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THE MODULI SPACE OF A PUNCTURED SURFACE 
AND PERTURBATIVE SERIES 

R. C. PENNER 

0. Introduction. Let F8 denote the oriented genus g surface with s 
punctures, 2g — 2 + s > 0 , s > l , and choose a distinguished puncture P of 
F*. Let Tg be the Teichmüller space of conformai classes of complete finite-
area metrics on F* (see [A]), and let MC9

g denote the mapping class group of 
orientation-preserving difFeomorphisms of F8 (fixing P) modulo isotopy (see 
[B]). When 0, s are understood, we omit their mention. In §1 and §2, we report 
on joint work with D. B. A. Epstein [EP] where new and useful coordinates 
on Tg

s are given (Theorem 2) and a MC^-equivariant cell decomposition of 
Tg8 is described (Theorem 3). There is thus an induced cell decomposition 
of the quotient M g = Tg

s /MC*, which is the usual moduli space of F* in 
case 8 = 1. In §3, we describe a remarkable connection (see [P]) between 
this cell-decomposition for s = 1 and a technique from quantum field theory, 
which allows the computation of certain numerical invariants of M8, (Corollary 
6). Analogues of Theorem 3 have been obtained independently by [BE and 
H] using different techniques. Furthermore, Corollary 7 is in agreement with 
some recent work in [HZ]. 

Let M denote Minkowskii 3-space with bilinear pairing (•,•) of type 
(+ ,+ , - ) , and let L+ C M denote the (open) positive light-cone. The uni-
formization theorem (see [A]) allows us to identify Tg

s with the space of (con-
jugacy classes of faithful and discrete) representations of iri(F£) in SO(2,1) 
(as a Fuchsian group of the first kind in the component of the identity). 

1. Coordinates on T. Suppose iriF = T € T, and choose a parabolic 
transformation 7 € T corresponding to the puncture P. 7 fixes a unique ray 
in L+, and we choose a point z G L+ in this ray. If c is a bi-infinite geodesic 
in F which tends in both directions to P (to be termed simply a geodesic in 
the sequel), let 7(c) € T denote the corresponding translation, and define the 
\-length of (the homotopy class of) c to be Ar(c) = \J-(z,^(c)z). When T is 
understood, we denote A(c) = Ar(c). If h is a T-horosphere about P and c is 
a T-geodesic, then we define dh(c) to be the T-hyperbolic length along c from 
h back to h. 

LEMMA 1. If ci and C2 are geodesies, then 

limpexp{dh(ci) - dh(c2)} - [A(ci)/A(c2)]
2. 

It follows that A-lengths are natural in the sense that if <p £ MC, T G T, 
and ci,C2 are geodesies, then A(p*r(ci)/AV9*r(c2) = Ar(<p"1ci)/Ar(<p~1C2), 
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where <p* denotes push-forward of conformai type by (p; moreover, the set of 
ratios of A-lengths for a fixed T are discrete. 

We define an ideal triangulation A of F to be a decomposition of F by 
geodesies into regions whose doubles are thrice-punctured spheres. 

THEOREM 2. X-lengths of edges of A give R-analytic projective coordi­
nates on T. Furthermore, MC acts on these coordinates by polynomials. 

For the first part of the theorem, we use the A-length data to build an 
ideal tesselation of the hyperbolic plane and apply Poincaré's Theorem to 
associate a conformai structure on F. For the second part, we claim that the 
following move on ideal triangulations acts transitively: remove the diagonal 
e of an ideal quadrilaterial Q of A, replacing it by the other diagonal ƒ of 
Q. (This well-known result follows from our Theorem 3 below.) If (a, c), 
(6, d) are the pairs of opposite edges of Q, then one computes in M that 
A(e)A(/) = A(a)A(c) + A(6)A(d). Since A-lengths are natural by Lemma 1, the 
theorem follows. 

REMARKS. (1) The previous equation is exactly Ptolemy's theorem on side 
lengths of a Euclidean quadrilateral inscribed in a circle. 

(2) The action of MC on A-lengths is explicit; computer work has been 
done. 

II. The cell decomposition of T. Consider now the orbit Tz of z in 
L+. Lemma 1 guarantees that Tz does not accumulate in L+ (even though 
the action of T on L + is ergodic). Furthermore, the extremal edges of the 
(Euclidean) convex hull of Tz can be shown to project to a collection A(r) of 
disjoint geodesies in F , and regions of F — A(r) are either simply connected 
or puncture-parallel; we call such a collection of geodesies in F an ideal cell 
decomposition of F. Let )t denote the poset consisting of all 

C(A) = {T GT: A(r) = A}, A an ideal cell decomposition, 

where C(A) < C(A') if A C A'. 

THEOREM 3. M is an MC-equivariant cell decomposition ofT. Further­
more, M extends naturally to a cell decomposition of a natural compactification 
T of T so that cells are finite-sided. 

To prove Theorem 3, one first describes C(A) in A-length coordinates (with 
respect to A) by a system of coupled nonlinear inequalities. Again using nat-
urality of A-lengths, we see that U is an MC-invariant decomposition of T, 
and it remains to check that each C( A) is contractible. We describe a contrac­
tion on the set of A-lengths parametrizing C(A), which respects the system 
of inequalities; this step is quite delicate and involves some estimates on side 
lengths of Euclidean polygons. (See Remark 1 above.) The extension to a 
compactification is accomplished by adjoining cells corresponding to families 
of geodesies disjointly embedded in F which are not ideal cell decompositions. 

The duals of ideal cell decompositions of F* are certain spines G in F*, 
and if s — 1, then all spines arise. We will also consider the dual spine E of 
H on T. Cells of E are given by (isotopy classes of certain) pairs (F, G) with 
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partial ordering given by Whitehead collapses of graphs. E is contractible, 
and MC acts on E with finite isotropy groups. 

REMARK. Suppose G C F is a spine of F which is dual to a cell decom­
position. There is a TQ £ T so that the topological symmetry group of the 
pair (F, G) acts as a group of conformai symmetries of TG- The correspond­
ing matrix groups are explicitly computable and have interesting diophantine 
properties. 

III. Perturbative series computations. A well-known numerical in­
variant of the moduli space M J of F g is the virtual (or orbifold) Euler char­
acteristic Xg — x{Z)/[MCg : Z], where Z < MC\ is finite-index torsion-free 
and x(Z) is the usual Euler characteristic. We will compute Xg along with a 
collection of further numerical invariants. 

We define a fat graph G to be a planar projection of a graph in R3; each ver­
tex of G is required to be at least tri-valent. A neighborhood of the vertex set 
inherits an orientation from R2 , and we attach orientation-preserving bands 
along the edges of G to build a pair (F(G), G), where G is a spine of the surface 
F(G). We define vk{G) = #{fc-valent vertices of G}, A(G) = #{boundary 
components of -F(G)}, and let T(G) ([G], resp.) denote the automorphism 
group (isomorphism class, resp.) of the oriented pair (F(G),G). 

In what follows, we compute 

*(i,N)= E #F(G) ' 
[G] with -2 X (G)=I ^ K ' 

The argument I determines the Euler characteristic of contributing fat graphs, 
and for each / , (j> is a polynomial in N. As a special case, the end of §2 
guarantees that Xg is the coefficient of N in </>(4g - 2, N) which can be taken 
as motivation for our interest in 0. 

THEOREM 4. We have the following equality:1 

tuples vk with iik>l u*' 
E(k-2)vk=I 

so that vi=i;2=0 

/ TT -—7 e xP ( - « t r a c e M2 I dM, 
JMeH» i^ i L * J V 2 / 

[trace Mk 

iMeH» £ i 

w/iere dM is £/ie unitary-invariant product of Lebesgue measures 

dM=lf[ dMu ] Y[ d{ReMij) d{lmM^) 
\i=l / l<i<j<N 

on the N x N Hermitians HN. 

The technique of proof is an extension of one known amongst physicists as 
Feynman diagrams/perturbative series (see [BIZ]) and will not be taken up 

1NOTE ADDED IN PROOF. The right-hand side of this equality bears a striking resem­
blance to Weil's formula for the total Chern class of a bundle. 
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here. It is remarkable that this technique so effectively captures the combi­
natorics of our complex E, at least when a = 1. 

THEOREM 5. We have the following equality. 

<K2I,N)=^-W 
(-iyd'\ \y/m{ety- i Y[(i-pt)N-*>. 

t | 0 r ( t - i ) 
P = I 

To prove this result, one passes from the integral in Theorem 4 to an 
integral over RN. In so doing, one introduces the factor rii<i<i<iv(x* "" xj)2 

in the integrand. The integral of such a factor against I"It=i N dii(xi) for some 
measure d/j, on R can be expressed in terms of the zeroth moment of d/x and 
the coefficients of the recursion relation for the orthogonal polynomials of dfi. 
We construct a generating function 0(£, N) for the quantities </>(/, N) so that 
the resulting integral is of this form for some measure dnt whose orthogonal 
polynomials and moments are explicitly computable. Unfortunately, there are 
convergence problems for t — 0, and we must truncate the integrals spatially 
and take limits to pursue this program. Thus, {</>(27, N): I > 0} arises as the 
set of coefficients in the asymptotic series at zero of the function in Theorem 
5. 

We define 9(1, N) similarly to <j>(I, N) but summing only over connected 
fat graphs. Taking logarithmic derivatives and using a variant of Stirling's 
formula gives our main result on fat graphs. 

COROLLARY 6. We have the following equality. 

0(2/,JV) = ( - l ) 

N!+2 K/+l)/3] p _ 1 ^ B 2 k NI+2-2k 

I(I + l)(I + 2) ^ \2k-2j 2fc I+ 2-2k 

where B^k is the 2kth Bernoulli number and [•] denotes integral part. 

Since a fat graph with A = 1 is necessarily connected, we find 

COROLLARY 7. The virtual Euler characteristic of moduli space is 

Xg = coefficient of N in (fi(4g - 2, N)) = ^ ^ = f ( t _ 2g), 

where ç is the Riemann zeta function. 

Only a small part of the data about fat graphs obtained in Corollary 6 is 
used in Corollary 7. The remaining information is likely to be related to the 
action of MC* on our decomposition of Tg. 
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