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ON WHITEHEAD'S ALGORITHM 

BY S. M. GERSTEN1 

ABSTRACT. One can decide effectively when two finitely generated 
subgroups of a finitely generated free group F are equivalent under an 
automorphism of F. The subgroup of automorphisms of F mapping a 
given finitely generated subgroup S of F into a conjugate of S is finitely 
presented. 

In two famous articles [9, 10] which appeared in 1936, J. H. C. Whitehead, 
using the theory of three-dimensional handlebodies, proved that one can 
effectively decide when two n-tuples of cyclic words of a finitely generated 
free group F are equivalent by an automorphism of F. The proof of this 
result has been simplified successively [7, 3] and the result itself has been 
immensely influential. Whitehead himself poses the problem of generalizing 
his theorem [10, p. 800]; namely he raises the question of deciding when two 
finitely generated subgroups of F are equivalent by an automorphism of F. 

In 1974 McCool [6] deduced a profound consequence of Whitehead's theo­
rem, proving that the stabilizer, in the automorphism group of F, of an n-
tuple of cyclic words is finitely presented. Using graph-theoretic techniques 
we developed in [1] (the results of which were announced in [2]), we have 
succeeded both in settling Whitehead's question and in generalizing McCool's 
results. 

Let A denote the automorphism group of F, and let S denote the set 
of conjugacy classes of finitely generated subgroups of F with its natural A 
action. Let Sn denote the cartesian product of n copies of S with diagonal A 
action. 

THEOREM W. There is an effective procedure for determining when two 
elements of Sn are in the same orbit of the A-action. 

THEOREM M. The stabilizer in A of an element of Sn is finitely presented, 
and a finite presentation can be effectively determined. 

In this note we indicate briefly the ideas that go into the proofs of Theorems 
W and M. Pull details will appear elsewhere. 

We use the theory of graphs defined in [2]. A graph X is a nonempty set 
with involution, denoted X H 4 Ï , together with a retraction t : X —• V(X) of X 
onto the fixed point set V(X) of the involution. Morphisms of graphs preserve 
the involution and the retraction. The set V(X) is called the set of vertices of 
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X and E(X) = X - V{X) is called the set of edges. A morphism ƒ : X -+ X' 
of graphs is called an immersion [8] if for each v G V(X) the induced map 
fv : Starx(v) -• Starx'(/(v)) is injective; here Starx(v) = {x G X \ ix = v}. 
A graph X is called a core graph if it has no end vertices, where v G V(X) 
is called an end vertex if there exists precisely one edge e with *,e = v. The 
graphs considered in this note (except for coverings in parenthetical remarks) 
are all finite. 

Suppose now that j : X —• Y is an immersion of the core graph X in the 1-
vertex graph Y (i.e. #V(Y) = 1)- Define the complexity of j , or of X by abuse 
of notation, to be #V(X) and denote it by c(X). The crucial algebraic result 
below will enable us to compute the effect of a Whitehead automorphism 
of 7Ti(Y) [4, p. 31] on the complexity c(X). (That A = Aut7Ti(Y) acts on 
immersions X-+Y may be seen as follows. If X is connected, and v G V(X), 
then j injects 7Ti(X, V) into iriÇY) to determine a conjugacy class of subgroups 
of 7Ti(Y). If a G A, represent the subgroup a(j(fli(X, v))) of 7ri(Y) as a covering 

o ( j ) 

of Y and take a core of the covering to get the desired immersion a(X) -> Y.) 
If A,B Ç E(Y) and v G F(X), define (A-£)v to be 1 if there exists a reduced 

path ee' in X (so e, e' G E(X)) with ^ = *,e' = v, je G A, and j(ë') G £ , and let 
(A-B)v be 0 otherwise. Set A-B = ^ ^ ^ ( A - B ) , , . Thus A-5 is the number 
of vertices v of X for which a reduced path ee' exists in X with j(é) G A, 
j(c*) G £ , and i(?) = j,(e') = v. 

PROPOSITION 1. If a = (A, a) w a W7w£e/iead automorphism ofiri(Y) (A c 
E(y ), aGA,â^A) and X—•Y' is an immersion of the core graph X in the one 
vertex graphY, thenc(a(X))-c(X) = A-A'-{a}-E(Y). Here A = £ (Y) -A . 

This result reduces to Proposition 4.16, p. 31 of [4] in the special case when 
X is the graph whose geometric realization is a subdivision of the circle. The 
formal properties of the pairing A • B are: 

( 1 ) A . £ = £ . A > 0 ; 
(2){a}.{a} = 0 i faG£(Y) , 
(3) {a} • E(Y) = #{v G V{X) \ 3e G Stai*(t;) with /(e) = a} = {ô}. E'(y), if 

aeE{Y). 
The pairing A-5 is not bilinear over disjoint unions, unlike the special case 

considered in [4, p. 31]. However a weaker result holds. 

PROPOSITION 2. For any subsets A,B ofE(Y) one has 

A.A, + JB.B,>(AnjB).(AnJ5)/4-(A'nJB').(A,nS')'. 

In fact the analogous inequality holds locally at each vertex of X. 

PROPOSITION 3. Let A and B be subsets ofE(Y) with An B = 0 ; a G A, 
â£A, b G B,b £ B, and "â^B. Let a = (A, a) and r = (JB, b) be Whitehead 
automorphisms ofiri(Y). Then for any immersion j : X —• Y of the core graph 
X into the 1-vertex graphY, one has 

c{ra(X)) - c{crX) = c{rX) - c(X). 
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Using Propositions 1-3 and following the plan of the argument of Lemma 
4.18 of [4], one proves 

THEOREM 1. Suppose j : X —>Y is an immersion, where X is a core graph 
and Y is a 1-vertex graph. Let a andr be Whitehead automorphisms ofiri(Y) 
such that c(a(X)) < c(X) and c(r(X)) < c{X), where at least one inequality 
is strict. Then using only McCool's relations R1-R7 [5] one has ra~l = 
cm • • • 0201, where ai are Whitehead automorphisms and where c{ci • • • <JI<J(X)) 
< c(X) for l<i<m. 

Suppose now that S is a conjugacy class of finitely generated subgroups 
of 7Ti(Y). Then S determines (by taking a covering of Y and taking a core 
of the cover) an immersion j : X —• Y of a finite core graph X in y such 
that ji(7ri(X,t;)) is in the conjugacy class S; the graph X is unique up to 
isomorphism, so we may define the complexity 

c(S) = c(X) = #V(X). 

Observe that in the special case where S is represented by the cyclic group 
(w)y c(S) is just the length of a cyclically reduced word conjugate to w. 
Observe also that if some representative of S has finite index n in 7Ti(Y) 
(whence all representatives have index n) then c(S) = n, since the immersion 
corresponding to 5 is an n-fold covering space of Y in this case. 

COROLLARY 1. Let F be a finitely generately free group with given free 
basis 0 and let S = (Si, S2, • •., Sn) be an n-tuple of conjugacy classes of finitely 
generated subgroups of F. Let c(S) = J27=ic(^*)' Suppose that a and r are 
Whitehead automorphisms of F such that c(a(S)) < c(S) and c(r(S)) < c(S) 
with at least one inequality strict. Then using only McCool's relations R1-R7 
one has ra"1 = am • • • 0201, where Oi are Whitehead automorphisms and where 
c((Ji• • • oio-(S)) < c(S) for \<i<m. 

An immediate consequence of Corollary 1 is 

COROLLARY 2. Ifc(S) can be reduced by some automorphism ofF, then it 
can be reduced by a Whitehead automorphism. 

Theorem W follows from Corollary 2 by the method of proof of Proposition 
4.19 of [4]. 

We remark that Theorem M follows from Corollary 1 by arguments mimick­
ing McCool's [6]. 

EXAMPLE. Suppose S is a finitely generated subgroup of F whose con­
jugacy class has complexity 1. Then using Stallings' form of Marshall Hall's 
theorem [8] it follows that S is a free factor of F. Whitehead found another 
algorithm to detect when S is a free factor of F, based on the existence of a 
cut vertex in the (based) star graph of a basis for S [9]. We have also given 
a direct proof of this result using our graph techniques, avoiding any use of 
handlebodies. 

REMARK. The novel feature of our work is our definition of the com­
plexity c(S) of an n-tuple S of conjugacy classes of finitely generated sub­
groups of a free group. Whitehead's own example [10, p. 800], indicating 
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the difficulty of his problem of deciding when two ƒ g subgroups of the free 
group F were equivalent, when reexamined in this light, shows that he was 
working with the wrong notion of complexity of a subgroup (he uses the sum 
of lengths of the elements of a given free basis for a subgroup). It is our 
complexity, defined in terms of the core of a covering space, which satisfies 
the correct transformation formula under Whitehead automorphisms, so that 
Whitehead's own arguments will work. Whitehead's examples [10, p. 800], 
S = ({ab)2b\ab)2a3,â*b% T = (a2b2a2b5,{ab)-*tf), subgroups ot F{a,b), have 
complexities 17 and 16 respectively (but lengths 21 and 22 repectively). They 
are equivalent by the Whitehead map ({a, 6}, 6). 
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