet problem for ( A ƒ ) provided h is harmonic on D and h agrees with ƒ 
on the boundary. The following remarkable formula provides a solution. Let 
fix be the balayage of a unit point mass at x onto the boundary of D. Then 

h(x) = ff(y)lx
x(dy). 

The solution of this problem when D and ƒ are not smooth is known as the 
Perron-Wiener-Brelot solution and is completely treated in Bliedtner and 
Hansen's Chapter VII. 

Also in the 1940s, Kakutani found a probabilistic method for solving the 
Dirichlet problem. Let X(t) be Brownian motion in R3: this is the Markov 
process which simulates the movement of a pollen particle due to bombard­
ment by water molecules. It is characterized as the stochastic process with 
continuous trajectories starting at a point x0 so that 

'M^i)^! 4)eiJ 
BPt1(x09x1)pt2_tJ,xl9x2)'-ptH_tm_J<xH^l9xH)dxl ••• dxH, 

where 0 < tx < • • • < tn9 and 

pt(x9y) = (27rty3/2exp(-\x-y\2/2t). 

Kakutani's method is the following. Let T = inf{7 > 0: X(t) is in the boundary 
of D}\ T is a random variable. Then h(x) = ff(X(T))dPx. That is, \ix(dy) 
= Px[X(T) e dy\. to obtain px

9 sweep the point mass at x along the Brownian 
path to the first point where it hits the boundary. This correspondence between 
balayage and Brownian motion is no accident, and most of the formulas of 
potential theory can be interpreted probabilistically by relying on the fact that 
fpt(x9 y)dt is a constant times \x - y\~x. One additional example which has 
been developed recently in the probability literature involves the remarkably 
useful last exit time L = sup{* > 0: X(t) is in B). In this case, PX[X(L) e dy\ 
L > 0] is a constant times \x - y\~l?r(dy)9 where TT is the equihbrium measure 
of B. 

Bliedtner and Hansen's volume is devoted to this interplay between potential 
theory and Markov processes, with balayage serving as the guiding theme. The 
correspondence between Newtonian potential theory and Brownian motion 
described above extends to more general situations: G. Hunt's articles in 
1957-58 served as major illuminations of the subject. Bauer and Brelot 
developed harmonic spaces which are in correspondence with diffusions 
(Markov processes with continuous paths). Right continuous Markov processes 
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correspond to standard balayage spaces, a subject developed in large part by 
the authors. Far from being mere generalizations of the Newtonian case, the 
development of these subjects has been proceeding apace out of necessity in 
both the potential theory and probability literature. That this subject is a good 
framework for the study of second-order elliptic and parabolic equations is 
made amply apparent in the excellent Chapter VIII on partial differential 
equations. The study of Newtonian potential theory is really the study of the 
Laplacian: -MJfi is simply a multiple of /A. The inverse of a second-order 
elliptic or parabolic partial differential operator L can be used to generate a 
harmonic balayage space just as the Laplacian is used in R3. Harmonic 
analysts also will find the material on convolution semigroups and Riesz 
potentials of interest. 

This book is a volume in the Springer Universitext series and will serve well 
as a textbook in a graduate topics course. It begins with classical potential 
theory and other preliminaries and then two chapters on excessive and 
hyperharmonic functions. The authors introduce Markov processes in Chapter 
IV and provide a nice development for people who have been exposed to a 
modest amount of probability theory. They end Chapter IV by stating four 
equivalent views of potential theory: these are of both analytic and probabihs­
tic type and set the tone of the book. The examples illustrating Markov 
processes in Chapter V constitute as nice a collection as I have seen in any text, 
although a dyed-in-the-wool probabilist may find the material more analytic 
than probabihstic. Chapters VI and VII focus on balayage theory and the 
Dirichlet problem and provide thorough and readable treatments of each 
subject. The authors have provided a page of Basic Notations, a three-page 
Index of Symbols, a comprehensive Subject Index and a cross-referenced 
Guide to Standard Examples. These aids will make the book doubly appreci­
ated by graduate students learning the subject and by researchers who read 
about a particular topic. Bliedtner and Hansen have distilled the essence of 
balayage theory for the reader. Its richness hes in the interplay between 
analysis and probability, and it is just this which they have used to give an 
enjoyable presentation of this field of research. 

With this book, balayage theory has reached the enviable situation of a topic 
which can be presented in this form and which still offers largely unexplored 
vistas. For example, semipolar sets (Chapter VI, §5) have stimulated many of 
the developments of the theory and continue to defy analysis. A semipolar 
(resp., polar) set is characterized by the fact that the associated Markov process 
will visit it at most countably often (resp., will never visit it). In Newtonian 
potential theory, every semipolar set is polar, and this is equivalent to the 
bounded energy principle: if ft is any signed measure so that £/|ju| is bounded, 
then ƒ Ufx(x)ix(dx) > 0. This equivalence is true quite generally, but in other 
potential theories there can be semipolar sets which are not polar. Even in the 
case of potential theories and Markov processes arising from convolution 
semigroups in Rd, little is known about these sets. It has been a conjecture for 
twenty years that, except in processes where a translation component inter­
feres, every semipolar set is polar. This still remains to be decided. 

JOSEPH GLOVER 


