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To a mathematical physicist the title Schrödinger-type operators with continu­
ous spectra arouses expectations of a wide variety of topics connected with 
quantum dynamics, so it is something of a surprise to open this book and find 
no reference to wave operators or the other paraphernalia of scattering theory. 
Eastham and Kalf soon make it clear, however, that an accurate subtitle might 
have been A monograph on the possibility of eigenvalues embedded in the 
continuum. The prospective reader should be aware of this narrower scope. 

The spectral theorem assigns a unique spectral family, or projection-valued 
measure on the real line, to any selfadjoint operator on Hubert space. Von 
Neumann [12] placed the spectral theorem at the heart of his axiomatic 
formulation of quantum mechanics, and as a result spectral analysis of 
Schrödinger operators 

(1) - A + <?(*), 

defined on appropriate subspaces of L2(RW), is a central part of mathematical 
physics. There are two useful ways to decompose the spectrum of a selfadjoint 
operator. One of them divides ad, consisting of discrete eigenvalues of finite 
multiplicity, from ae, the essential spectrum, consisting of everything else. The 
utility of this arises from Weyl's well-known theorems on the invariance of ae 

under compact perturbations or, in the case of Sturm-Liouville operators, 
changes in boundary conditions [19]. The second, more measure-theoretic 
division distinguishes among ap, the point spectrum, consisting of eigenvalues 
whether isolated or not; aac, the absolutely continuous spectrum, which is 
associated with the part of the spectral family orthogonal to the eigenvectors 
and in a sense absolutely continuous with respect to Lebesgue measure; and 
asc, the singular continuous spectrum. The continuous spectrum ac is the union 
of aac and ax. The definition allows the possibility that <xc and ap intersect. In 
one-body physics, or two-body physics after removal of the center of mass, the 
potential q tends to zero at infinity, and typically 

(2) oc = ac « aac = [0, oo), 

(3) 0 ^ = 0 , 

(4) opC\ oc= 0 (or, more rarely, {0}). 

This, at least, is expected on physical grounds, and there is a significant 
industry manufacturing theorems guaranteeing (2)-(4), as well as examples 
where they are false, contrary to naive expectation. This book is concerned 
with (4). The two ways of dividing up the spectrum go back to the early years 
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of the century, but it took decades for their significance to be widely appreci­
ated. For instance, the term "essential spectrum" was not actually coined until 
the late forties, by Wintner [20]. In a nutshell, the relationship to quantum 
physics is that ap comprises the energies of bound states, and the spectral 
subspace associated with aac consists of dynamical states that may participate 
in scattering. Usually, it is proved or at least hoped that asc simply is not there. 
However, examples of operators like (1) are known having singular continuous 
spectra, or at least nowhere dense spectra, or, for that matter, such other 
amusing features as dense point spectra (for example, see [2, 4, 8, 11, 15]). 
Some of these are even physically interesting. 

If the potential goes to zero at infinity and the energy of a particle is 
positive, one might expect that quantum fluctuations would eventually propel 
the particle to a place where its motion would not be confined, so there should 
not be positive point spectrum. Yet in quantum mechanics there is a less 
obvious countervailing possibility that some coherence property residing in the 
potential might confine a particle. It was no effortless matter to make these 
thoughts precise and understand their implications for quantum mechanics. 
The great early success of Schrödinger's theory was his revival of Rayleigh's 
perturbation scheme to calculate the effect of a weak electric field on the 
energy eigenvalues of a hydrogen atom [17], since the old quantum theory 
could not do this unambiguously. The remarkably good agreement with the 
experiment known as the Stark effect required some explanation by later 
scientists who knew that Schrödinger's series diverged and that the spectrum of 
the Stark-effect operator with nonzero field is purely continuous, with no 
eigenvalues at all [3, 9]. Actually, Schrödinger was aware of the possibility of 
continuous spectrum and that its presence near eigenvalues would vitiate his 
perturbation scheme, but he convinced himself that an innocuous change of 
variables allowed him to forget about it. Shortly afterwards Oppenheimer 
wrote his Göttingen dissertation applying the Hellinger-Weyl theory of con­
tinuous spectra to quantum mechanics and went on to make a muddled 
calculation of the ionization rate of hydrogen in an electric field, relying on the 
assumption that the problem Schrödinger analyzed had no eigenvalues in the 
continuum [13, 14]. He paraphrased Weyl out of context to justify this [14]. 
Largely in response to Oppenheimer's article, von Neumann and Wigner 
constructed two explicit examples of one-dimensional potentials producing 
eigenvalues greater than Hm q(x). One of them shared the property of the 
Stark effect potential of going to -oo as x went to oo in some directions, but 
the other went to 0 as usual. Its peculiarity was a special oscillation that could 
be thought of as causing coherent reflection. These examples are generally 
considered the beginning of the subject described in detail by Eastham and 
Kalf, although the explicit consideration of whether the positive eigenvalue lay 
in a continuum waited for [21]. The construction of examples of operators of 
type (1) with positive eigenvalues has continued to be a major part of the 
industry, so that many of the theorems guaranteeing their absence can be 
considered best possible, at least in the one or two body situations where q is 
small at oo in some sense. As might be expected, the techniques of inverse 
scattering theory have helped boost the output of positive eigenvalues in recent 
years. 
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How does one prove that there are no positive eigenvalues? Eastham and 
Kalf s very readable account begins with a heuristic argument focusing on a 
quantity known in physics as the virial, x • Vq, important for its occurrence in 
what are known as virial theorems. In their quantum-mechanical form virial 
theorems state that when u is an eigenfunction of (1) and mild assumptions are 
made on q, then the expectation value of the virial is twice that of the kinetic 
energy, or 

(w, x - Vqu) = 2(w, -Aw). 

Of course, x • V is also in essence the generator of the group of dilatations, 
which is no accident, since one of the principal ways to prove virial theorems is 
to exploit dilatations. The book contains a separate chapter on virial theorems, 
a specialty of Kalf. If, for instance, 

(5) x • Vq + 2q < 2\0 for all x, 

then no eigenvalue of -A + q can exceed X0. Variants of bound (5) holding 
only on exterior regions or in some integrated sense can also be used to prove 
the absence of positive eigenvalues. Eastham's and Kalf s exploration of this 
idea for one- or two-body situations is thorough and complete, except for one 
important new technique, which apparently appeared too late for inclusion, 
viz., that of Froese, Herbst, and the Hoffmann-Ostenhofs [7], who rely on 
compactness of certain operators involving q and x • Vq rather than local or 
averaged conditions. 

The methods vary somewhat according to three cases of interest: (a) one 
dimension; (b) one or two particles, i.e., n is usually 3, and q in essence tends 
to zero at infinity; and (c) many particles. Much effort is devoted in the early 
chapters to the one-dimensional case, where the iich theory of Sturm-Liouville 
operators, a specialty of Eastham, has much to offer. This subject is surveyed 
nicely before Eastham and Kalf proceed to give a wide selection of conditions 
on q forbidding positive eigenvalues in the one-dimensional case. They are also 
able to deal with alternative situations, such as when q -> -oo and ac is 
(-oo, oo) or when q is periodic and ac consists of bands. 

The most successful philosophy for banishing positive eigenvalues of 
higher-dimensional versions of (1) has been that developed by Kato [10], 
Simon [18], Eidus [5], Agmon [1], and others. With control over q and x • Vq it 
is possible to gauge the growth or decay of eigenfunctions of (1) in terms of the 
integral over |x| = / of a somewhat compUcated expression involving the 
eigenfunction. The expression satisfies inequaUties that force the eigenfunction 
to vanish outside some region. At this point one can appeal to unique 
continuation theorems for solutions of elUptic equations, which, in analogy to 
that for analytic functions, state that a solution cannot vanish on an open set 
without vanishing everywhere. Eastham and Kalf consider these methods as 
"localized virial techniques". 

They made a reluctant decision to leave out another technique, which looks 
quite different in detail, but must be closely related at some fundamental level. 
This is the technique of dilatation analyticity, which replaces the study of (1) 
with that of an object that has been dilated and complexified (see [16]). For 
sufficiently nice potentials, including many of physical interest, this has the 



314 BOOK REVIEWS 

effect of moving the essential spectrum into the complex plane while leaving 
eigenvalues invariant. Once the eigenvalues are no longer embedded in a 
continuum they are easier to work with. This technique is useful for studying 
many-particle problems, something which many, particularly those more closely 
connected with physics, will feel has been somewhat neglected overall by 
Eastham and Kalf. Only a few relevant theorems are given for the case of 
many bodies, such as one for homogeneous potentials. In many-particle 
quantum mechanics, n = 3k and q(xx,..., xn) is of the form 

i—1 i+j 

where each F depends on a three-dimensional spatial coordinate and may tend 
to 0 at large values, but q is definitely not small when xt and Xj get large while 
their difference does not. Several more complicated phenomena arise when 
there are many bodies. For example, there is a negative portion of the 
continuum, and it takes nothing more seductive than a symmetry to persuade 
eigenvalues to live in the negative continuum. Eastham and Kalf may have felt 
either that it would take too long to treat this case thoroughly or simply that 
the available theorems were not yet sufficiently definitive. Indeed, immediately 
upon the publication of the book, Froese and Herbst opened up new territory 
in this area by exploiting compactness and the Mourre estimate [6]. (Actually, 
new territory was even opened up in the one-dimensional case by the Hoff-
mann-Ostenhofs in a paper to appear in The Journal of Mathematical Physics. 
They exclude positive eigenvalues by, for example, bounding dq/dx from 
below, by (V - X)x~l ~s. Also, they have some examples of positive eigenvalues 
from potentials that go to 0 at oo but do not change sign.) 

This book was neither intended nor destined to reach a very wide readership. 
Yet those who are moved to learn about the subject in more detail than the 
section in [16] will be well rewarded by Eastham's and Kalf s meticulous detail 
as well as by their generosity with such things as heuristic explanations and 
open research problems. 

REFERENCES 

1. S. Agmon, Lower bounds for solutions of Schrbdinger*s equation, J. Analyse Math. 23 (1970), 
1-25. 

2. N. Aronszajn, On a problem of Weyl in the theory of singular Sturm-Liouville equation, Amer. 
J. Math. 79 (1957), 597-610. 

3. J. E. Avron and I. Herbst, Spectral and scattering theory of Schrbdinger operators related to the 
Stark effect, Comm. Math. Phys. 52(1977), 239-254. 

4. J. Avron and B. Simon, Almost periodic Schrbdinger operators. I: Limit periodic potentials, 
Comm. Math. Phys. 82 (1981), 101-120. 

5. D. M. Eidus, The principle of limit amplitude, Russian Math. Surveys 24 (1969), no. 3, 
97-167. (Translation of Uspekhi Mat. Nauk 24 (1969), no. 3, 91-156.) 

R. Froese and I. Herbst, Exponential bounds and absence of positive eigenvalues for N-body 
Schrbdinger operators, Comm. Math. Phys. 87 (1982), 429-447. 

7. R. Froese, I. Herbst, M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, On the absence of 
positive eigenvalues for one-body Schrbdinger operators, J. Analyse Math. 41 (1982), 272-284. 

8. I. Ya. Gol'dshtein [sic], S. A. Molchanov and L. A. Pastur, A pure point spectrum of the 
stochastic one-dimensional Schrbdinger operator, Functional Anal. Appl. 11 (1977), 1-8 (Translation 
of Funktsional. Anal, i Prilozhen. 11 (1977), 1-10.) 



BOOK REVIEWS 315 

9.1. Herbst, Dilation analyticity in constant electric field. I: The two body problem, Comm. Math. 
Phys. 64 (1979), 279-298. 

10. T. Kato, Growth properties of solutions of the reduced wave equation with variable coefficients, 
Comm. Pure Appl. Math. 12 (1959), 403-425. 

11. J. Moser, An example of a Schrödinger equation with almost periodic potential and nowhere 
dense spectrum, Comment. Math. Helv. 56(1981), 198-224. 

12. J. von Neumann, The mathematical foundations of quantum mechanics, Princeton Univ. Press, 
Princeton, 1955 (Translation of Die mathematische Grundlagen der Quantenmechanik, Springer, 
Berlin, 1932). 

13. J. R. Oppenheimer, Zur Quantentheorie kontinuierlicher Spektren, Z. Phys. 41 (1927), 
268-293. 

14. , Three notes on the quantum theory of aperiodic effects, Phys. Rev. 31 (1928), 66-81. 
Compare p. 74 with the original in Weyl, op. cit., p. 268. 

15. D. B. Pearson, Singular continuous measures in scattering theory, Comm. Math. Phys. 60 
(1978), 13-36. 

16. M. Reed and B. Simon, Methods of modern mathematical physics, Vol. IV: Analysis of 
operators, Academic Press, New York, 1978. 

17. E. Schrödinger, Quantisierung als Eigenwertproblem. Dritte Mitteilung: Stbrungstheorie, mit 
Anwendungaufden Starkeffekt der Balmerlinien, Ann. Phys. (Leipzig) 80 (1926), 437-490. 

18. B. Simon, On the positive eigenvalues of one-body Schrödinger operators, Comm. Pure Appl. 
Math. 22 (1969), 531-538. 

19. H. Weyl, Uber gewbhnliche Differentialgleichungen mit Singularitàten und die zugehbrigen 
Entwicklungen willkürlicher Funktionen, Math. Ann. 68 (1910), 220-269. 

20. A. Wintner, On the location of continuous spectra, Amer. J. Math. 70 (1948), 22-30. 
21. , The adiabatic linear oscillator, Amer. J. Math. 68 (1946), 385-397; Asymptotic 

integrations of the adiabatic oscillator, Amer. J. Math. 69 (1947), 251-272. 

EVANS M. HARRELL II 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 10, Number 2, April 1984 
© 1984 American Mathematical Society 
0273-0979/84 $1.00 + $.25 per page 

Lectures from Markov processes to Brownian motion, by Kai Lai Chung, A 
Series of Comprehensive Studies in Mathematics, Vol. 249, Springer-Verlag, 
New York, 1982, vin + 239 pp., $34.00. ISBN 0-3879-0618-5 

What ultimately constitutes a good mathematics book? It seems to the 
reviewer that this is a function ƒ(e, r, c) of the variables e = effort needed to 
comprehend the book, r = reward in the form of valuable understanding 
gained, and c = cost of the book. Of these, the first two are highly dependent 
on the reader, and, given the first two, dependence on the third is completely 
individual, hence need not be discussed here. We assume ƒ is decreasing in e 
and increasing in r. On these assumptions, Chung's book comes out very well 
indeed for the present reviewer. But let us beware. The reviewer has recently 
written a book [Essentials of Brownian motion and diffusion, Math. Surveys, 
vol. 18, Amer. Math. Soc., Providence, R.I., 1981] which complements Chung's 
book to a considerable degree. It gets one over the hard beginning (especially 
§1.3, Optional Times) without appreciably encroaching on the content. For the 
two books together one might suggest the title From Brownian motion to 
Markov processes and back. 


