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Essentially, it may be said that the authors consider two related types of 
problems which have been of interest in recent research. The first is to find 
"domination" theorems. Thus if S, T: X -> Y are positive operators and 
S < T then one seeks to determine properties of S from those of T. This line 
was initiated in an important paper of Dodds and Fremlin in 1979, who 
showed that if Y and the dual of X have order-continuous norms and if T is 
compact then S is also compact. Since this paper there have been a number of 
ramifications of this general theme. The underlying idea is to prove, under 
suitable hypotheses, that S can be approximated by operators in the ideal 
generated by T. 

The second type of question revolves around factorization theorems. A very 
useful result of Davis, Figiel, Johnson, and Peiczyhski in general Banach space 
theory asserts that a weakly compact operator between two Banach spaces can 
be factored through a reflexive space. The analogue for positive operators and 
Banach lattices is false, as was shown by a recent counterexample due to 
Talagrand. Unfortunately, Talagrand's example is not presented in the book 
(although it is mentioned), perhaps because it appeared too late for inclusion. 
Nevertheless, there are a number of factorization results available and the 
authors emphasize their use. A typical example is a result, due to Aliprantis 
and Burkinshaw, that a product of two positive weakly compact operators can 
be factored positively through a reflexive Banach lattice. Theorems of this type 
and their relatives can be used to establish domination-type results. 

The cycle of ideas represented in the final two chapters closely follows the 
research interests of the authors over the last few years, and many of the 
results are due to them. It seems to the reviewer that these problems are now 
well understood, and most of the results are in the best possible form. 

In general, this is a careful and well-written account of certain aspects of 
positive operators. It is clearly not and was not intended to be a complete 
treatment; the reader is given an introduction to some specific parts of the 
general theory. For a more complete understanding of all the current trends 
one should also consult the works of Schaefer and Zaanen. 
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The theory of partial differential equations has as its source the study of a 
few model problems, many of them arising in physical applications. Laplace's 
equation and the wave and heat equations are prototypical, and the traditional 
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(and appropriate) problems are Dirichlet's for the first and Cauchy's for the 
latter two. The techniques which have been developed over the years for 
handling general classes of equations have to a great extent been designed to 
give something approaching a description of the behavior of solutions as 
complete as that known for these special problems. 

In his influential lectures at Yale [12], Hadamard formulated the notion of a 
well-posed problem for a partial differential equation. Three requirements are 
made: that the equation with its accompanying side conditions admit a 
solution on the region in question, that the solution be unique, and that the 
solution vary in some sort of continuous fashion when the side conditions are 
changed. An example of the Cauchy problem for an equation of evolution type 
may be described as follows. Let x e Rn, / e R, and find u(x,t) satisfying 

(i) (^) K ( * , 0 + £";(*>';îfc)(è) 7f|(*'') =/(*>')> 

= Uj(x), 0 <y < m — 1. 
/ = 0 

The Cauchy problems for the wave equation 

and the heat equation 

(^)M(x'?)-(è)2" (x'' ) = 0 

are well posed, the former for all time t and the latter for time t > 0. But the 
Cauchy problem for Laplace's equation 

(Uu{x>t)+{i;îu{x>t) = 0 

is not well posed, even in time t > 0. Indeed, let u0(x) be a C00 function 
which is not analytic, and choose Cauchy data w(x,0) = uQ(x\ (du/dt)(x,0) 
= 0. Then if u were a solution in t > 0, extension of u via w(x, — t) = u(x, t) 
would provide a solution on a neighborhood of t = 0 which would perforce be 
real analytic, in particular at t = 0. Thus no such solution exists. On the other 
hand, a solution of Laplace's equation with Cauchy data u(x, 0) = 0, 
(du/dt)(x, 0) = exp(— Jn)sin(nx) does exist and is given by the expression 

, v exp( -v^ ) . / \ . w \ w(x, t) = sm(nx) sinh(«f). 

As n -> oo, the data approach zero in any reasonable manner of measurement, 
while the solution does not. 

(2) u(x, t)\ 
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Hadamard pointed out that continuous dependence on the data is no less 
important than the other two requirements, and in some sense should be forced 
on us by a correct view of the other two. Existence and uniqueness mean that a 
solution is known if the auxiliary data are known. 

But, in any concrete application, "known/' of course, signifies 
"known with a certain approximation," all kinds of errors being 
possible, provided their magnitude remains smaller than a certain 
quantity; and, on the other hand, we have seen that the mere 
replacing of the value zero for ux by the (however small) value [of 
the Cauchy datum above], changes the solution not by very small 
but by very great quantities. Everything takes place, physically 
speaking, as if the knowledge of Cauchy's data would not de­
termine the unknown function. 

If the functions aj9 ƒ, and Uj in (1) and (2) are analytic, then the 
Cauchy-Kowalevsky Theorem [4, 5, 6, 7, 18] guarantees the existence of an 
analytic solution u at least locally in time, and that solution is unique even in 
the class of C°° functions by Holmgren's theorem [13]. But the example above 
for Laplace's equation already shows that the Cauchy-Kowalevsky Theorem is 
not the last word. Let H°° stand for the space of all C00 functions which 
together with all their derivatives are in L2(Rn). Then Petrowsky [23] de­
termined a necessary and sufficient condition for the Cauchy problem for the 
equation (1) to be well posed for solutions u as functions of / with values in 
i/00, in the case where the coefficients depend only on /. In particular, if 
àj(t; /£) is the part of cij(t; /£) homogeneous in £ of highest degree, and 
Xt(t\ £) are the roots of the characteristic equation 

m 

(3) xw+ £^(' ;^ m - 7 = o, 

then a necessary condition for H°° well-posedness in the future / > 0 is 
Re A,(£; £) < 0 for all (/, £), 1 < / < w. (Compare with the examples of the 
wave, heat, and Laplace equations.) Lax [19] and Mizohata [21] showed that a 
necessary condition for H°° well-posedness for / near 0 when the coefficients 
are also allowed to depend (smoothly) on x, in the case of a " Kowalevskian" 
evolution operator (where for each j the order of Û .(f, x; £) is at most j) is 
that the characteristic roots A. of the equation 

m 

(4) A-+ I i y ( / , j c ; { )X M " y = 0 
7 = 1 

all be purely real. 
Since the 19th century, a standard tool in the proof of results about partial 

differential equations with constant coefficients has been the Fourier trans­
form. For example, if the coefficients UJ in equation (1) are independent of x, 
taking the partial Fourier transform with respect to x in (1) and (2) leaves an 
ordinary differential equation with side conditions, depending on the Fourier 
transform variable £ as a parameter. Petrowsky [22] used this technique to give 



172 BOOK REVIEWS 

a detailed description of solutions in the case of "strictly hyperbolic" equa­
tions, those for which the characteristic polynomial (4) has m real roots, 
distinct for £ -=h 0. 

In the 1950s and 1960s, pseudodifferential operators were developed, for 
instance in the work of Calderón and Zygmund [2, 3], Mihlin [20], Kohn and 
Nirenberg [17], and Hörmander [14], to extend more fully to the case of 
variable coefficient equations the usefulness of Fourier transform techniques. 
Recall that by the Fourier inversion formula, if u(x) is an appropriate 
function or if the integral is interpreted suitably in the sense of distributions, 
the action of a partial differential operator P = p(x,i~1d/dx) may be ex­
pressed as 

(5) Pu(x) = -±-n ƒ *'*•«ƒ>(*,€)*(«)<«• 
(2*r) J 

Since p(x, £) is a polynomial in its second variable, it satisfies (locally in x) 
estimates of the form 

(6) U*) U) p(x,i) < Q,*(i+i«ir 
-M 

It turns out that it is not important that p be a polynomial in £; instead only 
estimates of the type (6), or even weaker conditions still, are all that are needed 
to make sense of expressions of the form (5) after integration by parts. Such 
symbols then correspond to operators which are, for example, bounded from 
the Sobolev space H*ompaiCt to H{^. (The Sobolev space Hs is defined as the 
space of distributions u satisfying (1 + |£|)*w(£) e L2(Rn).) In particular, the 
inverse of an "elliptic" symbol (one for which \p(x, £)| > C|£|m for |£| large) 
satisfies an estimate of the form (6) with m replaced by -m for |£| large, and 
hence corresponds to an operator bounded from H*ompgiCi to H[^. It follows 
that elliptic regularity results may be recovered in a simple fashion if it can be 
established that the procedure of inverting an operator may be achieved to a 
first approximation by inverting its symbol. A "symbolic calculus" for opera­
tors with symbols satisfying (6) or its generalizations does in fact hold, and 
allows the calculation of the symbols of operators corresponding to composi­
tions and adjoints from the symbols of the original operators. 

The greater algebraic flexibility afforded by such a symbolic calculus al­
lowed the proof of many results for variable coefficient operators that formerly 
had been limited to the translation invariant case. For example, Calderón [1] 
first obtained general results on the uniqueness of solutions for equations with 
smooth coefficients, extending Holmgren's Theorem, for the case in which the 
roots of the characteristic equation (4) are nonmultiple, by a factorization of 
the corresponding symbol. In the theorem of Lax and Mizohata on existence 
and uniqueness mentioned earlier, Lax dealt with the case of simple real roots 
in (4), while Mizohata removed the restriction on nonmultiplicity using a 
rudimentary form of the "microlocalization" of the problem. 

The microlocalization procedure consists of using pseudodifferential opera­
tors to effect an appropriate localization in both the x and the £ variables. It 
became well understood by the 1970s, when the notion of the "wave-front set" 
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of a distribution was developed by Sato [24] and Hörmander [15]. Briefly, this 
set may be described as follows. Recall that by the Paley-Wiener-Schwartz 
Theorem, a distribution u is in C°° near a point JC0 if and only if, for any 
fi(x) e C00 with support sufficiently near to JC0, the Fourier transform 
(/?w)A(£) is rapidly decreasing as £ -> oo. As a more refined notion, we say 
that (x0, £0) is not in the wave-front set WF(w) if for any jS(x) e C00 with 
support sufficiently near to x0 and a(£) e C00 homogeneous of degree zero 
for large £ and supported on a sufficiently small conic neighborhood of the ray 
through £0, a(£)(/?w) A(£) is rapidly decreasing as £ -> oo. It follows that u is 
in C00 near x0 if and only if (x0, £0) £ WF(w) for any £0, so that the 
wave-front set incorporates not only information about the singularities of w, 
but also about their Fourier spectrum. 

The book of Mizohata under review assumes a basic familiarity with the 
standard pseudodifferential operators whose symbols satisfy estimates of the 
type (6). Since this theory and its generalizations have reached a certain stage 
of maturity, there are a variety of texts covering this material in great depth, 
for example the books of Treves [26], Taylor [25], Chazarain and Piriou [8], 
and the treatise of Hörmander [16]. A suitable companion volume in the 
present instance would be the very nice introduction by Folland [9]. Mizohata 
discusses the i/00 well-posedness of the Cauchy problem for (1) by the now 
standard technique of reduction to the case of a first-order pseudodifferential 
system. The necessary condition on the operator d/dt - A(JC, t; d/dx) is 
demonstrated by using the familiar ideas of the pseudodifferential calculus, 
microlocalization, a commutator argument, and an energy estimate which is 
violated if data are chosen appropriately when the condition does not hold. 
Necessary and sufficient conditions for uniform H°° well-posedness in the case 
of X(x, t\ £) a first-order real-valued symbol are established, namely the "Levi 
conditions" on the lower-order terms. 

The majority of the book is devoted to the analysis of the Cauchy problem 
in the Gevrey class ys rather than in H°°. Gevrey [10, 11] initiated the study of 
such functions; ƒ is said to be in ys

9 s > 1, if locally it satisfies the estimate 
\(d/dx)af(x)\ < Aa\sÖal for all a > 0 or, equivalently, /<Ey5 nC0°° if 
j ƒ A(£)| < B exp(-e|£|1 A). Note that when this estimate holds for s = 1, ƒ is 
analytic. A typical example of a function of Gevrey class is f(x) = exp( — 1/x), 
x > 0, f(x) = 0, x < 0, which belongs to y5, s > 2. Such functions were 
analyzed in the context of the Cauchy problem for the heat equation with the 
roles of time and space reversed: 

(7) (îi)2u^^-(l)U^^ = ̂  
u(x,0) = u0, -fa(x>°) = Wi-

Although not well posed in //°°, this problem is well posed in y2. Mizohata 
discusses the extension of this result to the class of weakly hyperbolic operators 
—those for which the principal symbol (4) has a factorization into real roots of 
constant multiplicity. When there are roots of multiplicity greater than one, 
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well-posedness in H°° will not in general hold without assumptions on the 
lower-order terms, but there will be unique solvability in some Gevrey class ys 

without any further assumption. Mizohata notes that it seems that research on 
questions in this category is viewed rather negatively by some, though the 
French and the Soviets in particular have had a positive view. Perhaps the 
source of the negative opinions is already apparent in the problem (7): this 
expression is not the physically natural one to consider for the heat equation. 
Hadamard felt that 

it is remarkable, on the other hand, that a sure guide is found in 
physical interpretation: an analytical problem always being cor­
rectly set, in our use of the phrase, when it is the translation of 
some mechanical or physical question; and we have seen this to be 
the case for Cauchy's problem in the instances quoted in the first 
place. 

The proofs given in the Gevrey class involve a factorization of the operator 
and a demonstration that the corresponding first-order pseudodifferential case 
can be solved by successive approximations which can be added up because of 
appropriate Gevrey estimates for solutions. Thus it becomes necessary to 
develop a pseudodifferential calculus for problems in this class; for example, 
the estimate (6) on symbols is replaced by 

h) (è) '(*'° (8) C a ! j 6 ! ^ l ( l + | £ | ) W ~ H for |a | < 2,2. 

The calculus of such symbols and the corresponding operators is established; 
since the constants are all-important in (8), the results are somewhat delicate 
and the proofs somewhat tedious compared to their analogues in the C°° 
category. Mizohata includes a representative but not exhaustive sample of such 
computations. He goes on to prove the analogue in Gevrey class of Hörmander's 
result [15] on the microlocal analysis of the singularities to solutions of strictly 
hyperbolic equations. Consider the first-order pseudodifferential equation 

(9) ^-\([x,t;±)u + c(x,t;-^)u = 0. 

Let (x(f ),£(*)) denote the null bicharacteristic strip passing through the 
characteristic point (x0, £0) at time / = 0, that is, 

^ = Xt(*. /; £), f = - U * , /; {), (*(0), É(0)) = (*o, *«,)• 

Suppose that p = order{c(x, t\ £)} < 0. Hörmander's Theorem states that if 
(JC0, £0) £ WF(w), then (.*(/), £(f)) « WF(w). In the Gevrey class, the defini­
tion of wave-front set is made corresponding to that in the C°° case: (x0, £0) £ 
WF5(w) if for a ys microlocalizer a(£)/?(» around (x0, £0), \a(i-)(pu)A(i;)\ 
< B exp(-e|£|1 / 5). Now suppose that 0 < p < \/s. The propagation of 
singularities theorem in Gevrey class states that if (x0, £0) £ WF5(w), then 
(x(t), £(t)) & WF5(M). The analogue for higher-order differential operators is 
also given, again via a reduction to a first-order pseudodifferential system 
using the Gevrey calculus. 
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The book concludes with a brief discussion of problems modeled on the 
Schrödinger equation 

(10) ' ( a y j ^ ' ^ + t ^ ) u(x,t) + c(x)u(x,t) = o9 

rather than on the wave or heat equation. When first-order terms in x are 
present, so that the equation becomes 

(ID <(£)«(*.<)+| i(4)2"(jc ,° 
+ E bj(x) U j - \u(x,t) + c(x)u(x,t) = 0, 

a necessary condition for well-posedness of the Cauchy problem in L2 is 
estabhshed. A sufficient condition is proved by showing that under the 
appropriate assumption, (11) may be reduced to (10) by the pseudodifferential 
calculus. Current research is discussed, and further Unes of inquiry are sug­
gested. 

Mizohata's lectures provide a readable introduction to several of the areas of 
modern research on aspects of the Cauchy problem. The book is accessible to 
graduate students who have already had a good introduction to the theory of 
pseudodifferential operators. For most of the results, either a complete proof is 
provided or an outline is given and a typical technical lemma is proved. I 
highly recommend the book to anyone interested in an introduction to Gevrey 
theory. It is disappointing, however, that the publisher did not have the 
manuscript revised to put this otherwise enjoyable account into grammatical 
English. 
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Approximation theory arose out of the need to represent "difficult" func­
tions by " simpler" functions, precision being then traded for ease of computa­
tion. The theory concerns itself more with classes of functions than with 
individual functions. A central problem of perennial interest starts with a 
prescribed set M in a normed space E. One contemplates the approximation 
of an element ƒ in E by an element of M. The least error possible in this 
process is d(f, M), defined to be the infimum of | | / - m\\ as m ranges over 
M. If an element m has the property || ƒ — m|| = d(f, M), it is called a "best 
approximant" or "nearest point." Basic questions then are whether a nearest 
point exists, and if it does, whether it is unique, how it is to be recognized, and 
how it is to be computed. When a sequence of subsets Mn is given, interesting 
asymptotic questions arise, such as whether the sequence d(f,Mn) converges to 
zero and if so how rapidly. 


