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THE MODULI SPACE OF A PUNCTURED SURFACE
AND PERTURBATIVE SERIES

R. C. PENNER

0. Introduction. Let F; denote the oriented genus g surface with s
punctures, 2g — 2+ 8 > 0, s > 1, and choose a distinguished puncture P of
F;. Let T;° be the Teichmiiller space of conformal classes of complete finite-
area metrics on F; (see [A]), and let MC; denote the mapping class group of
orientation-preserving diffeomorphisms of F,; (fixing P) modulo isotopy (see
[B]). When g, s are understood, we omit their mention. In §1 and §2, we report
on joint work with D. B. A. Epstein [EP] where new and useful coordinates
on T are given (Theorem 2) and a MCj-equivariant cell decomposition of
T, is described (Theorem 3). There is thus an induced cell decomposition
of the quotient Mj = T°/MC}, which is the usual moduli space of F; in
case s = 1. In §3, we describe a remarkable connection (see [P]) between
this cell-decomposition for s = 1 and a technique from quantum field theory,
which allows the computation of certain numerical invariants of M3 (Corollary
6). Analogues of Theorem 3 have been obtained independently by [BE and
H] using different techniques. Furthermore, Corollary 7 is in agreement with
some recent work in [HZ)].

Let M denote Minkowskii 3-space with bilinear pairing (-,-) of type
(+,+,-), and let LT C M denote the (open) positive light-cone. The uni-
formization theorem (see [A]) allows us to identify T,* with the space of (con-
jugacy classes of faithful and discrete) representations of 71 (F;) in SO(2,1)
(as a Fuchsian group of the first kind in the component of the identity).

I. Coordinates on T. Suppose mF =T € T, and choose a parabolic
transformation ~ € I' corresponding to the puncture P. ~ fixes a unique ray
in L*, and we choose a point z € LT in this ray. If ¢ is a bi-infinite geodesic
in F which tends in both directions to P (to be termed simply a geodesic in
the sequel), let y(c) € T’ denote the corresponding translation, and define the
\-length of (the homotopy class of) ¢ to be Ap(c) = v/—(2,7(c)z). When T is
understood, we denote A(c) = Ar(c). If h is a I'-horosphere about P and c is
a I'-geodesic, then we define dp(c) to be the I-hyperbolic length along ¢ from
h back to h.

LEMMA 1. Ifc, and ¢z are geodesics, then
Jim exp{dn(c1) - dn(c2)} = A(er)/A(e2)].

It follows that A\-lengths are natural in the sense that if p € MC, T € T,
and cq,c2 are geodesics, then Aper(c1)/Aper(c2) = Ar(p~ter)/Ar(p~1e2),
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where ©* denotes push-forward of conformal type by ¢; moreover, the set of
ratios of A-lengths for a fixed I are discrete.

We define an ideal triangulation A of F to be a decomposition of F' by
geodesics into regions whose doubles are thrice-punctured spheres.

THEOREM 2. \-lengths of edges of A give R-analytic projective coordi-
nates on T. Furthermore, MC acts on these coordinates by polynomaials.

For the first part of the theorem, we use the A-length data to build an
ideal tesselation of the hyperbolic plane and apply Poincaré’s Theorem to
associate a conformal structure on F. For the second part, we claim that the
following move on ideal triangulations acts transitively: remove the diagonal
e of an ideal quadrilaterial @ of A, replacing it by the other diagonal f of
Q. (This well-known result follows from our Theorem 3 below.) If (a,c),
(b,d) are the pairs of opposite edges of @Q, then one computes in M that
AE)A(f) = AMa)A(c) + A(b)A(d). Since A-lengths are natural by Lemma 1, the
theorem follows.

REMARKS. (1) The previous equation is exactly Ptolemy’s theorem on side
lengths of a Euclidean quadrilateral inscribed in a circle.

(2) The action of MC on A-lengths is explicit; computer work has been
done.

II. The cell decomposition of T. Consider now the orbit I'z of z in
L*. Lemma 1 guarantees that 'z does not accumulate in L* (even though
the action of I' on L™ is ergodic). Furthermore, the extremal edges of the
(Euclidean) convex hull of 'z can be shown to project to a collection A(T") of
disjoint geodesics in F', and regions of F — A(T') are either simply connected
or puncture-parallel; we call such a collection of geodesics in F' an ideal cell
decomposition of F. Let ¥ denote the poset consisting of all

C(A)={TeT:A(") = A}, A an ideal cell decomposition,
where C(A) < C(A") if A C A.

THEOREM 3. ¥ 3 an MC-equivariant cell decomposition of T. Further-
more, X extends naturally to a cell decomposition of a natural compactification
T of T so that cells are finite-sided.

To prove Theorem 3, one first describes C(A) in A-length coordinates (with
respect to A) by a system of coupled nonlinear inequalities. Again using nat-
urality of A-lengths, we see that ¥ is an MC-invariant decomposition of T,
and it remains to check that each C(A) is contractible. We describe a contrac-
tion on the set of A-lengths parametrizing C(A), which respects the system
of inequalities; this step is quite delicate and involves some estimates on side
lengths of Euclidean polygons. (See Remark 1 above.) The extension to a
compactification is accomplished by adjoining cells corresponding to families
of geodesics disjointly embedded in F which are not ideal cell decompositions.

The duals of ideal cell decompositions of F; are certain spines G in Fy,
and if s = 1, then all spines arise. We will also consider the dual spine ¥ of
¥ on T. Cells of T are given by (isotopy classes of certain) pairs (F, G) with
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partial ordering given by Whitehead collapses of graphs. ¥ is contractible,
and MC acts on ¥ with finite isotropy groups.

REMARK. Suppose G C F is a spine of F which is dual to a cell decom-
position. There is a I'¢ € T so that the topological symmetry group of the
pair (F,G) acts as a group of conformal symmetries of I'g. The correspond-
ing matrix groups are explicitly computable and have interesting diophantine
properties.

ITI. Perturbative series computations. A well-known numerical in-
variant of the moduli space M} of F, is the virtual (or orbifold) Euler char-
acteristic xg = X(Z)/[MC}, : Z], where Z < MCj is finite-index torsion-free
and x(Z) is the usual Euler characteristic. We will compute x, along with a
collection of further numerical invariants.

We define a fat graph G to be a planar projection of a graph in R3; each ver-
tex of G is required to be at least tri-valent. A neighborhood of the vertex set
inherits an orientation from R2, and we attach orientation-preserving bands
along the edges of G to build a pair (F(G), G), where G is a spine of the surface
F(G). We define v, (G) = #{k-valent vertices of G}, A(G) = #{boundary
components of F(G)}, and let I'(G) ([G], resp.) denote the automorphism
group (isomorphism class, resp.) of the oriented pair (F(G),G).

In what follows, we compute
(_I)Evk(G)NA(G)

#I'(G)

The argument I determines the Euler characteristic of contributing fat graphs,
and for each I, ¢ is a polynomial in N. As a special case, the end of §2
guarantees that x, is the coefficient of N in ¢(4g — 2, N) which can be taken
as motivation for our interest in ¢.

THEOREM 4. We have the following equality:!

¢(I, N) _ Z (_I)Evk

2NN /2 [y vie!

o(I,N) =

[G) with —2x(G)=I

tuples v, with
E(k—2)ve=I
so that vi=v2=0

k] vk
/ H [%] exp (—% trace M2> aM,
MeHN ;54

where dM 13 the unitary-invariant product of Lebesgue measures
N
dM = (H dMii) [T dReM;)d(mM;))
i=1 1<i<j<N
on the N x N Hermitians HN .

The technique of proof is an extension of one known amongst physicists as
Feynman diagrams/perturbative series (see [BIZ]) and will not be taken up

INOTE ADDED IN PROOF. The right-hand side of this equality bears a striking resem-
blance to Weil’s formula for the total Chern class of a bundle.
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here. It is remarkable that this technique so effectively captures the combi-
natorics of our complex ¥, at least when s = 1.

THEOREM 5. We have the following equality.

11N N-
(=nrof N [M(Ct) :| Hl(l—pt)N_p.

oCLN) = 75 T(t-1)

p=1

To prove this result, one passes from the integral in Theorem 4 to an
integral over RY. In so doing, one introduces the factor ], ., s<n (@i —5)?
in the integrand. The integral of such a factor against [],_; y du(z;) for some
measure du on R can be expressed in terms of the zeroth moment of du and
the coefficients of the recursion relation for the orthogonal polynomials of dp.
We construct a generating function ¢(t, N) for the quantities ¢(I, N) so that
the resulting integral is of this form for some measure du; whose orthogonal
polynomials and moments are explicitly computable. Unfortunately, there are
convergence problems for ¢t = 0, and we must truncate the integrals spatially
and take limits to pursue this program. Thus, {¢(2I, N): I > 0} arises as the
set of coefficients in the asymptotic series at zero of the function in Theorem
5.

We define (I, N) similarly to ¢(I, N) but summing only over connected
fat graphs. Taking logarithmic derivatives and using a variant of Stirling’s
formula gives our main result on fat graphs.

COROLLARY 6. We have the following equality.

b, = (0 | oS (I— 1)B2k e

IT+0+2) « 2= \ek-2) 2% T+2-2k |’
where By 1s the 2kth Bernoulli number and [-] denotes integral part.
Since a fat graph with A = 1 is necessarily connected, we find

COROLLARY 7. The virtual Euler characteristic of moduli space s

Xg = coefficient of N in (6(4g —2,N)) = —23;29 = ¢(1 - 29),

where ¢ 1s the Riemann zeta function.

Only a small part of the data about fat graphs obtained in Corollary 6 is
used in Corollary 7. The remaining information is likely to be related to the
action of MC; on our decomposition of T;.
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