THE MODULI SPACE OF A PUNCTURED SURFACE AND PERTURBATIVE SERIES

R. C. PENNER

0. Introduction. Let F_g^s denote the oriented genus g surface with s punctures, 2g-2+s>0, $s\geq 1$, and choose a distinguished puncture P of F_g^s . Let \mathcal{T}_g^s be the Teichmüller space of conformal classes of complete finite-area metrics on F_g^s (see [A]), and let MC_g^s denote the mapping class group of orientation-preserving diffeomorphisms of F_g^s (fixing P) modulo isotopy (see [B]). When g, s are understood, we omit their mention. In §1 and §2, we report on joint work with D. B. A. Epstein [EP] where new and useful coordinates on \mathcal{T}_g^s are given (Theorem 2) and a MC_g^s -equivariant cell decomposition of T_g^s is described (Theorem 3). There is thus an induced cell decomposition of the quotient $\mathcal{M}_g^s = \mathcal{T}_g^s/MC_g^s$, which is the usual moduli space of F_g^s in case s=1. In §3, we describe a remarkable connection (see [P]) between this cell-decomposition for s=1 and a technique from quantum field theory, which allows the computation of certain numerical invariants of \mathcal{M}_g^s (Corollary 6). Analogues of Theorem 3 have been obtained independently by [BE and H] using different techniques. Furthermore, Corollary 7 is in agreement with some recent work in [HZ].

Let M denote Minkowskii 3-space with bilinear pairing $\langle \cdot, \cdot \rangle$ of type (+,+,-), and let $L^+ \subset M$ denote the (open) positive light-cone. The uniformization theorem (see $[\mathbf{A}]$) allows us to identify \mathcal{T}_g^s with the space of (conjugacy classes of faithful and discrete) representations of $\pi_1(F_g^s)$ in SO(2,1) (as a Fuchsian group of the first kind in the component of the identity).

I. Coordinates on \mathcal{T} . Suppose $\pi_1 F = \Gamma \in \mathcal{T}$, and choose a parabolic transformation $\gamma \in \Gamma$ corresponding to the puncture P. γ fixes a unique ray in L^+ , and we choose a point $z \in L^+$ in this ray. If c is a bi-infinite geodesic in F which tends in both directions to P (to be termed simply a geodesic in the sequel), let $\gamma(c) \in \Gamma$ denote the corresponding translation, and define the λ -length of (the homotopy class of) c to be $\lambda_{\Gamma}(c) = \sqrt{-\langle z, \gamma(c)z \rangle}$. When Γ is understood, we denote $\lambda(c) = \lambda_{\Gamma}(c)$. If h is a Γ -horosphere about P and c is a Γ -geodesic, then we define $d_h(c)$ to be the Γ -hyperbolic length along c from h back to h.

LEMMA 1. If c_1 and c_2 are geodesics, then

$$\lim_{h \to P} \exp\{d_h(c_1) - d_h(c_2)\} = [\lambda(c_1)/\lambda(c_2)]^2.$$

It follows that λ -lengths are natural in the sense that if $\varphi \in MC$, $\Gamma \in \mathcal{T}$, and c_1, c_2 are geodesics, then $\lambda_{\varphi^*\Gamma}(c_1)/\lambda_{\varphi^*\Gamma}(c_2) = \lambda_{\Gamma}(\varphi^{-1}c_1)/\lambda_{\Gamma}(\varphi^{-1}c_2)$,

Received by the editors April 29, 1985 and, in revised form, December 18, 1985. 1980 Mathematics Subject Classification (1985 Revision). Primary 14H15, 30F35, 57N05; Secondary 05C30.

where φ^* denotes push-forward of conformal type by φ ; moreover, the set of ratios of λ -lengths for a fixed Γ are discrete.

We define an *ideal triangulation* Δ of F to be a decomposition of F by geodesics into regions whose doubles are thrice-punctured spheres.

THEOREM 2. λ -lengths of edges of Δ give **R**-analytic projective coordinates on τ . Furthermore, MC acts on these coordinates by polynomials.

For the first part of the theorem, we use the λ -length data to build an ideal tesselation of the hyperbolic plane and apply Poincaré's Theorem to associate a conformal structure on F. For the second part, we claim that the following move on ideal triangulations acts transitively: remove the diagonal e of an ideal quadrilaterial Q of Δ , replacing it by the other diagonal f of Q. (This well-known result follows from our Theorem 3 below.) If (a,c), (b,d) are the pairs of opposite edges of Q, then one computes in M that $\lambda(e)\lambda(f)=\lambda(a)\lambda(c)+\lambda(b)\lambda(d)$. Since λ -lengths are natural by Lemma 1, the theorem follows.

REMARKS. (1) The previous equation is exactly Ptolemy's theorem on side lengths of a Euclidean quadrilateral inscribed in a circle.

- (2) The action of MC on λ -lengths is explicit; computer work has been done.
- II. The cell decomposition of \mathcal{T} . Consider now the orbit Γz of z in L^+ . Lemma 1 guarantees that Γz does not accumulate in L^+ (even though the action of Γ on L^+ is ergodic). Furthermore, the extremal edges of the (Euclidean) convex hull of Γz can be shown to project to a collection $\Delta(\Gamma)$ of disjoint geodesics in F, and regions of $F \Delta(\Gamma)$ are either simply connected or puncture-parallel; we call such a collection of geodesics in F an ideal cell decomposition of F. Let $\mathcal X$ denote the poset consisting of all

$$C(\Delta)=\{\Gamma\in\mathcal{T}\colon \Delta(\Gamma)=\Delta\},\qquad \Delta \text{ an ideal cell decomposition},$$
 where $C(\Delta)< C(\Delta')$ if $\Delta\subset\Delta'$.

THEOREM 3. \mathcal{H} is an MC-equivariant cell decomposition of \mathcal{T} . Furthermore, \mathcal{H} extends naturally to a cell decomposition of a natural compactification \mathcal{T} of \mathcal{T} so that cells are finite-sided.

To prove Theorem 3, one first describes $C(\Delta)$ in λ -length coordinates (with respect to Δ) by a system of coupled nonlinear inequalities. Again using naturality of λ -lengths, we see that λ is an MC-invariant decomposition of \mathcal{T} , and it remains to check that each $C(\Delta)$ is contractible. We describe a contraction on the set of λ -lengths parametrizing $C(\Delta)$, which respects the system of inequalities; this step is quite delicate and involves some estimates on side lengths of Euclidean polygons. (See Remark 1 above.) The extension to a compactification is accomplished by adjoining cells corresponding to families of geodesics disjointly embedded in F which are not ideal cell decompositions.

The duals of ideal cell decompositions of F_g^s are *certain* spines G in F_g^s , and if s = 1, then all spines arise. We will also consider the dual spine Σ of \mathcal{X} on \mathcal{T} . Cells of Σ are given by (isotopy classes of certain) pairs (F, G) with

partial ordering given by Whitehead collapses of graphs. Σ is contractible, and MC acts on Σ with finite isotropy groups.

REMARK. Suppose $G \subset F$ is a spine of F which is dual to a cell decomposition. There is a $\Gamma_G \in \mathcal{T}$ so that the topological symmetry group of the pair (F,G) acts as a group of conformal symmetries of Γ_G . The corresponding matrix groups are explicitly computable and have interesting diophantine properties.

III. Perturbative series computations. A well-known numerical invariant of the moduli space \mathcal{M}_g^1 of F_g^1 is the *virtual* (or *orbifold*) Euler characteristic $\chi_g = \chi(Z)/[MC_g^1:Z]$, where $Z < MC_g^1$ is finite-index torsion-free and $\chi(Z)$ is the usual Euler characteristic. We will compute χ_g along with a collection of further numerical invariants.

We define a fat graph G to be a planar projection of a graph in \mathbb{R}^3 ; each vertex of G is required to be at least tri-valent. A neighborhood of the vertex set inherits an orientation from \mathbb{R}^2 , and we attach orientation-preserving bands along the edges of G to build a pair (F(G), G), where G is a spine of the surface F(G). We define $v_k(G) = \#\{k\text{-valent vertices of } G\}$, $\lambda(G) = \#\{\text{boundary components of } F(G)\}$, and let $\Gamma(G)$ ([G], resp.) denote the automorphism group (isomorphism class, resp.) of the oriented pair (F(G), G).

In what follows, we compute

$$\phi(I,N) = \sum_{[G] \text{ with } -2\chi(G) = I} \frac{(-1)^{\sum v_k(G)} N^{\lambda(G)}}{\#\Gamma(G)}.$$

The argument I determines the Euler characteristic of contributing fat graphs, and for each I, ϕ is a polynomial in N. As a special case, the end of §2 guarantees that χ_g is the coefficient of N in $\phi(4g-2,N)$ which can be taken as motivation for our interest in ϕ .

THEOREM 4. We have the following equality:¹

$$\begin{split} \phi(I,N) &= \sum_{\substack{\text{tuples } v_k \text{ with} \\ \Sigma(k-2)v_k = I \\ \text{so that } v_1 = v_2 = 0}} \frac{(-1)^{\Sigma v_k}}{2^{N/2}\pi^{N^2/2}\prod_{k \geq 1} v_k!} \\ &\cdot \int_{M \in H^N} \prod_{k > 1} \left[\frac{\operatorname{trace} \ M^k}{k} \right]^{v_k} \exp\left(-\frac{1}{2} \operatorname{trace} \ M^2\right) \, dM, \end{split}$$

where dM is the unitary-invariant product of Lebesgue measures

$$dM = \left(\prod_{i=1}^N dM_{ii}
ight) \prod_{1 \leq i < j \leq N} d(\operatorname{Re} M_{ij}) \, d(\operatorname{Im} M_{ij})$$

on the $N \times N$ Hermitians H^N .

The technique of proof is an extension of one known amongst physicists as Feynman diagrams/perturbative series (see [BIZ]) and will not be taken up

¹NOTE ADDED IN PROOF. The right-hand side of this equality bears a striking resemblance to Weil's formula for the total Chern class of a bundle.

here. It is remarkable that this technique so effectively captures the combinatorics of our complex Σ , at least when s=1.

THEOREM 5. We have the following equality.

$$\phi(2I,N) = \left. \frac{(-1)^I}{I!} \frac{\partial^I}{\partial t^I} \right|_{t\downarrow 0} \left[\frac{\sqrt{2\pi t} (et)^{-t^{-1}}}{\Gamma(t^{-1})} \right]^N \prod_{p=1}^{N-1} (1-pt)^{N-p}.$$

To prove this result, one passes from the integral in Theorem 4 to an integral over \mathbf{R}^N . In so doing, one introduces the factor $\prod_{1 \leq i < j \leq N} (x_i - x_j)^2$ in the integrand. The integral of such a factor against $\prod_{i=1,N} d\mu(x_i)$ for some measure $d\mu$ on \mathbf{R} can be expressed in terms of the zeroth moment of $d\mu$ and the coefficients of the recursion relation for the orthogonal polynomials of $d\mu$. We construct a generating function $\hat{\phi}(t,N)$ for the quantities $\phi(I,N)$ so that the resulting integral is of this form for some measure $d\mu_t$ whose orthogonal polynomials and moments are explicitly computable. Unfortunately, there are convergence problems for t=0, and we must truncate the integrals spatially and take limits to pursue this program. Thus, $\{\phi(2I,N): I \geq 0\}$ arises as the set of coefficients in the asymptotic series at zero of the function in Theorem 5.

We define $\theta(I, N)$ similarly to $\phi(I, N)$ but summing only over connected fat graphs. Taking logarithmic derivatives and using a variant of Stirling's formula gives our main result on fat graphs.

COROLLARY 6. We have the following equality.

$$\theta(2I,N) = (-1)^I \left\lceil \frac{-N^{I+2}}{I(I+1)(I+2)} + \sum_{k=1}^{[(I+1)/2]} \binom{I-1}{2k-2} \frac{B_{2k}}{2k} \frac{N^{I+2-2k}}{I+2-2k} \right\rceil,$$

where B_{2k} is the 2kth Bernoulli number and $[\cdot]$ denotes integral part.

Since a fat graph with $\lambda = 1$ is necessarily connected, we find

COROLLARY 7. The virtual Euler characteristic of moduli space is

$$\chi_g = coefficient \ of \ N \ \ in \ (heta(4g-2,N)) = rac{-B_{2g}}{2g} = arsigma(1-2g),$$

where ζ is the Riemann zeta function.

Only a small part of the data about fat graphs obtained in Corollary 6 is used in Corollary 7. The remaining information is likely to be related to the action of MC_g^s on our decomposition of $\overline{\mathcal{T}}_g^s$.

REFERENCES

- [A] W. Abikoff, The real-analytic theory of Teichmüller space, Lecture Notes in Math., vol. 820, Springer-Verlag, Berlin and New York, 1980.
- [B] J. Birman, Braids, links, and mapping class groups, Ann. of Math. Studies, no. 82, 1974.
- [BE] B. Bowditch and D. B. A. Epstein, Triangulations associated with punctured surfaces, preprint (1985).

- [BIZ] D. Bessis, C. Itzykson, and J. B. Zuber, Quantum field theory techniques in graphical enumeration, Adv. Appl. Math. 1 (1980), 109-157.
- [EP] D. B. A. Epstein and R. C. Penner, Teichmüller spaces of punctured surfaces, preprint (1984).
- [H] J. Harer, The virtual cohomological dimension of the mapping class group of an oriented surface, Invent. Math. (1986).
- [HZ] J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, preprint (1985).
 - [P] R. C. Penner, Perturbative series and moduli space, preprint (1985).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, CALIFORNIA 90089