RESEARCH ANNOUNCEMENTS

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 14, Number 2, April 1986

SOLUTION OF A PROBLEM RAISED BY RUBEL

BY Y. KATZNELSON¹

The following problem was raised by L. Rubel in the 1950s and appears in [2]; my interest in it was rekindled by a query that B. Ghusayni submitted to the Notices of the American Mathematical Society.

PROBLEM. Suppose $E \neq \{0\}$ is a linear subspace of $L^2(\mathbf{R})$ such that

- (i) $f \in E \Rightarrow f \in E$ (where f is the Fourier transform of f)
- (ii) $g \in L^2(\mathbf{R})$, $|g| \le |f|$ a.e. for some $f \in E$ implies that $g \in E$. Then must $E = L^2(\mathbf{R})$?

We propose to prove more, namely:

THEOREM 1. Let $g, f \in L^2(\mathbf{R}), f \neq 0$. Then there exist functions $\varphi_j \in L^{\infty}(\mathbf{R}), j = 1, ..., 5$ such that, denoting by M_j the operator of multiplication by φ_j and by F the Fourier transformation, we have

$$g = M_5 F M_4 F M_3 F M_2 F M_1 \cdot f.$$

NOTATIONS.

$$\begin{split} l^{2^{\bullet}} &= \{h; h \in L^{2}(\mathbf{R}), h \text{ constant in each } [n, n+1)\}, \\ L^{2^{\bullet}} &= \{H; |H(x)| \leq h(x) \text{ for some } h \in l^{2^{\bullet}}\}, \\ &= \{H; H = \varphi h, \ h \in l^{2^{\bullet}}, \ \varphi \in L^{\infty}(\mathbf{R})\}, \\ &= \{H; \Sigma \sup_{n \leq x \leq n+1} |H(x)|^{2} = |||H|||^{2} < \infty\}. \end{split}$$

LEMMA 1. If $\psi \in L^2(\mathbf{R})$ and $\operatorname{support}(\psi) \subset [0,1]$, then $\hat{\psi} = F\psi \in L^{2^*}$ and $|||\hat{\psi}||| \leq 2||\psi||$.

LEMMA 2. If $\Psi \in L^2(\mathbf{R})$, then there exists a continuous Φ , $|\Phi(x)| = 1$, such that $(\Phi\Psi)^{\widehat{}} \in L^{2^*}$ and $|||\Phi\Psi^{\widehat{}}||| \leq 2||\Psi||$.

PROOF. Write $\Psi = \Sigma \psi_j$ with $\psi_j = \Psi$ on I_j , where $\{I_j\}$ are intervals of length 1 whose disjoint union covers **R**. Write $\Phi(x) = \exp\{i\lambda_j x\}$ on I_j ,

Received by the editors September 20, 1985.

1980 Mathematics Subject Classification (1985 Revision). Primary 42A38.

¹Research supported by NSF grant DMS81-07092.

 $\lambda_j \in 2\pi \mathbf{Z}$, and the λ_j 's increase fast enough to make $\hat{\psi}_j(\xi - \lambda_j)$ virtually orthogonal. Use Lemma 1 and the equality $\|\Psi\|^2 = \Sigma \|\psi_j\|^2$.

PROOF OF THE THEOREM. Given $f \neq 0$, we take φ_1 bounded and of (well-placed) small support so that $\varphi_1 f$ is an approximate point mass and its Fourier transform is bounded away from zero on [0,1]. Thus, the indicator function of [0,1], denoted $1_{[0,1]}$, has the form M_2FM_1f . We now apply F, multiply the outcome by a 2π -periodic function φ_3 and apply F again. What we obtain is the function

$$F(x) = \hat{\varphi}_3(n)$$
 for $n \le x < n+1$,

which belongs to l^{2^*} . Our limitation is that φ_3 must be bounded, but we invoke the result of [1] which says that given any sequence $\{a_n\} \in l^2$ there exists continuous 2π -periodic φ_3 such that $|a_n| \leq |\hat{\varphi}_3(n)|$. It follows that the functions $FM_3FM_2FM_1f$ majorize every function in l^{2^*} and hence in L^{2^*} and the functions $M_4FM_3FM_2FM_1f$ cover L^{2^*} . Lemma 2 shows how an additional F and division by Φ (multiplication by $\overline{\Phi}$) covers all of $L^2(\mathbf{R})$.

REMARK. The method of [1] applies, as is, to show that if G is a compact abelian group and $f \in L^2(G)$, there exists a bounded φ on G such that $|\hat{\varphi}| \geq |\hat{f}|$ on \hat{G} . This permits an extension of Theorem 1 to all locally compact abelian groups (notice that the Fourier operator F appears four times so that we end on the group we have started with).

REFERENCES

- 1. K. de Leeuw, J.-P. Kahane and Y. Katznelson, Sur les coefficients de Fourier des fonctions continues, C. R. Acad. Sci. Paris Sér. A-B, t. 285 (1977), 1001–1003.
- 2. L. A. Rubel, A collection of research problems in mathematical analysis, Université de Sherbrooke, Sherbrooke, Québec, Canada, 1974.

DEPARTMENT OF MATHEMATICS, HEBREW UNIVERSITY, JERUSALEM, ISRAEL

Department of Mathematics, Stanford University, Stanford, California 94305