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Just forty years ago, in Chicago, John von Neumann delivered the eighteenth 
Josiah Willard Gibbs Lecture. His topic was the ergodic theorem and statistical 
mechanics. Within a month of that occasion, he and his colleague, Oscar 
Morgenstern, published their seminal work, The theory of games and economic 
behavior, applying discrete mathematics to problems of bargaining and compe­
tition in economic and social affairs. 

Neither lecture nor book gave any hint of von Neumann's new preoccupa­
tion with the electronic digital computer, which had begun in the summer of 
that same year, 1944. We were then standing on the very brink of the computer 
era, and within a decade some of us found, in the new computer programming 
languages, a novel mathematical formalism that seemed ideally suited to 
building and testing theories of human decision making and problem solving. 
Some of us became so intrigued with the power and possibilities of these new 
languages that we largely adopted them in place of the older formaUsms of 
applied mathematics—derived from analysis, discrete mathematics, topology, 
and logic—as our principal tools of theory formulation, especially in cognitive 
psychology. 

Programming languages as formalisms. In this paper I should like to show 
how the new programming languages can be used to express theories of human 
problem solving; and I shall take as my domain of examples, theories about 
problem solving that require applying mathematics to empirical phenomena. 
Hence, the paper will have two intertwined, and perhaps incestuous, themes: 
the first concerns the processes for applying mathematics; the second concerns 
computer programming languages as mathematical formaUsms for expressing 
theories of such processes. So we shall deal with mathematics applied to the 
theory of how mathematics is done. 
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By "processes for applying mathematics" I mean the psychological processes 
used in finding and proving theorems, in discovering mathematical formulas, 
and in manipulating mathematical expressions. The processes of mathematics 
are usually thought of as "deductive". A mathematical proof is certainly a 
deductive object: each step in the proof is derived from the previous steps and 
axioms by application of a (usually small) set of rules of inference. If a proof is 
written out in detail, its validity can be checked rigorously, step by step, by 
application of a mechanical algorithm. Finding a proof, on the other hand, is 
an inductive process, a process of heuristic search through a (usually immense) 
space of possible paths. Finding a proof, at least in its more impressive 
manifestations, is usually thought to call for "creative" processes, that are only 
with difficulty (or not at all) reducible to a mechanical algorithm. Finding a 
mathematical formula to fit data also is an inductive process that requires 
heuristic search, and might likewise appear not to be reducible to an algorithm. 

The first aim of the paper is to discuss the progress that has been made in 
the past forty years toward understanding this process of heuristic search and 
the nature of the steps that are often called "intuitive" or "creative". The 
progress has depended heavily on our gradually growing ability to write 
computer programs that capture the heuristic search process, and thus provide 
theories of that process in the new mathematical formalism of programming 
languages. 

The second aim of the paper is to illustrate the formalism itself, and to show, 
thereby, one important and very distinctive way in which computer programs 
can be employed as tools of applied mathematics. Gibbs reminded his Yale 
faculty colleagues (and us) that "mathematics is a language". And I wish to 
add to his reminder that "a computer programming language is a mathemati­
cal language". 

Formally, a computer program is a set of difference equations. It defines the 
state and output of the computer at time T as a function of its state and input 
at time T — 1. The time increment is the basic instruction cycle time of the 
system. As a set of difference equations, a program is a familiar mathematical 
object. In other respects, it exhibits a number of novelties. The most important 
of these novelties is that the arguments in computer instructions need not be 
real or complex numbers, but may be symbols of a wide variety of types, 
including words and expressions of natural language and symbol structures 
that represent geometrical configurations. As we have known since the work of 
Post, Church, and Turing (Kleene, 1952, pp. 298-301), a computer is a quite 
general symbol manipulating system, and we are very little constrained in the 
interpretations we may place on the symbols or the ways in which we may 
operate upon them. 

One price we pay for this power of representation is that we are seldom able 
to integrate computer programs in closed form in order to derive general 
theorems about their behavior. Instead, our main route to understanding their 
implications is actually to compute that behavior for a number of specific 
cases. Hence, if we wish to see how well a program describes human behavior 
in some task domain, we give to the computer tasks from that domain and 
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compare its trace with the sequences of behaviors of human subjects con­
fronted with the same tasks. This technique of simulation is the analogue, in 
the nonnumerical arena, of numerical analysis with difference equations of 
more traditional kinds. 

Production systems. The kinds of programs with which we will be concerned 
here are called production systems (Barr & Feigenbaum, 1981, pp. 190-199). In 
a production system all of the instructions have identical form, which may be 
represented thus: 

The expression, C, to the left of the arrow, is called the condition side of the 
production; the expression, A, to the right, is called the action side. The 
condition side consists of a set of tests; the action side, of a sequence of 
symbol-manipulating actions. Whenever the conditions are satisfied by the 
current state of the system, the actions are executed. 

One additional specification must be added to make such a system opera­
tive: a so-called "conflict resolution" rule that determines priority of execution 
among productions when the conditions of two or more are satisfied simulta­
neously. The simplest conflict resolution rule, which will suffice for our 
purposes here, is to scan the list of productions in top-down order, and to 
execute the actions of the first one whose conditions are found to be satisfied. 
It has been shown that production systems can have all the generality and 
power of a Turing machine. 

If "X = N " -> Halt and Check 
ax + b = ex + d HNxon right -» Subtract(7V*) 
(a - c)x + b = d If iV on left -> Subtract(A^) 

(a ~ c)x = (d-b) If Nx on left (N * 1) -> Divide(TV) 

x = (d - b)/(a - c) 

FIGURE 1. A Production System for Solving Equations 

The right side of Figure 1 shows a simple system of four productions that is 
capable of solving (symbolically or numerically) a broad class of linear 
algebraic equations in one variable. In this production system, the symbol N 
stands for any constant in the equations (e.g., a, b, c, d)\ x stands for itself. 
The first production may be read, "If the equation is in the form, an ' V 
followed by an " = " followed by any N, then halt and test if N can be 
substituted for x in the original equation." The second production may be 
read, "If there is a term of the form "iVx" on the right-hand side of the 
equation, subtract that term from both sides and simplify." (Separate produc­
tions could take care of combining similar terms, but I have chosen to embed 
simplification in the other productions.) The remaining productions have 
readings analogous to that of the second. 

The reader can easily satisfy himself that, given the equation shown in the 
first line on the left side of Figure 1, the production system will take precisely 
the three steps that follow in order to solve the equation, and then will halt and 
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check its answer. We may postulate that when elementary or high school 
children learn to solve simple equations, they are acquiring productions 
somewhat like those described here. It is perhaps reassuring that only four 
productions need to be mastered, although more would have to be added to 
accommodate a wider range of equations (for example, equations with frac­
tional coefficients in some of the terms). 

The phrase "acquiring productions" should not be confused with "memoriz­
ing productions". Memorizing the production rules would not help a student 
one whit to solve equations. What has to be acquired is the ability to notice 
and recognize the critical features of the equations that are mentioned in the 
condition parts of the productions, and to associate with these recognized 
features the relevant actions to be taken. The perceptual component of this 
skill—the ability to recognize "instantly" when a particular action is ap­
propriate—is not much, if at all, emphasized in algebra textbooks that we have 
examined. The books are very good in explaining what actions are 
legitimate—that is, which ones preserve the value of the unknown. They tend 
not to explain how the student can tell when a particular action should be 
taken. The condition sides of the productions used in a proof correspond to 
what we usually call the motivations for the proof steps. 

These comments are by way of an aside. It is not without interest that 
production systems that simulate school-level mathematical skills have poten­
tial implications for pedagogy. Understanding the production systems that 
underlie the processes used by mathematicians (or budding mathematicians) 
enables us to ask with some precision what methods might be effective in 
helping learners to acquire these productions (Larkin et al., 1980). 

Let me now turn to the main topic, which is to look at systems that perform 
tasks much more complex than solving simple linear equations. In particular, 
we will consider the task that frequently confronts a user of mathematics in the 
sciences: finding a mathematical law that fits some given set of numerical data. 
I should warn the reader that the mathematics involved in my examples is 
elementary, even trivial. Only one of them invokes the calculus. But this is 
simply a reflection of the fact that much of the mathematics used in empirical 
science, especially the empirical science of the 18th and 19th centuries with 
which we shall be concerned here, is quite simple. The complexity lies in 
finding how to apply the mathematics to the empirical data. 

We can think of such a task as an exercise in curve fitting, or we can think of 
it as a creative task of discovering new laws to describe and explain empirical 
phenomena. The difference between these two views of the process does, 
indeed, he in the eye of the beholder. I will make reference to a number of 
historical examples of scientific discovery by induction from data in order to 
persuade you that the task, however interpreted, is not a trivial one, and that it 
plays a significance role in the progress of science. 

THE PROCESS OF DISCOVERY 

My discussion of the process of discovery will draw very heavily upon 
research I have been doing in collaboration with Patrick Langley, Gary 
Bradshaw, and Jan Zytkow. This work is largely embodied in a computer 
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program, BACON, whose first versions were produced by Langley, and which 
has since been considerably elaborated by the joint efforts of our research 
group (Bradshaw, Langley & Simon, 1980, 1983; Langley, 1979; Langley, 
Bradshaw & Simon, 1983; Langley, Zytkow, Simon & Bradshaw, 1983). The 
BACON program has capabilities for detecting lawfulness in data and extract­
ing that lawfulness in the form of equations that fit the data. While BACON 
has capabilities for ignoring moderate amounts of noise in data, we will not 
consider here the problem of approximation, but will assume that the data are 
exact. 

Fitting mathematical laws to data. The problem of fitting laws to data has an 
entirely definite criterion for solution. The problem is solved as soon as a 
function is found that fits the data. There is, of course, no guarantee that the 
function is unique. For any finite set of data points, there exist an infinite set 
of functions that can fit them. If any one of these is discovered, BACON's 
search process halts. Nor is there any guarantee of the inductive validity of the 
function that is found. If new observations are added to the data set, the 
function originally discovered may or may not fit them. Both the ambiguity of 
the solution and the lack of a guarantee of inductive validity are important 
properties of BACON, which we believe are found also in the real world of 
science. I will have more to say about both of these issues a little later. 

In the BACON system, the problem of finding a function to fit a set of data 
is approached by the method of selective search. Candidate functions are 
generated, and then tested to see if they fit. But because the spaces of functions 
to be searched are enormous, the search cannot be a matter of mere trial and 
error, but must be highly selective. 

One principle of selectivity embodied in the generator of candidates is that it 
tries "simple" functions before it tries "complex" functions. The notion of 
simplicity here is pragmatic, yet not wholly arbitrary. Unless the generator is to 
be given the full list of candidate functions in extension, it must manufacture 
them, combinatorially and recursively, from some small set of primitive 
elements. It will therefore look at the primitives and their immediate combina­
tions first, and then at more elaborate combinations, continually creating new 
functions from those already in the pool. We can simply use the order of 
generation as our simplicity measure, in which case the principle of "simplest 
first" becomes tautological. Or we might define complexity in terms of 
numbers of parameters, in which case there would usually be a high correlation 
between this measure and order of generation. 

To say that the generator should be selective means that it should employ 
heuristic principles in generating new functions that will produce plausible or 
likely candidates early in the search. To do this it must, of course, make use of 
information extracted from the data themselves, so that the order of generation 
will depend upon the data to be fitted. The nature of these heuristic principles 
will be considered below in some detail. 

Not only does the process described here not guarantee a unique solution, it 
also does not guarantee that any solution whatsoever will be found. The search 
may terminate without one. But that is reasonable, for there are many bodies 
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of data, at any moment in the history of science, that have not until that 
moment found a description or explanation. A system that always found 
answers to the questions posed to it could hardly be regarded as a realistic 
theory of discovery in the world of science. 

An example: extrapolation of letter sequences. Before turning to actual 
examples drawn from astronomy, physics, and chemistry, let me illustrate the 
nature of law-finding by heuristic search in a simpler situation. The so-called 
series completion task is a common component of standard intelligence tests. 
The test items are sequences of letters or digits, for example: ABMCDMEFM. 

The task is to extrapolate the sequence. A mathematician will immediately 
object that any sequence of letters is as good an extrapolation as any other. Or 
if pattern is wanted, the entire sequence, ABMCDMEFM, can simply be 
repeated indefinitely. Both observations are correct—but will not earn the 
observer a passing grade on the intelligence test. The answer that is "obviously" 
expected, and the only one that will be graded correct, is GHM The test 
taker is expected to detect a simple pattern in the sequence presented, and to 
use that simple pattern to make the extrapolation. The pattern is based, in 
turn, on the fact that the relations of same and successor may hold between 
various pairs of symbols. Thus, B is the successor to A and C to B in the 
Roman alphabet. Moreover, the letter M is repeated in every third position. 
Thus, if we denote the successor relation by N (for "next"), the equahty 
relation by S (for "same"), and positions in the sequence by subscripts 
indicating cycle and position within cycle, we might represent the pattern by 
three equations: 

xi3 = S(x13), xi2 = N(xa), x(/+1)1 = N(xi2), 

with initial conditions x13 = M, xn = A. 
The set of relations among symbols that we are prepared to recognize 

defines a space of possible patterns. However, these are not generated ran­
domly. The first step in the generation of a pattern is to detect pairs of symbols 
between which the relations of same and successor hold. The next is to detect 
the periodicity of these relations. With that information in hand for the initial 
segment of the sequence, a candidate pattern is constructed and tested against 
the remainder of the sequence. Some trial and error may be necessary, 
particularly when redundant and accidental relations are present (consider the 
sequence, KLMMNMOPM...), but in general only a few candidates need be 
generated before one is found that fits the finite test sequence. 

As we have already seen, the pattern that is found need not be unique, and 
there is no guarantee that when additional symbols from the " true" sequence 
(i.e., the sequence in the test constructor's mind) are presented, they will fit the 
pattern that has been induced. By the method of generating the pattern, 
however, the one that is discovered will generally be among the simplest 
available, that is, among those that can be defined with the fewest symbols in 
the pattern description language. 

Laboratory study of human subjects solving series completion problems 
provides solid evidence that the heuristic search procedure sketched above 
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describes accurately the way in which people approach these problems (Simon 
& Kotovsky, 1963; Kotovsky & Simon, 1973; reprinted as Chapters 5.1 and 5.2 
in Simon, 1979). They notice the S and N relations between symbols, detect the 
periodicity of the sequence, describe the pattern, and extrapolate. They do not 
address the question of uniqueness, and they exhibit high agreement in their 
descriptions of the pattern. The presence in the sequence of "spurious" 
relations makes the task more difficult. (E.g., LMMMNM is far more difficult 
than ABMBCM.) 

DATA - DRIVEN DISCOVERY BY BACON 

The BACON program (named after Sir Francis Bacon) was initially de­
signed to show how the discovery of scientific laws could be driven by data 
without guidance from existing theory. The BACON program is written as a 
production system, but I will provide only an English-language description of 
it here. 

Of course in much scientific activity, the search for new laws is guided by 
theoretical conceptions that determine or suggest what data are relevant and 
even what forms the laws might take. However, in many important cases, 
especially during the early stages in the study of some phenomena and before 
any theory has emerged, the data themselves provide the only information that 
is available about the likely directions of search. I should like to describe three 
examples of such situations and show how BACON handles them. 

Kepler's Third Law. Kepler's discovery of the three laws of planetary motion 
that bear his name provides one of the most important and striking examples 
in the history of science of data-driven discovery. His Third Law states the 
relation between the distances of the planets from the Sun (D) and their 
respective periods of revolution about it (P): 

P = KD3'2. 

No theory was available to explain this regularity until Newton, two-thirds 
of a century after Kepler, proposed the inverse-square law of gravitational 
attraction. Only the data themselves provided any clues as to the form of the 
regularity. How could it be found? 

There are several potential routes to the discovery. Nowadays, we might be 
motivated to graph the data points and, noticing the relation to be curvilinear, 
regraph them on log-log paper. Then, the linearity of the relation would be 
obvious, and even the approximation of the slope to 3/2 might be noticed. 

BACON follows a different route to the same result. Its first heuristic is to 
search for correlations between the observables, and here it finds that as P 
increases, D increases monotonically. On the basis of this clue, it tests whether 
their ratio, P/D = Vl9 is a constant. Of course it is not, but BACON retains Vx 

as a new variable. 
Now BACON notices that Vx varies with 2), and similarly computes their 

ratio: 

Vx/D = P/D2 = V2. 
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Again, V2 is not a constant, but varies inversely with Vv Multiplying these 
two quantities together, BACON finds: 

VXV2 = P2/D3 = K, a constant. 
Thus BACON, seeking an invariant function of the observables, has found 

Kepler's Third Law with little extraneous search and with the help of two 
simple heuristics: 

1. If two quantities covary (countervary), test their ratio (product) for 
invariance. 

2. Retain the ratios (products) so obtained and, treating them as new 
variables, continue to apply the same process to new pairs of variables. 

Of course the space of functions of the observable variables that 
these heuristics will induce BACON to search is severely limited. 
But any listing of important laws of eighteenth and nineteenth 
century physics and chemistry will show that a large proportion of 
them fall in this space. The addition to BACON of the ability to 
generate exponentials, logarithms, and trigonometric functions of 
variables is easily accomplished and would greatly enlarge the 
space. However, it might also greatly extend the search process 
unless additional heuristics were available to guide it and make the 
generation of functions more selective. 

Perhaps the conservative conclusion to be drawn from the example of 
Kepler's Third Law is that relatively simple curve-fitting methods may suffice 
to discover significant scientific laws in data, even without guidance from 
theory, and without extensive search. 

Conservation of momentum. In its search for Kepler's Third Law, BACON 
introduced as new variables several functions of the original observables. In 
that case, none of the functions had an interesting physical interpretation. We 
will now consider a case where BACON, enroute to discovering a law, is 
motivated to introduce a new function that turns out to correspond to an 
important physical concept, inertial mass. 

We suppose a spring is attached at its ends to two bodies A and B. We 
stretch the spring and release it, accelerating the two bodies; and we measure 
the initial accelerations. We repeat the experiment with the spring stretched to 
different lengths. Given the data on the accelerations, aAi and aBi9 of the two 
bodies, BACON will almost immediately discover that the ratio of their 
absolute values, KAB, is a constant. 

Suppose the experiment is now repeated with new pairs of bodies, selected 
from the set {A, B, C, D9...}, generating new constants KAB, KAC9 KBC, and 
so on. BACON will now apply its third heuristic: 

3. When a set of invariants is found, each involving the same relation 
between a pair of objects from a set of objects, attribute to each object 
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an intrinsic property, and try to express the invariant relation as a 
function of the values of these intrinsic properties. 

In the case before us, BACON will attribute to each object O a property m0, 
and, letting mA = 1, will set mB = KAB> mc = KAC, and so on. Now, on 
testing the value of KBC, BACON will find that aB/ac — KBC = mc/mB, that 
is, that transitivity holds for the ratios of the accelerations of different pairs of 
bodies. Moreover, mBaB + mcac = 0. In this way, BACON introduces the 
intrinsic property that we know as inertial mass and rediscovers the law of 
conservation of momentum.3 

BACON has rediscovered and introduced other important physical proper­
ties in a similar way: for example, the coefficient of refraction from data on the 
paths of light rays passing from one medium into another, voltage from data 
on currents in electrical circuits, and specific heat from data derived from 
calorimetric experiments. 

Integer ratios. An example from late eighteenth century chemistry will 
illustrate another of BACON's heuristics: its search for integer ratios among 
quantities (Langley, Bradshaw & Simon, 1983). If BACON is given data on the 
ratios of the weights of oxygen to the weights of nitrogen in some of the oxides 
of nitrogen (which include N20, NO, N203, N02, N204, and N205), it will 
seek to express all of these ratios as integer multiples of a greatest common 
denominator. In the example of the oxides of nitrogen, the integer multiples 
for the compounds listed above are 1, 2, 3, 4, 4, and 5, respectively. In this way 
BACON rediscovers Dalton's law of simple multiple proportions. 

The same heuristic finds Prout's hypothesis: that the atomic weights of all of 
the elements are integer multiples of the weight of hydrogen. (In this case, we 
must be careful not to give BACON data on elements that, like chlorine, 
violate the hypothesis. These anomalies were only explained with the discovery 
of isotopes.) If BACON is given the volumes of inputs and outputs of gaseous 
reactions, it rediscovers Gay-Lussac's law of combining volumes and attributes 
to the substances involved an intrinsic property that we would interpret as 
their molecular weights. It also distinguishes between molecular and atomic 
weights—a distinction that was not fully clarified in chemistry until the 1860s. 

The results we have just described derive from the addition to BACON of a 
single additional heuristic: 

4. Look for integer ratios between the pairs of values of newly defined 
intrinsic variables. 

Planck's law of black-body radiation. I will conclude this section with a brief 
account of Planck's discovery of the law of back-body radiation. That dis­
covery would not be made by BACON in its present form, but it can be shown 
clearly what additions would be needed to give BACON the capability of 
making it. The case is of particular interest because of the fundamental 
importance of the law to the development of quantum theory, and because 
enough is known of its history to demonstrate conclusively that its discovery 

3 Actually, BACON introduces 1/m rather than m. 
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by Planck was wholly data-driven, and that its rationalization in terms of 
physical mechanisms followed afterwards (Pais, 1982; Kuhn, 1978). 

In the autumn of the year 1900, it was widely believed that the distribution 
of intensities of black-body radiation as a function of wavelength and tempera­
ture was best described by Wien's law: 

Kv = kxe~\ 
That law had also been obtained a few years earlier by a curve-fitting 

exercise, but early in 1900 Planck had constructed a derivation of it in terms of 
classical physical mechanisms drawn from thermodynamics and electromagnet­
ics. On a Sunday afternoon in October, however, a colleague called on Planck 
to report that recent experiments had shown conclusively that Wien's law held 
only for large values of x> and that for values close to zero, Kv was definitely 
linear in 1/x. Before he retired that night, Planck had discovered the law that 
now bears his name. The route to the discovery almost certainly took the 
following path: 

The problem was to find an interpolating function that, in the limit as x 
became large, would approach Wien's law, and in the limit as x became small, 
would become proportional to 1/x. An obvious way to examine these limits 
was to expand ex into a Taylor's series: ex = 1 + x + • • •. But by subtracting 
1 from both sides, we get a function that asymptotically varies as x; while the 
left side, ex - 1, approaches ex as x grows without limit. Writing Wien's law in 
the form k1/e

x
9 it becomes clear immediately that the desired function is 

Kv = k1/(e
x - 1). This new expression indeed fit the data excellently over the 

entire range of x. 
Having discovered a formula that fit the data, Planck spent the next two 

months constructing a physical model of black-body radiation from which he 
could deduce the desired result. He was successful at this, but only at the cost 
of making some very unorthodox assumptions about the underlying probabili­
ties—assumptions that implied the quantization of the phenomena. 

We need not debate which was more important: the discovery of the law, or 
its rationalization in terms of physical principles. (The law is as acceptable 
today as when it was discovered; however, today we would describe the 
physical phenomena somewhat differently than Planck did.) Nor need we 
debate whether the steps I have described as "obvious" and "clear" were 
actually so; for on this last point I have some casual empirical evidence. 

Over lunch, I have presented to two colleagues, on separate occasions, the 
problem of finding an interpolating function having the properties described 
above. That is, I asked them to find a function that would go to ex as x 
increased without limit, and to x as x approached zero. I made no reference to 
black-body radiation, but simply described the problem as one that had arisen 
in my own work. The colleagues to whom I presented it are both distinguished 
for research that involves the use of mathematics to model physical phenom­
ena. Each gave me the "correct" answer in less than two minutes, and each 
used Taylor's expansion of ex as his route to the solution. Neither was 
reminded of the black-body radiation law by my description of the problem, 
and they were appropriately surprised when I explained my deception. Both 
were, of course, familiar with Planck's law, but not with Wien's. 
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The heuristic underlying this particular act of data-driven discovery is clear. 

5. If functions are known that fit empirical data over two different parts of 
the total range of the data, find a function that approaches the original 
functions asymptotically in the appropriate regions. 

Final comments on data-driven discovery. We have now seen four examples 
of data-driven discovery, three of them accomplished by BACON. BACON's 
heuristics make it possible to fit functions to data using only a small amount of 
highly selective search. The four BACON search heuristics that were described, 
and the additional heuristic used to find Planck's law, are all completely 
general in the sense that they make no reference to the physical phenomena 
from which the data derive. In this sense, the process can be described as pure 
curve fitting. What is remarkable about it is that discoveries of important 
physical theories can be made in this way. 

THEORY - DRIVEN DISCOVERY 

When something is already known about the phenomena from which data 
are derived, then the existing theory can be a source of additional selective 
heuristics to guide search for a new law to fit the data. We may call search 
" theory driven" when it employs such heuristics. In this section I will present 
two examples of theory-driven discovery of scientific laws, the first illustrating 
the use of conservation principles as heuristics, the second, an atomic hypothe­
sis that implies the conservation of atoms. 

Black's law of heat. Joseph Black was the first to state the law for the 
equilibrium temperature of a mixture of two quantities of (possibly different) 
substances at different initial temperatures (Bradshaw, Langley & Simon, 
1983). Writing Tx and T2 for the initial temperatures, TF for the equilibrium 
temperature of the mixture, and Cx and C2 for the heat capacities of the two 
substances (the products of their masses by their specific heats), Black's law 
may be written 

TF - ( C ^ + C ^ M Q + C2). 

Now from data on the initial and final temperatures and the masses of the 
quantities of several substances, BACON can induce this law, employing in its 
search a combinatorial experimental design that varies one of the independent 
variables at a time. In the course of deriving the law, BACON will invent the 
concept of specific heat and will assign specific heats to the substances used in 
the experiments. While the discovery is straightforward, for the law has a 
relatively simple form, a good deal of data has to be processed along the way. 

If some conservation assumptions are added to BACON's heuristics, then 
the search becomes much more direct and rapid. Specifically, suppose we 
assume that both total heat (H = CT) and heat capacity C are extensive and 
additive quantities. Then 

HF = CFTF = (C1 + C2)TF, 

and also 
HF = Hi + /f2

 = ^ i ^ i "̂  Ç>-̂ 2> 
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so that, equating the right-hand expression of the first line with the right-hand 
expression of the second, we obtain Black's law immediately. 

In this case the theoretical assumptions of conservation of heat and of heat 
capacity are so powerful that they allow Black's law to be deduced without any 
reference whatsoever to empirical data. The data are now needed only to check 
the empirical validity of the resulting law. 

The conservation principle, though genuinely a theoretical assumption, is as 
general as the heuristics used by BACON in data-driven discovery, for it can 
be applied as a hypothesis to any of the variables that appear in a problem. In 
a somewhat similar way, BACON can use symmetry assumptions to cut down 
its search for laws that involve several variables of the same kind. For example, 
in deriving Black's law without conservation assumptions, BACON could 
reduce its search substantially by assuming that the law it is seeking must be 
symmetrical in 7\ and T2, and in Cx and C2. 

On the basis of our explorations of Black's law, we may add to our 
heuristics: 

6. Hypothesize that extensive quantities are conserved. 
7. Hypothesize that similar variables will enter into laws symmetrically. 

Discovery of molecular structure. An important task of chemistry is to assign 
molecular formulas to compounds and elements. Dalton applied, for this 
purpose, his law of simple proportions, combined with the hypothesis that if 
two or more molecular formulas were consistent with the data, the simplest 
should be used. Application of this rule produced some correct and many 
erroneous molecular formulas, and this domain remained in considerable 
confusion until the 1860s. The situation was gradually clarified by consistent 
application of the atomic hypothesis combined with Gay-Lussac's (and 
Avogadro's) hypothesis that equal volumes of gasses under standard conditions 
contain equal numbers of molecules. 

The particular form of the atomic hypothesis that we need for this purpose 
involves the assumptions that atoms combine in "packets" (molecules), and 
that total numbers of atoms of each kind are conserved in chemical reactions. 
These assumptions together with Gay-Lussac's hypothesis impose strong con­
straints upon molecular structure. Consider, for example, the reaction for 
forming ammonia. One volume of nitrogen and three of hydrogen combine to 
form two volumes of ammonia vapor. We start by postulating the simplest 
possible molecular structures for nitrogen and hydrogen: one atom per mole­
cule each, and similarly, the simplest structure, NH, for ammonia. The reaction 
would then be: 

N H H H ^ N H NH. 
But this equation does not balance, for there is only one N on the left side. 

Therefore, we change our assumption about the structure of the nitrogen 
molecule: 

N N H H H - ^ N H NH. 
Now the nitrogen balances, but the hydrogen does not. We therefore add 

another hydrogen atom to each ammonia molecule, but now there is a 
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deficiency of hydrogen on the left side. After several more steps of this kind, 
gradually enlarging the molecules, we finally arrive at: 

NN HH HH HH -> NHHH NHHH. 
What we have done, of course, is to solve some simple Diophantine 

equations by a crude, but not ineffective, iterative method. We could just as 
well have worked with numbers as with the diagrams. The heuristic we have 
used in the search is the conservation heuristic applied to numbers of atoms. 

Comments: theory-driven search. The two examples of theory-driven search 
illustrate especially the power of conservation laws in facilitating discovery. In 
fact, as the case of Black's law illustrates, if the theoretical assumptions are 
sufficiently strong, the form of the function that will fit the data can be 
deduced directly without any need for induction from data. In these cases the 
form of the data is predicted and subsequent observations can be used to test 
the derived law and, thereby, the assumptions that led to it. 

Histories of science tend to place great emphasis—perhaps too much 
emphasis—upon the competition among theories, without equal attention to 
the origins of those theories. The development of science is seen as a struggle 
among theories: the phlogisten versus the oxygen theory of combustion, wave 
versus particle theories of light, classical mechanics versus relativity, classical 
physics versus quantum mechanics. Data are then seen largely as the products 
of "critical" experiments and, hence, as the adjudicators of controversy. 

A more balanced account of history would focus more clearly on how 
theories emerge, and not just on how, once they have appeared, they are tested. 
Such an account would show that both existing theories and new empirical 
observations play essential roles in the development of new theory. 

DISCOVERY OF MATHEMATICAL CONCEPTS 

While the BACON program was developed especially to explore processes of 
discovery in the empirical sciences, there have also been some explorations of 
processes of discovery in mathematics itself. Among these are the AM and 
Eurisko programs developed by Douglas Lenat (Lenat, 1977, 1983). The goal 
embodied in these programs is to generate interesting new concepts and 
conjectures about those concepts. The programs accompush this with the use 
of heuristic search not unlike that employed by BACON. 

The AM program is provided with four kinds of inputs. First, it is supplied 
with a few primitive concepts in some domain. For example, it may be given 
knowledge about sets, subsets, union and intersection of sets, and so on. 
Second, it is given the goal of creating new concepts in that domain, and 
conjectures relating to .those concepts. Third, it is given some criteria for 
evaluating concepts as more or less interesting. Concepts may be adjudged 
interesting, for example, to the extent that they are related to other interesting 
concepts, to the extent that examples can be found of them (but not too easily), 
to the extent that they constitute limiting cases of more general concepts, and 
so on. Fourth, AM is given some heuristics to aid it in searching for concepts. 
For example, it may generalize or specialize concepts it has already obtained or 
been given, or may try to find examples of concepts. 
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The criteria and heuristics provided to AM are relatively many, numbering 
in the hundreds. But, like BACON's heuristics, they are quite general and do 
not make specific reference to particular task domains. The memory structures, 
too, of AM are homogeneous. Various properties may be predicated of 
concepts and relations stated between concepts. In addition, programs, written 
in the LISP programming language, may be associated with concepts, enabling 
the system to create examples or to test whether a particular object is or is not 
an example of the concept. 

When AM was tested, using concepts drawn from set theory as its initial 
stock of information, it was able to build upon these a substantial collection of 
new concepts and conjectures. In about two hours of processing time on a 
large computer (PDP-10), it reinvented the integers and the operations of 
addition, subtraction, multiplication, and division upon them, the prime num­
bers, and numbers with maximal numbers of prime factors (a concept that had 
earlier been studied by Ramanujan). As each of these was discovered, it was 
judged interesting and provided a basis for the next steps of discovery. The two 
principal conjectures at which AM arrived were Goldbach's conjecture and the 
fundamental theorem of arithmetic. AM has no capabilities for proving 
theorems, so could not test these conjectures. 

EURISKO extends even further AM's principle of homogeneity of memory 
structure and program. While AM's heuristics are immune from alteration by 
the program itself, so that new heuristics cannot be learned, EURISKO is 
designed so that new heuristics can be introduced into the system in exactly the 
same way as new concepts of any other kind. Lenat's publications on these two 
programs provide a more complete picture of their structure and performance. 
From the brief description given here, it can be seen that they illustrate 
mechanisms of discovery in mathematical domains just as BACON illustrates 
mechanisms of discovery in the domains of natural law. 

CONCLUSION 

It has sometimes been thought that while deductive processes could be 
carried out by mechanism, inductive processes were beyond the reach of 
mechanistic algorithms. For many years philosphy of science has been ex­
tremely skeptical of the possibly of creating a theory of scientific or mathe­
matical discovery. The testing of theories could be mechanized, but not their 
discovery. 

That skepticism reflects a romantic rather than a scientific view of the nature 
of human thinking. Scientists and mathematicians, especially good scientists 
and mathematicians, are not engaged in pure trial-and-error search, whether 
exhaustive or random. They have reasons, embedded in heuristics (hence not 
always conscious), for searching along particular paths rather than others. 
Through understanding these reasons, these heuristics, we gain insight into the 
discovery process, and through that insight we come to see why some methods 
of discovery are more effective than others. 

It has been the purpose of this paper to describe the progress that has been 
made toward understanding the processes of discovery, and toward building 
computer programs capable of carrying out those processes and actually 
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making substantial discoveries (or rediscoveries). In it I have proposed a 
mathematical formalism (symbolic difference equations in the form of com­
puter programs) that can be used to model the human thought processes used 
in problem solving and discovery. 

I have illustrated the application of this formalism to the processes of 
discovery in the natural sciences; and I have shown how these hypothesized 
processes have been tested against our knowledge of a number of historically 
important scientific discoveries. 

Through the kind of research described here, we are learning a great deal 
about the processes of thinking—particularly, but not exclusively, in the realm 
of applying mathematics in modeling, and thereby understanding physical 
situations. Other research, which I do not have space to report here, is 
addressed to understanding (with the help of the same computer modeling 
techniques) the processes that students use to formulate and solve problems in 
secondary school and college mathematics, physics, and chemistry. 

Research on discovery processes is an important and exciting activity in its 
own right. It addresses one of the fundamental questions that has always 
fascinated mankind: how can a mechanism like the brain perform the func­
tions of mind? But our growing understanding of the processes of discovery, 
and of other thinking processes, also holds promise of important social 
applications. For a deeper understanding of the human mind holds great 
promise for improving our pedagogical techniques in all domains of science 
and in pure and applied mathematics. But that is a topic that would take us 
beyond the goals of this paper. 
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