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NONLINEAR STABILITY OF SHOCK WAVES 
FOR VISCOUS CONSERVATION LAWS 

BY TAI-PING LIU1 

Consider the viscous conservation laws 

/H|N du df(u) d / „ , ,du\ 
(1) â + - ^ i = â ï r « W ' t>0,-oo<z<oo, 

where u = u{x,t) E Rn , the flux f(u) is a smooth n-vector-valued function, 
and the viscosity B(u) is a smooth n x n matrix. We are interested in the 
stability of traveling waves, the "viscous shock waves", for (1). It is shown 
that when the initial data are a perturbation of viscous shock waves, then the 
solution converges to these viscous shock waves, properly translated in space, 
in the uniform sup norm as time t tends to infinity. Our analysis is based on 
the observation that a general perturbation also gives rise to diffusion waves 
in addition to translating viscous shock waves. A new technique combin­
ing the characteristic method and the energy method is introduced for the 
stability analysis. The energy method is a standard technique for parabolic 
systems. We use the method of characteristics, usually associated with hy­
perbolic systems, because, physically, the viscious shock waves and nonlinear 
diffusion waves are nonlinear hyperbolic waves in some general sense. This 
characteristic-energy method is based on a new understanding of nonlinear 
diffusion waves and, in particular, on their characterization as compression 
waves and weak expansion waves. 

We assume that the associated hyperbolic conservation laws 

<2> s+ *£>-* «*•• 
are strictly hyperbolic; that is, df(u)/du has real and distinct eigenvalues 
Ai(u) < A2(u) < ••• < An(ifc): 

- ^ n l u ) = \%{u)rt{u), 

k(u) ^ = \i(u)l%(u), i = l ,2 , . . . ,n . 

We assume that each characteristic field is either genuinely nonlinear or lin­
early degenerate [5]. The behavior of shock waves, N-waves, and linear waves 
for (2) is well understood. It has been shown that a perturbation of shock 
waves gives rise to N-waves and linear waves. TV-waves are described quali­
tatively by TV-waves for the scalar equation 

Received by the editors November 5, 1984 and, in revised form, December 21, 1984. 
1980 Mathematics Subject ClasdficatUm. Primary 35K55, 76N10; Secondary 35B40, 35L65. 
Martially supported by NSF Grant No. MCS 84-01355. 

©1985 American Mathematical Society 
0273-0979/85 $1.00 + $.25 per page 

233 



234 TAI-PING LIU 

(3) 
du du 
dt dx 

0, ueR\ 

u(x,t) — x/t 
0 

for - y^lpi < x/t < y/Iqt, 
otherwise, 

for time invariants p and q, p < 0 < q. The linear waves are described by 

(4) 
du du ___ 
dt dx 

u e R 1 , 

where c is a constant [6]. 
For the system (1) a perturbation of viscous shock waves gives rise to 

nonlinear diffusion waves and linear diffusion waves. Our construction of 
nonlinear diffusion waves is based on the self-similar solutions for Burger's 
equation 

d2U 
(5) 

du du 
dt 

w(x, t) = I exp 
2 y ^ 

2y^ 

dx 

- I t 

dx*' ueR1, 

-1/2 
exp 

+ exp 

—x 
Jed 

/ Jxl 
: exp( -£ 2 )^ 

- 1 

, 2 v W JJx/2V^iy/^ 
The linear diffusion waves are constructed using the kernel for the heat equa­
tion 

du du _ d2u 
dt dx dx2 ' 

(6) ^ + c ^ = a ^ , u G R 1 , 

u{x, t) = 6(27rat)~1/2 exp(-(x - ct)2/4at). 

For the construction of the diffusion waves for (1) we require 

(7) a2(u) = /,(u)B(w)n(w) > 0 , i = l ,2 , . . . ,n . 

Condition (7) is satisfied for the compressible Navier-Stokes equations. 
There is an essential difference between the elementary waves for (1) and 

(2) that is reflected in the difference between (3) and (5) and also between (4) 
and (6). For shock waves the difference vanishes as the vicosity tends to zero. 
On the other hand, the difference between the diffusion waves, (5) and (6), and 
TV-waves and linear waves, (3) and (4), does not vanish as the viscosity tends to 
zero. In particular, the compressible Euler equations are qualitatively different 
from the compressible Navier-Stokes equations with regard to diffusion waves. 

Our main result is 

THEOREM. Suppose that the matrix 

(8) (l1(u),...Mu))tB(»)(ri(u),... 

is positive definite for all u under consideration. 

.(«)) 

Then weak viscous shock 
waves for (1) are nonlinearly stable. More precisely, given weak viscous i-
shock waves (j)l(x - att), i G P = {Pi,P2,- • • ,Pi} < {1,2,. . . ,n}, 1 < Pi < 
P2 < • •• < Pi < n, </>i(-oo) = ü t - i , <M+°°) = üt) i e P, and given a 
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weak perturbation u(x,0), which tends to zero sufficiently fast as t —» ±oo; 

the solution u(x,t) of (I) and 

u{x, 0) = ] P 0t(x) + u(x, 0) 
iep 

exist globally in time and tend to the set of translated viscous shock waves 
<t>i{x + xl - Glt)\ i.e., 

lim sup 
t—>oo —oo<a;<oo 

i{x,t) - ^2<!>%{x + xt -0%i)\ = 0. 
ieP I 

Moreover, the translations x%, i G P, are uniquely determined by 

/

oo ^ 

ü(x, 0) dx = ^2 x ^ - ^ - i ) + X> ^r*(n°)' 
"°° ieP M£P 

rt{uo) = r t(txpj for P3 < i < Pj + i. 
For Burger's equation (5) the stability of viscous shock waves was proved 

by Hopf [2], using an explicit formula, and by Il'in-Oleinik [3], using the max­
imum principle, for the general scalar viscous conservation law (1), u G R1. 
There had been no progress on the stability of viscous shock waves for general 
systems (1) until recently. Independently, Goodman [1] and Matzumura-
Nishihara [7] used the energy method to show that a single viscous shock 
wave is nonlinearly stable. Both papers made a stringent assumption that 
the perturbation has zero integral 

/

oo 
w(x,0)dx = 0. 

-oo 

It follows from the present study that the above assumption does not allow the 
presence of diffusion waves in the asymptotic state. The result in [7] for the 
equations of isentropic gas dynamics has been generalized to other systems 
by Kawashima-Matzumura [4], again under hypothesis (10). 

Assumption (8) is not satisfied in the important case of the compress­
ible Navier-Stokes equations. However, we expect that our technique can be 
refined to yield the nonlinear stability of viscous shock waves for the com­
pressible Navier-Stokes equations. 
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