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SOLUTION OF A PROBLEM RAISED BY RUBEL

BY Y. KATZNELSON!

The following problem was raised by L. Rubel in the 1950s and appears in
[2]; my interest in it was rekindled by a query that B. Ghusayni submitted to
the Notices of the American Mathematical Society.

PROBLEM. Suppose E # {0} is a linear subspace of L2(R) such that

(i) f € E = f~€ E (where f " is the Fourier transform of f)

(ii) g € L?(R), |g| < |f| a.e. for some f € E implies that g € E.
Then must E = L?(R)?

We propose to prove more, namely:

THEOREM 1. Let g, f € L2(R), f # 0. Then there ezist functions p; €
L>*(R), =1,...,5 such that, denoting by M; the operator of multiplication
by ¢, and by F the Fourier transformation, we have

g= M5FM4FM3FM2FM1 . f

NOTATIONS.

1" = {h;h € L?*(R), h constant in each [n,n + 1)},
L*¥ = {H;|H(z)| < h(z) for some h € I?"},
={H;H =ph, hel*, p e L*(R)},
={H;£ suwp |H(2)]*=]||H]||?> < oo}.
n<zr<n+l

LEMMA 1. If ¢ € L2(R) and support(¢)) C [0,1], then ¢ = Fy € L*
and ||[9]]] < 2I[¥]l.

LEMMA 2. If ¥ € L%(R), then there ezists a continuous @, |®(z)| = 1,
such that (®¥)~c L?" and |||®¥7|| < 2||1¥|.

PROOF. Write ¥ = X¢; with ¢; = ¥ on I, where {I;} are intervals
of length 1 whose disjoint union covers R. Write ®(z) = exp{iA;z} on I,
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A; € 27Z, and the );’s increase fast enough to make ¢;(¢ — );) virtually
orthogonal. Use Lemma 1 and the equality [|¥[|2 = Z||¢;||%.

PROOF OF THE THEOREM. Given f # 0, we take ¢; bounded and of
(well-placed) small support so that ¢4 f is an approximate point mass and its
Fourier transform is bounded away from zero on [0,1]. Thus, the indicator
function of [0, 1], denoted 1o 1}, has the form MyFM;f. We now apply F,
multiply the outcome by a 27-periodic function ¢3 and apply F' again. What
we obtain is the function

F(z)=¢3(n) forn<z<n+1,

which belongs to {2". Our limitation is that 3 must be bounded, but we
invoke the result of [1] which says that given any sequence {a,} € [? there
exists continuous 2w-periodic @3 such that |a,| < |@3(n)|. It follows that the
functions F M3F M,F M, f majorize every function in [?° and hence in L?’
and the functions MyFM3sFMyFM;f cover L?". Lemma 2 shows how an
additional F and division by @ (multiplication by ®) covers all of L?(R).

REMARK. The method of [1] applies, as is, to show that if G is a compact
abelian group and f € L?(G), there exists a bounded ¢ on G such that
|@] > | f | on G. This permits an extension of Theorem 1 to all locally compact
abelian groups (notice that the Fourier operator F' appears four times so that
we end on the group we have started with).
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