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1. Introduction. Like the Arabian phoenix rising out of its ashes, the theory 
of invariants, pronounced dead at the turn of the century, is once again at the 
forefront of mathematics. During its long eclipse, the language of modern 
algebra was developed, a sharp tool now at long last being applied to the very 
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purpose for which it was intended. More recently, the artillery of combinator­
ics began to be aimed at the problems of invariant theory bequeathed to us by 
the nineteenth century, abandoned at the time because of insufficient combina­
torial thrust. 

Even the seemingly polished and well-developed chapters of classical in­
variant theory, such as the theory of binary forms, now reveal themselves on 
closer inspection to be sadly deficient in content and proof. The grey area 
between the known and the unknown, between the solidly established result 
and the likely conjecture, casts a shade of uncertainty behind which the open 
problems still hide themselves from the reader born several generations later. 

Thus, further progress on the fascinating trip that is invariant theory, a great 
idea foreshadowed in the work of Boole and gradually formulated by Cayley, 
Sylvester, Clebsch, Gordan, Capelli, MacMahon, Hilbert, Young, Study, and 
others, must begin with a presentation, complete with proofs and up-to-date 
algorithms, of those results that he within the range of present day mathemati­
cal methods. The purpose of the present work is to give such a presentation of 
the central chapter of classical invariant theory. 

The basic results of the theory of invariants of binary forms are developed 
here by constructive methods. Our objective is to enable the reader to eventu­
ally appreciate the computations of the nineteenth century invariant theorists, 
or at times, to make such computations superfluous. 

In the exposition, we are guided by the following criteria. Our language and 
notation are, wherever possible, patterned after nineteenth century usage. It 
might have been easier to adopt instead one of the many—too many, perhaps 
—equivalent languages that have been taking turns in the annual Paris display 
of mathematical fashion. One could, for example, rephrase the results in the 
language of representations of GL(2) over certain tensor spaces, or as the study 
of moduli parameterizing certain algebraic varieties. However, in the attempt 
to reach as wide an audience as possible, we chose to describe and make 
rigorous the original notation and follow it as closely as possible. Thus, what is 
perhaps the main novelty of the present work is a rigorous and yet manageable 
account of the umbral or symbolic calculus, what Hermann Weyl called " the 
great war-horse of nineteenth century invariant theory". To be sure, rigor can 
be injected into the umbral method by simply citing one of the bromides of 
multilinear algebra, such as "every tensor is the sum of decomposable tensors" 
(as did Weyl, for example). What is not as easily accomplished is to combine 
rigor with the suppleness of the bracket notation, so that the computations of 
covariants and their syzygies can measure up to the artisanship of the past 
century. Our rigorization of the umbral method by operators and linear 
functional obeying a crucial multiplicative property was suggested by earlier 
work by one of us, and the idea can be traced back to his 1964 paper on 
enumerating the partitions of a set. 

A similar salvage operation could not, unfortunately, be carried out on the 
proofs. Most of the proofs presented here are new. Among the techniques, the 
major innovation is an explicit algorithm (Algorithm 4.1) for expressing in 
terms of the roots a covariant expressed in umbral notation. This algorithm 
leads to an alternative representation of covariants as symmetrizations of 
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difference in the roots. The formal similarity between this representation and 
the umbral representation yields a one-line proof of Hermite's reciprocity law. 

The discussion of apolarity is also simplified by this algorithm which enables 
us to immediately infer the significance in terms of the roots of the vanishing 
of the basic covariants in the theory of apolarity. As typical applications, we 
give a new proof of Sylvester's theorem (including exceptional cases) and 
complete lists of canonical forms for the cubic and the quintic. Our task is 
made easier by the introduction of homogenized roots, which allows the 
exceptional cases to be handled without undue commotion. We have also 
computed the umbral representation for several covariants of apolarity theory 
using a device for converting into umbral form covariants given in the form of 
determinants (Lemmas 5.3 and 5.4). This device was not exploited in the 
nineteenth century because of lack of rigor in the umbral method; if nothing 
else, its simplicity justifies our proposed formalization of the umbral method. 

We give two proofs of the finiteness theorem. Both use the representation of 
covariants as symmetrizations of differences in the roots. Neither, however, 
uses Hilbert's basis theorem. The first is based on the circular straightening 
algorithm. The idea of this proof goes back to Kempe, although considerable 
retouching is necessary to apply it to covariants. This proof yields an explicit 
construction of a generating set of covariants and the method is made 
clear—we hope—by our discussion of the cubic. The second proof is a little 
known proof due to Hilbert. This uses a lemma due to Gordan which was the 
combinatorial mainstay of nineteenth century invariant theory. Gordan's lemma 
is given a short proof here using a combinatorial property of partially ordered 
sets. 

It may not be amiss to recount the history of the new proofs given here of 
the First and Second Fundamental Theorems. Alfred Young invented, in 1900, 
his celebrated tableaux—to be followed by standard tableaux in 1928—as a 
method for computing covariants of forms. The main difficulty of the umbral 
method is that covariants which look quite different umbrally may reveal 
themselves to be identical upon permutations and substitutions of equivalent 
letters and applications of the syzygy. This is, in fact, the gist of the Second 
Fundamental Theorem (which is given a new formulation (Lemma 3.4) using 
the notion of symmetrization of letters). Young saw that this difficulty could 
be obviated in part by a decomposition of the group of permutations of 
equivalent letters into what are nowadays called irreducible representations. 
However, it did not dawn on him—nor to anyone after him—that standard 
tableaux would be the ideal method of proving the First Fundamental Theo­
rem, thereby getting rid once and for all of the ponderous Cayley omega 
operator or the nonconstructive device of the Reynolds operator. Our proof of 
the First Fundamental Theorem, besides being constructive, gives a simple 
algebraic approach to the averaging procedures that must be used at some 
point in every proof of the finiteness theorem, as Hurwitz was the first to 
perceive. 

Although our presentation is limited to binary forms over a field (not 
assumed to be algebraically closed, except in the section on apolarity) of 
characteristic zero, we have taken pains in selecting those proofs which, 
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whenever possible, work over a field of arbitrary characteristic, or which point 
clearly to the step where such an extension fails. The extension of the umbral 
method to arbitrary characteristic must remain in the realm of speculation—not 
surprisingly, since the right concept of covariant in positive characteristic is yet 
to come. 

Similarly, the proofs have been chosen to generalize, whenever possible, to 
forms in several variables, commutative, anticommutative, or not, correspond­
ing to symmetric tensors, antisymmetric tensors, and tensors. Umbral notation 
and the proofs of the two fundamental theorems carry over without change. 
For general tensors, the language of double tableaux—what we have called 
elsewhere the letter place algebra—must be used. What fails in more than two 
variables is the expression of invariants in terms of the roots, and hence the 
present proofs of the finiteness theorem do not generalize, as far as one can 
see. In fact, the notion of a covariant ramifies in several variables into several 
kinds of concomitants, and the various kinds of apolarity never seem to have 
been fully explored. 

In closing, we remark that, to this day, the covariants of no nontrivial form 
(except for conies) in three or more variables have been fully classified, not 
even those of the ternary quartic which persuaded Emmy Noether to quit 
invariant theory. We surmise that only a deeper combinatorial understanding 
of the umbral method will lead to a complete list of covariants. This work has 
been written with the purpose of stimulating such understanding. 

2. Umbral notation. 
2.1 Binary forms and their covariants. The theory of invariants of binary 

forms is concerned with properties of homogeneous polynomials in two 
variables which are independent of the choice of coordinates. 

More specifically, we shall deal throughout this paper with binary forms. A 
binary form f(x9 y) of degree n in the variables x and y is a homogeneous 
polynomial of degree n in x and y. Thus, 

A*,y)= 2 (l)akx
kyn-k 

k=oXfc/ 

= anx
n + ( \)an_xx«-'y + • • • + ( „ * ! )alxy-'1 + a0y\ 

The numbers ak are called the coefficients of/(*, y) and are assumed to belong 
to a field of characteristic zero. A linear change of variables (ctj) is a 
transformation of the variables x and y given by 

(2.1) x = cux + cny, y = c2Xx + c22y 

such that the determinant of the entries, cuc22 — c12c21, is nonzero. Under a 
linear change of variables (2.1), the binary form f(x, y) is transformed into 
another binary form/(3c, y) in the new variables x andy defined by 

(2.2) / ( x , y)= 2 \V\ak(cux + cX2y)k(c2Xx + c22y)n~k. 
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After expanding and regrouping terms, we obtain a binary form 

f(x,y)=2(l)skx
ky'-k 

in the variables 3c and y whose coefficients ak are polynomials in at and ctj. The 
precise expressions of these polynomials need not concern us for the moment 
and will be derived shortly. 

Let g be a nonnegative integer. A nonconstant polynomial 
I(A0, Al9...9An9 X9 Y) in the variables A09 Al9...,An9 Xand Yis said to be a 
covariant of index g of binary forms of degree n if for all binary forms f(x9 y) 
of degree n and all linear changes of variables, the following identity holds: 

I(aQ9al9...9an9x9y) = (cuc22- c2lcn)81(a09 al9...9an9 x9 y). 

A covariant in which the variables X and Y do not occur is said to be an 
invariant. 

Our objective is to determine as explicitly as possible all the covariants of 
binary forms. 

For many purposes it is indispensable to consider several binary forms 
simultaneously. A nonconstant polynomial 

I\AX09 AU9. . . ,^41/J(1), A20,. • • >^2/i(2)>- • • >^r0>- • • >^m(r)> ^> ^) 

in the variables Aij9 X and Y is said to be a joint covariant of index g of r- tuples 
of binary forms/(x, y) of degree n(i) if for all linear changes of variables (cfJ) 
and for all r-tuple of binary forms 

M*,y) = "l [n{p)aikx
ky^-k

9 1 = 1,2,...,r, 

the following identity holds: 

= (cuc22 - cl2c2l)
81(al09 aU9...,aln0)9...9ar09 arl9...9arn(r)9 x9 y). 

A joint invariant of fx(x9 y)9...9fr(x9 y) is a joint covariant in which the 
variables X and Y do not occur. 

A covariant I(A09 Al9...9An9 X9Y) is said to be homogeneous if it is 
homogeneous both as a polynomial in the variables A09 Al9...9An and as a 
polynomial in the variables X and Y. Every covariant can be written as a linear 
combination of homogeneous covariants. If / is a homogeneous covariant, the 
degree of / is the (total) degree of / as a polynomial in A09 Al9... 9An9 while the 
order of / is the (total) degree of / as a polynomial in X and Y. 

2.2 The umbral calculus. The simplest binary form is an nth power of a linear 
form, namely, one of the form 

f(x>y) = («i* + "lyY-
The device we are about to describe permits us to reduce computations with 
binary forms to this special case. 
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Let &= {a, /?,. . . ,<o, u) be an alphabet consisting of an infinite supply of 
Greek letters followed by the single Roman letter u. The letters in & are called 
umbral letters. To each Greek letter a and the Roman letter u, we associate two 
variables a1 and a2. Thus, we have the variables al9 a2, /3l9 /?2,. • • ,«i, <o2, w^ 
w2. The ring of all polynomials in these variables is an (infinite-dimensional) 
vector space called the umbral space %. 

The umbral operator U for the space of binary forms of degree n is the linear 
operator defined from the umbral space % to the space 9 of polynomials in 
the variables A09 Al9...9An9 X and Y defined in the following way. We 
denote the action of the operator [Zona polynomial P(al9 a29...) in % by 
(U\P(al9a29...))mdset: 

(U\ aka2~
k> = Ak for any Greek umbral letter a; 

(U\ a{a2) = 0 if j + k =£ n and a is any Greek umbral letter; 
(U\uk)=(-Y)k; 
(U\uk)=Xk; 
(U\a\aiPk0l • • • afiij>= (U\a[a{XU\PfPi) • • • <tf|«f ><tf|n|>. 

The final rule is called the multiplicative rule. These rules uniquely define, by 
linearity, the umbral operator U on the umbral space 6ll. If 

A*>y)= 2 (lWkyn-k 

k=oXK} 

is a binary form of degee «, we define the umbral linear functional U(f) 
associated withf(x, y) to be the linear functional on % obtained by evaluating 
the umbral operator at 

A0 = a0, AY=al9...9 An = an9 X=x9 Y-y. 

Every polynomial I(A09 Al9. . . 9An9 X9 Y) can be written as 
(U\ Q(al9 a2,.. .)> for some polynomial Q(al9 a2 , . . .) in the umbral space; the 
polynomial Q is called an umbral representation for the polynomial /, and / is 
called the umbral evaluation of Q. To see this, it suffices to consider the case 
when / is a monomial. But if / is the monomial AQ°A^ • • • Ad

n
nXexYei

9 then a 
simple computation shows that / equals 

(U\a1al--y^y?) Sfo"-1 • • • e\en
2~

x ••• (-«f2)i/?>, 
•- d0 times -> <- dx times -> 

where the umbral letters a,... ,y, 6, . . . ,e, . . . are distinct. In general, the 
umbral representation of a polynomial / is far from unique. 

The umbral notation is easily extended to several binary forms. Briefly, the 
umbral operator U for the space of r- tuples of binary forms fx(x9 y)9...9fr(x9 y) 
of degree «(1),. ..9n(r) is defined as follows. Partition the set of Greek umbral 
letters into r mutually disjoint infinite subsets &i and assign the Greek letters in 
the ith subset &t to the ith form/(x, y). If two letters are assigned to the same 
form /.(x, y)9 they are said to be equivalent. The umbral operator U is the 
linear operator defined from the umbral space % to the space of polynomials 
in the variables Al09 AU9...9Aln(l)9...9Ar09 Arl9...9Arn(r)9 X and Y by the 
rules: 

(U\akaf)~k)= Aik if a is in &t; 
(U\ a{a\ )= 0 if a is in &t andy + k ¥* n(i); 
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(U\uk)=(-Y)k; 
(U\uk)=Xk

9 
and the multiplicative rule, extended here to hold even if the umbral letters are 
assigned to different forms. Whenever possible, our discussion will be carried 
out for a single binary form, the extension to several binary forms being mostly 
a matter of notation. 

2.3 Changes of variables. We shall now introduce a notation for changes of 
variables which, combined with the umbral notation, leads to the classification 
of covariants of binary forms in terms of their umbral representations. 

Let (c,7) be a (linear) change of variables. We set 

c2— cu, d2 = cl2, 
c\ = ~"c21> " l = —^22* 

We shall denote a change of variables written in this way by (c, d). If 
u — {uX9u2) and v = (vl9 v2) are two vectors (of dimension two), we define the 
bracket [u v] by 

[u v] = ulv2-u2vl = det[ll
2 ll

2j. 

The bracket notation gives a simple way of computing the umbral represen­
tation of any polynomial I(a0,... 9an9 x9 y) in terms of the umbral representa­
tion of I(a0, ...9an9x9 y) and various brackets involving the vectors c — (cv c2) 
and d = (dl9 d2). Specifically, we have 

PROPOSITION 2.1. Let 

f(x,y)= 2 U)***V" 

be a binary form of degree n and let /(3c, y) be the binary form obtained from 
f(x, y) by the change of variables (c, d). Let I be a polynomial in 9 and let 

I(a0,al9...9an,x,y) = (U(f)\P(al9a29PuP29...9ul9u2)) 

be an umbral representation of I. Then 

I(d09al9...9an9x9y)= (u(f) \P(al9 a2, jB„ ft,.. . ,«„ u2)) 

= (U(f)\P([a c],[a d]9[P c]9[fi d]9 

. • . , [ " c]/[c d],[u d]/[c d])). 

PROOF. AS umbral operators are linear and obey the multiplicative rule, the 
proof is reduced to verifying the following identities: 

A. For any Greek umbral letter a, 

( t / ( / ) | [« c]J[a d]k)=(u(f)\aiak
2); 

B. (U(f)\[u c]/[c d])=(U(f)\ui)=-y; 

C. (U(f)\[u d]/[c d])=(u(f)\u2) = x. 

We shall prove these identities in reverse order. 



34 J. P. S. KUNG AND G.-C. ROTA 

Inverting the matrix of the change of variables (c, d\ we obtain 
x = (-dlx- d2y)/[c d], y = (cxx + c2y)/ [c d]. 

Umbrally, this is 
(U(f)\[u d)/[c d]) = x, (U(f)\[u c]/[c d])=-y. 

This verifies identities B and C. 
To verify the first identity, let a be any Greek umbral letter. Using the 

umbral representation 

fix, y) = (U(f)\(aiu2- a2Uir)= (U(f)\[a «]") 

and the fact that, by definition, 
f(x>y) =f(x,y), 

we have 
f(x,y)=(u(f)\[a «]"). 

By the determinantal identity 
[a c] [u c] 

[a u)[c u] = det. ,, 
\ [a d\ [u d\) 

we obtain 
[a c] [u c)/[c d] \nS 

/ (* , , - ) = p / ) | d e t l [ a d) [u d]/[c d) 

= (,(/),jj^cn«^(-{^i)H{H|)T 
= 2 ("k)(u(f)\[« c]k[a d]"-k)xky»-*. 

Equating like powers of 3c and y9 we conclude that 

(U(f)\[a c)k[a dY-k) = ak=(u{f)\akark). 

Finally, fory + k ¥^ «, 

{U(f)\[a cY[a d]k)=0 

since any monomial in the expansion of [a c]j[a d]k is of the form afaf, 
wherep + q — j + k and/? + q ¥= n. Hence, in these cases, 

(U(f)\[a c]J[a d]k)=(u(f)\aiak)=0. 

This completes the proof. • 
EXAMPLE. From Proposition (2.1) we obtain the explicit expression of the 

coefficient ak in terms of ak and the entries cu , c12, c21, c22 of the change of 
variables matrix (c/y): 

*k= ( ^ ( / ) l ( « l ^ l l +«2^2l)A :(«1^12 + «2^22) / ,~ /C) 

No further use will be made of this formula. 
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3. The fundamental theorems. 
3.1 Bracket polynomials. The formula given in Proposition 2.1 for computing 

the effect of a change of variables on the umbral representation suggests a 
subspace of the umbral space whose umbral evaluations are obviously co-
variants. This is the subspace $ of bracket polynomials. 

Recall that a bracket [a /?] or [a w] is defined by 

[a P] = alp2- a2fil9 [a u] = axu2- a2ux. 

A bracket monomial M in the umbral space % is a nonconstant polynomial in 
% which can be written as a product of brackets: that is, 

M= [a p][a 8] ••• [co u] 

for brackets [a /?], [a 6],...,[to w]. In particular, a bracket monomial is 
never a monomial in the variables al9 a2,...9ul9 u2. The index of a bracket 
monomial M is the number of brackets in M containing only Greek letters, its 
order is the number of brackets containing the Roman letter u9 and its height is 
the total number of brackets in M. 

A bracket polynomial is a linear combination of bracket monomials. The 
bracket polynomials form a subspace ® of the umbral space %. The bracket 
monomials of index g span a subspace 9>g of the space of bracket polynomials. 
The bracket polynomials in ®g, which are Hnear combinations of bracket 
monomials all of the same index g, are called bracket polynomials of index g. 

THEOREM 3.1 (THE FIRST FUNDAMENTAL THEOREM): PART I. The umbral 
evaluation (U\P) of a bracket polynomial P of index g is a covariant of index g. 

PROOF. It suffices to prove this for bracket monomials. Let M be a bracket 
monomial of index g. Then, by Proposition 2.1 and the determinantal identities 

[a c] [u c]/[c d)\ = 

[a d] [u d]/[c d]f [<X MJ' 

we have, for any binary form/(*, y) and any change of variables (c, d\ 

(u(f)\M)=(u(f)\[c d]'M)=[c dY(U{f)\M). 

Hence, ( U \ M > is a covariant of index g. • 
Remarkably, the converse of this theorem is also true. To prove this, we 

require two results: the straightening algorithm and the second fundamental 
theorem of the umbral notation. These results will occupy the next two 
sections. 

3.2 The straightening algorithm. In order to prove the converse of Theorem 
3.1, we must first engage in a detailed study of the combinatorics of bracket 
polynomials. The straightening algorithm, which we now describe, can be 
viewed as the central combinatorial algorithm in invariant theory. 

Let &= {a, j3, y , . . .} be an alphabet linearly ordered in such a way that 
a < P < y < • •. Let M be a bracket monomial. Thus, M is a product, say, 

det 
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[a P][a y] " - [8e] of h brackets. We rewrite M as a tableau (of height h) 

= [a fi][a y]-"[8 e]. 

a 0 
a y 

We call such a tableau standard if the letters in each row are increasing from 
left to right, and the letters in each column are nondecreasing from top down. 
A bracket monomial is standard if, by permuting the brackets and replacing a 
bracket [a ft] by -[/* a], it can be written as a standard tableau. 

THEOREM 3.2. The standard bracket monomials form a basis for the vector 
space of bracket polynomials. 

The theorem follows from three lemmas. 

LEMMA 3.1 (THE SYZYGY). Let a, /?, y, 8 be letters in the alphabet & with 
a<fi<y<8. Then 

\a 8 
[fi y . 

= -
y «. 

+ a yl 

J 8\ 
PROOF. This is equivalent to the determinantal identity 

' [ « ]S] [a y]\ _ . /«i « 2 \ . / P2 
det 

[8 /?] [8 y] 
. / « 1 « 2 \ 

det 
-fix 

y2 D 

LEMMA 3.2. Any bracket monomial can be written as a linear combination with 
integer coefficients of standard bracket monomials. 

PROOF. We first impose a total ordering on the collection of all tableaux of a 
given height. If M is the tableau 

1 
a 

18 

P] 
y 

£ J 

we associate with M the row sequence of letters afiay • • • 8e9 obtained by 
writing out the tableau along a straight line. We say that M > N if the row 
sequence of M is lexicographically greater than the row sequence of N. 

Rewrite a bracket monomial as a tableau M such that the rows are 
increasing and the first column is nondecreasing. Suppose the resulting tableau 
is not standard and, going down the second column, the first violation of 
standardness occurs between the ith and (/ 4- l)st rows. These two rows must 
be of the form 

a 8 
P y 
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where a, /?, y, 8 are letters such that a < f$ < y < 8. Using the syzygy, we have 

a 8 
= -

y s 
+ 

a y 

Observe now that the row sequences of both tableaux on the right are strictly 
lexicographically smaller than the row sequence of M. If these two tableaux are 
nonstandard, we repeat the procedure on each. As there are only a finite 
number of tableaux of the same height as M, this process must terminate, 
yielding an expression of M as a linear combination with integer coefficients of 
standard bracket monomials. • 

The process described in the proof specifies an algorithm, called the straight-
ening algorithm, for writing a bracket polynomial as a linear combination with 
integer coefficients of standard bracket monomials. 

LEMMA 3.3. The standard bracket monomials form a linearly independent set in 
the bracket subspace $ . 

PROOF. Among all the nontrivial linear dependence relations between stan­
dard bracket monomials, choose one (with nonzero scalars ck\ 

m 

2 ckMk = 0, 
k=\ 

in which (a) the number of distinct letters in the bracket monomials Mk is as 
small as possible, and (b) subject to (a), the maximum height of the bracket 
monomials Mk is as small as possible. Let 8 and e be the two largest letters 
occurring in this linear relation. By (b), the bracket [8 e] cannot be a common 
factor of all the bracket monomials Mk. Hence, on setting 8 equal to e, not all 
the bracket monomials become zero. Moreover, since 8 and £ are the two 
largest letters, those bracket monomials which remain nonzero also remain 
standard. We thus obtain a nontrivial dependence relation with fewer distinct 
letters, contradicting our initial choice. • 

Theorem 3.2 can be regarded as a rigorous reformulation of the following 
nineteenth century heuristic. 

COROLLARY 3.1. Every algebraic relation between bracket polynomials is 
deducible from the syzygy and antisymmetry. 

3.3 The Second Fundamental Theorem. In this section we answer the follow­
ing question: Let P be a polynomial in the umbral space % and suppose 
(U\ P) = 0. What can be said about PI In addition to playing a crucial role in 
the proof of the converse of Theorem 3.1, the answer to this question also gives 
a simple criterion for deciding when two polynomials in the umbral space have 
equal umbral evaluations. 

Let P be a polynomial in the umbral space and 6 the set of Greek umbral 
letters occurring (nontrivially) in P. The polynomial P is said to be irredundant 
{for binary forms of degree n) if for every monomial N in P and every Greek 
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umbral letter a in fi, the total degree of the variables ax and a2 is n. It is 
evident from §2.2 that every homogeneous polynomial I(A0,... 9An, X, Y) can 
be represented umbrally by an irredundant polynomial. 

Our main result is a characterization of the irredundant polynomials P in % 
whose umbral evaluation (U\P) is the identically zero polynomial. To state 
this result we need the notion of symmetrization. Let P be an irredundant 
polynomial in 6H, Q the set of Greek umbral letters occurring in P, and d the 
cardinality of 6. If m is a permutation of 6, the polynomial n(P) is defined to 
be the polynomial obtained from P by replacing each letter y in P by its image 
TT(Y) under the permutation TT. The symmetrization S(P) of the polynomial P is 
the irredundant polynomial defined by 

where the summation is over all permutations IT of S. If P = S(P% we say that 
P is a symmetrized polynomial. 

LEMMA 3.4 (THE SYMMETRIZATION CONDITION). Let P be an irredundant 
polynomial in Gll. Then (U\P) is identically zero if and only if the symmetriza­
tion S(P) is the identically zero polynomial in $1. 

PROOF. By definition of the umbral operator U, 

(U\P)=(U\S(P)). 

Hence, if S(P) = 0, then (U\P> = 0. 
To prove the converse, let Q be the set of Greek umbral letters in P and let 

F(x, y) be the binary form defined by 

F(*> y) = 2 * Y ( Y I * + iiy)"* 

where \y, y E 6, are new variables. The coefficient of x^""1 in the form 
F(x, y) equals 

Therefore, by definition of the umbral functional U(F), 

(U(F)\a\a»2-
i)= S M t f " . 

and, by the multiplicative rule, 

(U(F)\ n «r (a )«re (a ))= n ( 2 vf(a)Y2"-e(a)). 

Now expand the right-hand side as a polynomial in the variables Xy. The 
multilinear monomial Jly&eXy in this expansion is obtained by choosing one 
summand Xyyf(a)y2 -<?(a) from each sum in such a way that no two summands 
from two distinct sums have the same umbral letter y, taking their product, 
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and summing over all products obtained in this way. Thus, the coefficient of 

IT aeG 

where the summation ranges over all permutations IT of 6: that is, it equals the 
symmetrization 

s( n < (a)«r' (a)). 
Now, as P is an irredundant polynomial, it is a linear combination of 
monomials of the form 

( n <(a)are(a))«{i^. 

Therefore, although (U(F)\P) cannot be easily computed, we know neverthe­
less that the coefficient of IIye(o\y in (U(F)\P)9 considered as a polynomial 
in Xy9 is the symmetrization d\S(P)9 since symmetrization is a linear operator. 
We conclude that if (U\P) is identically zero, then d\S(P)9 and hence S(P)9 

is also identically zero. • 
EXAMPLE. Let U be the umbral operator for binary cubics. Consider the 

irredundant bracket polynomial [a /?]3. As 

{u\[a fi]3)=-(u\[fi a]3)=-{l/\[a fif), 

the umbral evaluation of [a >S]3 is identically zero. As the lemma predicts, its 
symmetrization ^([a p]3 + [ft a]3) is also identically zero. • 

From the preceding lemma, we obtain 

THEOREM 3.3 (THE SECOND FUNDAMENTAL THEOREM). Let U be the umbral 
operator for binary forms of degree n and let P and Q be polynomials in the 
umbral space tylsuch that (U\P)= (U\Q). Then P can be obtained from Q by 
a sequence of operations of the following four types: 

I. an application of the k-algebra axioms in the polynomial algebra 
k[al9a29pl9P29...9ul9u2]'9 

II. adding a scalar multiple of a redundant monomial, that is a monomial in 
% containing a Greek umbral letter y for which the total degree ofyx and y2 is not 
equal to n or zero: 

III. replacing any monomial M by M'9 where Mf is obtained from M by 
replacing the variables a, and a2 for some Greek umbral letter a occurring in M 
by the variables 8X and S29 where 8 is an umbral letter not occurring in M\ 

(IV). replacing any monomial M by ir{M\ where m is a permutation of the set 
of umbral letters occurring in M. 

PROOF. By applying operations of type II, we can assume P and Q contain 
no redundant monomials. We next write P as a sum, P = P{ + P2 + • • • +Pr9 

where Pt is the linear combination with the same coefficients as in P of all 
monomials in P containing i distinct Greek umbral letters. Similarly, write 
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Q = Q\ + Qi + * * • +QS- Since (U\P)= (U\ Q)9 and the degree (as a poly­
nomial in A:[a,, a2 , . . . ,u l 9 u2]) of (U\M), where M is a monomial, equals the 
number of distinct Greek umbral letters in M, we have, for all i9 

(U\Pi)=(U\Qi). 

Thus, it suffices to prove the theorem for polynomials P and Q such that every 
monomial in P and Q has the same number, d say, of distinct Greek umbral 
letters. By applying operations of type III, we can assume that the set of 
distinct Greek umbral letters in P and the set of distinct Greek umbral letters 
in Q are the same and have cardinality d: that is to say, P and Q are 
irredundant polynomials formed with the same set of Greek umbral letters. 

The proof can now be completed by observing that, as (U\P)= (U\Q)9 

(U\P — Q)= 0 and hence, by Lemma 3.4, the symmetrization S(P — Q) — 
S(P) - S(Q) = 0. Thus, S(P) = S(Q). But P can be obtained from S(P) and 
S(Q) obtained from Q by operations of types I and IV. • 

3.4 The First Fundamental Theorem. We are now ready to prove the basic 
result underlying the use of umbral notation in invariant theory. 

THEOREM 3.1 (THE FIRST FUNDAMENTAL THEOREM): PART II. Let I be a 

covariant of index g of binary forms of degree n. Then there exists a bracket 
polynomial P of index g such that I — (U\P). 

PROOF. It suffices to prove the theorem for a homogeneous covariant / of 
degree d, order t, and index g. Let 

/ = (U\P(al9a29Pl9P29...9ul9u2)) 

be an irredundant umbral representation of /. As the umbral evaluation of a 
polynomial P and its symmetrization S(P) are equal, we can assume that the 
polynomial P is a symmetrized polynomial. As / is a covariant, we have, for 
any binary form 

f(x,y)= 2 ("k)akx
ky"-k 

/t=ov / c / 

of degree n and any change of variables (c,d), 

[c d]gl(a0,...,a„,x,y) = I(a0,...,a„, x, y) 

= (U{f)\P{[a c],[a d],[P c],[P d],..., 

[u c]/[c d],[u d]/[c d])). 

On multiplying both sides by [c d]', we obtain 

( 3 D ^C dy+>I(ao>--->an>x,y) 
= (U(f)\P([a c],[« dUfi c],[P d],...,[u c],[u d]))' 

Observe that the polynomial P([a c]9[a d],...,[u c]9[u d]) remains irre­
dundant and symmetrized. 

The identity (3.1) holds for all scalar values cl9 c2, dl9 d2 for which 
cxd2 — c2dx ¥* 0. Therefore, it holds as a polynomial identity in the variables 
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Cj, c2, dX9 d2. Using this fact, we shall prove that 

P([a c]9[a < / ] , . . . , [w c],[u d]) = [c d]g+tQ(al9a29...9ul9u2)9 

where Q is a bracket polynomial of index g in the letters a, /? , . . . , w, not 
containing any of the variables cl9 c29 dX9 d2. We shall then be able to cancel 
the factor [c d]g+t from both sides of identity (3.1), thus obtaining an umbral 
representation of / by a bracket polynomial. 

Let 6E+ be the alphabet {c, d9 a, /?, . . . ,co, u) linearly ordered in such a way 
that c <d<a< fl < — - <w <u9 and let ® + be the space of bracket poly­
nomials formed with the letters in 6B+ . Applying the straightening algorithm to 
P([a c]9[a d]9...9[u c]9[u d])9 considered as a bracket polynomial in 
® + , we can writeP([a c]9[a d]9...9[u c]9[u d]) as a linear combination 
2bkMk9 with bk 7*= 0, of distinct standard bracket monomials in %+ . 

LEMMA 3.5. The polynomial P(al9a29...9ul9u2) may be so chosen that the 
letter c, as well as the letter d9 occurs exactly g + t times in each of the standard 
monomials Mk. 

PROOF. Let A be a new variable. Using the fact that [a (Ac)] = A[a c] 
for any letter a, we obtain, on replacing c, and c2 by Acx and Ac2 in (3.1), 

A^'\c d]g+'l(a0,...,a„,x,y)=(u(f)\2bkA^Mk), 

where c(k) is the number of occurrences of c in the bracket monomial Mk. 
Equating coefficients of Ag+t

9 we obtain 

[c dY+,l{a0,...,an,x,y)={u{f)\^'bkMk), 

where the prime on the summation indicates that those bracket monomials 
with c(k) ¥= g + / are omitted. We can now replace P(al9 al9.. .9ul9 u2) with 
the polynomial obtained from TbkMk by setting cx = 1, c2 = 0, dx = 09 

d2=\. • 
Consider now a bracket monomial Mk in the expansion of 

P([a c]9[a d]9...9[u c]9[u d]) 

as a linear combination of standard bracket monomials. It is of the form 

c a ] 

c'fil 
d y\ 

where l(k) is the number of brackets [c d] occurring in Mk. Let / be the 
minimum of these integers l(k). By Lemma 3.5, / < g + t. 

If g -h t = /, then Mk = [c d]g+tMk9 where (by Lemma 3.5 again) there are 
no further occurrences of the letters c and d in the bracket monomial Mk. We 
can thus cancel [c d]g+t from both sides of (3.1). 

[c «/]«*> 
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Now suppose g + t> /. Writing Mk = [c d]lMk9 we can cancel [c d]1 

from both sides of (3.1) to obtain 

(3.2) [c d]g+'-'l(a0,...,a„,x,y)={u(f)\^bkM'k), 

where g + t — I > 0 and there is a standard bracket monomial Mj which does 
not contain the bracket [c d]. The identity (3.2) holds for all cl9 c29 dl9 d2 in 
the infinite field k such that [c d] ¥= 0; thus, it holds as a polynomial identity 
in the variables cl9 c2, dl9 d2. We can therefore set cl — dx and c2 = d2. This 
yields the identity 

(u(f)\2bkMk) = o, 
where Mk is the bracket monomial obtained from M'k by setting c — d. Note 
that, as c and d precede all the other letters in the linear ordering, the bracket 
monomials which do not vanish after d is set equal to c remain standard. 
Moreover, ^bkMk is still symmetrized. We can thus appeal to Lemma 3.4 to 
conclude that 2bkMk is identically zero. 

As remarked earlier, there is a standard bracket monomial Mj which does 
not contain the bracket [c d]. As HbkMk is zero and the standard bracket 
monomials are linearly independent, there exists a subset E of indices with 
j GE such that ^kGEbkMk = 0, and for all k in E9 M'k ¥* Mj but Mk = Mj: As 
bj =£ 0, there is an index m not equal to j in E. As Mj = Mm and Mj is 
standard, we have 

c * 
c * 

c * 
* * 

* * 

where c occurs as the first letter in the first 2(g + t — I) rows and an asterisk 
stands for a Greek or Roman umbral letter. However, as Mj and M'm differ 
from Mj and Mm only in that c is set equal to d9 we have, by Lemma 3.5, 

c * 

c * 
d * 

d * 
* * 

* * 

Mj = Mm = 

M; = M' = 
J m 
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where c occurs as the first letter in the first g + t — I rows and d occurs as the 
first letter in the next g + t — I rows. This contradicts the assumption that Mj 
and M' are different. 

m 

This completes the proof of the first fundamental theorem. • 
Our proof gives an algorithm for expressing any covariant / as the umbral 

evaluation of a linear combination of standard bracket monomials. We shall 
illustrate this algorithm with the discriminant of binary quadratics. 

EXAMPLE (THE DISCRIMINANT). Let D be the discriminant of binary 
quadratics, that is, 

D = A0A2 A\. 

Then an umbral representation of D is (U\P(al9 a2, j8l9 /*2)>, where 

P(al9 a2, Pl9 ft) = a\ft ~ axa2/3xp2. 

Symmetrizing P, we obtain 

\(a\^ + a2
xpl-2axa2pxp2). 

Replacing ax by [a c], a2 by [a </],.. . , we obtain the following linear 
combination of (nonstandard) bracket monomials in the letters a, /?, c and d: 

1 
1 
2 

\ 

a d 
a d 

\P c 
[P c_ 

+ 

a c~ 
a c 
P d 
$ d. 

- 2 

"a c"| 1 
a d\ 
P C\\ 

J d\] 
Applying the straightening algorithm to each bracket monomial and adding 
the results, we obtain 

1 
2 

c 
c 
a 
a 

d] 
d\ 
fi\ 
/*J 

Thus, an umbral representation for the discriminant D in terms of bracket 
polynomials is 

D=(u\{[a P]2). D 

Let / be a homogeneous covariant of binary forms of degree «, of degree d, 
order t, and index g. Let I = (U\ 2bkMk) be an irredundant umbral represen­
tation of U by a linear combination of bracket monomials. Then for every 
bracket monomial Mk, the number of brackets in Mk containing only Greek 
letters is equal to g, the index of J, and the number of brackets in Mk 

containing the Roman letter u is equal to t, the order of /. Thus, every bracket 
monomial has the same number h of brackets, where h = g + t. Since each 
bracket contains two letters, each Greek umbral letter occurs n times, and the 
Roman letter u occurs t times, the numbers n,m,t,h, and g satisfy the 
relations 

2h = dn + t, 2g + t = dn. 
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In particular, the index g of a homogeneous covariant of binary forms of 
degree n can be deduced from its degree d and order t by the equation 

g = {-(dn-t). 
The two fundamental theorems and their proofs extend immediately to 

several binary forms. An important consequence is the following result which 
implies that in most situations, it suffices to consider only joint ^variants. 

COROLLARY 3.2. Let I(A0,...,An, X,Y) be a homogeneous polynomial of 
degree d and order I. Then I(A0,...,An, X,Y) is a covariant of index g of binary 
forms of degree n if and only if the polynomial I(A0,... ,An, S, -T), obtained by 
setting X = S and Y = -T, is a joint invariant of index g + / of binary forms of 
degree n and linear forms tx + sy. 

PROOF. If a is an umbral letter belonging to the linear form tx + sy, then 
(U\ax)= Tand (U\a2)= S. Since (U\ux) = -Y and (U\u2)= X, if P is an 
irredundant polynomial in % such that (U\P) = I(A0,... ,An, X, Y), where / 
is a homogeneous polynomial of degree d and order /, then 

(U\P')=I(A0,...,An,S,-T), 

where P' is the irredundant polynomial obtained by replacing the factor u\u{ 
in each monomial of P by <xx • • • Pxy2 • • • 82, where a,... ,/? are the first i letters 
and y,. . . ,8 are the last j letters in a set (a, . . . ,5} of / Greek umbral letters 
belonging to the linear form tx + sy. In particular, let I(A0,... 9An9 X, Y) be a 
homogeneous covariant and (U\ P ) an irredundant umbral representation of / 
by a bracket monomial P. Then P' is also a bracket polynomial and, hence, 
(U\P') is a joint invariant. This argument can be reversed. Finally, observe 
that if a and ft are Greek umbral letters belonging to the linear form tx + sy, 
then (U\[a /?]) equals zero and, hence, the index of a joint invariant is at 
least the degree / of that joint invariant in the coefficients of the linear form. 
• 

The first fundamental theorem, together with Lemma 3.4, yields immediately 
an umbral representation for algebraic relations (or syzygies) between co-
variants in terms of bracket polynomials. 

COROLLARY 3.3. Every relation 

2l>jWj2--IM(j) = 0 

j 

between covariants Ijk of binary forms of degree n can be written in the form 

2bj{U\MJX){U\Mj2) •••(U\MJmW) = 0, 
J 

where Ijk — (U\ MJk), Mjk is a bracket polynomial, and 

P = lbJMJlMJ2---MJmW 

J 

is a bracket polynomial in the umbral space whose symmetrization is zero. 

The First and Second Fundamental Theorems can be summarized by the 
following theorem. 
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THEOREM 3.4. Let i[n9d9t] be the {finite-dimensional) vector space of 
homogeneous covariants of binary forms of degree n9 with degree d9 order t9 and 
index g, where g = \{dn — t). Let %[«, d9 t] be the subspace of the space © of 
bracket polynomials spanned by bracket monomials of height g + t formed with d 
distinct Greek umbral letters each occurring n times and the Roman letter u 
occurring t times. Finally, let %*[«, d9 t] be the space of all symmetrized 
polynomials in %[n9 d91]. Then 

qis[n9 d,t] <*9[n,d,t]9 

the isomorphism being given by the umbral operator U for binary forms of 
degree n. 

4. Covariants in terms of the roots. 
4.1 Homogenized roots. When the leading coefficient an is nonzero, the 

remaining coefficients a09 al9... ,an_x of the binary form 

f(x,y)= 2 (£)«**V" 
k = 0 

= an(x - Xxy)(x - \2y) • • • (x - \ny) 

can be written in terms of the leading coefficient an and the roots \X9\l9...9\n 

of the polynomial/(x, 1). Indeed, the coefficient an_k is a multiple of the fcth 
elementary symmetric function ek(Xl9... ,Xn) of the roots. More precisely, 

(4.1) (n
k)an_k = (-l)ka„ek(\i,...,\„) = (-l)ka„2Kl---K> 

the sum ranging over all ^-element subsets of {1,2,. . . ,«}. We note an 
alternative version of (4.1): 

n\ (4.2) an-k = (-i)k^2Kvy-K(k), 

where the sum ranges over all permutations m of {1,2,. . . ,«}. (The equivalence 
of (4.1) and (4.2) follows from the fact that for any given A>element subset S of 
(1,2,. . . , n} , there exist k\(n — k)\ permutations such that TT(S) = S.) 

Now let k[an, \l9...,A„, x9 y] be the ring of all polynomials in the variables 
an9 X!,...,\n9 x and y. This ring will be called the algebra of roots. The 
substitutions 

IT 

X^x9 Y+-y9 

define an algebra homdmorphismr from the algebra k[A09...9An9 X9 Y] of all 
polynomials in the variables A09 Al9... 9An9 X and Y to the algebra of roots. If 
I(A09...9An9X9 Y) is a polynomial in Ai9 Xand Y9 the image of / under r is 
called the representation of I in terms of the roots. 

For studying covariants it is often useful to consider a more symmetrical 
representation in terms of homogenized roots. Let the binary form/(x, y) be 
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written (not uniquely, of course) as a product of n linear forms: 

f(*> y) = (MI* - J'IJ'XMI* - viy) • • • (M„* - w)-

The coefficients [ii9 vt of the linear forms are called the homogenized roots of 
f{x9 y). On expanding and equating coefficients, we obtain 

(^•3) a«-fc = T j 2 J *V(1) * * * ^ (A: ) / i w(A:+ l ) * * * M*r(w) 
(-1)* 

n! •2« 
77 

'Mi ' 

"(i)' 

• * M , 

^TT(A:)MW(A:+1) 

•e4^7'- • • > 

the sum ranging over all permutations TT of {1,2, . . . ,«}. 
In analogy with the roots, we define the algebra of homogenized roots to be 

the ring k[pl9... ,/*„, vl9.. .9vn9 x9 y] of polynomials in the variables fil9... ,/AW, 
vX9...9vn9x andy. The substitutions 

4 (-1)* V 
-*«-* *~ wj Z*V(1) * * ' *V(*)M,r(A;+l) ' * *MTT(W)> 

define an algebra homomorphism h from the algebra k[Ai9 X9 Y] to the 
algebra of homogenized roots. If / is a polynomial in Ai9 X and Y9 the image of 
/ under h is called the representation of I in terms of homogenized roots. 

When is a polynomial in homogenized roots expressible in terms of the 
coefficients A09... 9Anl The answer is contained in our next result, which is a 
homogenized version of the fundamental theorem of symmetric functions. To 
state this result, we need the following definitions. Let 

M = M?'M22 * * * Knv\lv22 ''' v*nxc'yC2 

be a monomial in the homogenized roots. For / G {1, . . . ,«}, the multiplicity mt 

of / in M is defined by 

mt = at + bt. 

A monomial M is said to be regular of degree d if 
m\ = m2 = ' ' ' ~ mn = d. 

A polynomial R(ni9 vi9 x9 y) in the algebra of homogenized roots is said to be 
regular of degree d if every monomial in R is regular of the same degree d. 

PROPOSITION 4.1. Let R{fii9 vi9 x9 y) be a polynomial in the algebra of 
homogenized roots. Then R is expressible as a polynomial in the homogenized 
symmetric functions 

**(M/> "/) = "J" 2 *V(1) ' * ' >V(*)M,r(*+l) ' ' ' P*(n) 
IT 

{with coefficients in the algebra k[x9 y] of polynomials in the variables x andy) if 
and only if R is regular and R is jointly symmetric in /A, and vt {that is, for all 
permutations IT of { l ,2 , . . . , / i } , R(pi9 vi9 x9 y) = R(iLv(i)9 v<i)9 x9 y). 
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PROOF. AS ak(ni9 vt) is jointly symmetric and regular, and these properties 
are preserved under multiplication, one implication is immediate. 

To prove the converse, let R be regular of degree d. Then R can be rewritten 
as 

R(fii9vi9x,y) = (/i, 'Pn)d*(vi/Pi>x,y), 

where R is a symmetric polynomial in the variables X( = ?///*,•• By the 
fundamental theorem of symmetric functions, we can write R as a polynomial 
Q (with coefficients in k[x> y]) in the elementary symmetric functions ^ ( ^ / / A , ) . 
Multiplying Q by (j^ • • • fxn)d and distributing factors of fix • • • /iw among the 
elementary symmetric functions ^(^/ /O* w e obtain an expression of R in 
terms of the homogenized symmetric functions. • 

All definitions and results in this section extend immediately to several 
binary forms. 

4.2 Tableaux in terms of roots. Let P be a bracket polynomial in the umbral 
space °IL. Applying the umbral operator U and then the homomorphism h to P, 
we obtain a polynomial in the algebra of homogenized roots. Our main result 
in this section is a constructive description of the composite function h° [ / . 
This description is in the form of an algorithm for translating the umbral 
representation of a covariant I of the form/(x, y) into a representation of I in 
terms of the homogenized roots of/(x, y). 

Let T be a bracket monomial in % and let U be the umbral operator for 
binary forms of degree n. The element h((U\T)) in the algebra of homoge­
nized roots, which is also the representation of the covariant (U\ T) in terms 
of homogenized roots, can be obtained by the following algorithm. 

ALGORITHM 4.1. Let & be the set of all Greek umbral letters occurring in T and 
let d be the cardinality of&. We shall assume that every letter in & occurs exactly 
n times in T. If not, h((U\ 7*)) = 0 and the algorithm terminates. 

Step 1. Let the brackets in Tbe written as a tableau in some fixed order: 

(4.4) 

From this particular expression of T, construct a new tableau as follows. Let a 
be a Greek umbral letter in &. Going down the first column and then the 
second column of the tableau in (4.4), replace the first occurrence of a by the 
integer 1, the second by 2 , . . . , and the nth by n. Repeat this for every Greek 
umbral letter, thus obtaining a tableau T whose entries are either integers in 
{l ,2, . . . , / i} or the Roman letter u. Putting the tableaux T and f side by side, 
we obtain the double tableau 

T = 

a 

y 

. <*> 

P] 
8 

MJ 

\a 0 
\y 8 

[w u 

* J 1 
k I 

P " J 
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Step 2. Next let 0 be a function from & to the set of all permutations on 
{1,2, . . . ,«}. The double tableau T[$] is defined by 

T[*] = 

a p 
y s 

u u 

* ( Y , * ) 

HP, J) 

where </>(«, i) is the image of the integer i under the permutation $(a). 
Step 3. Let T[Q] be the double tableau 

\a p 
y * 

[ CO W 

'" /I 
A:' /' 

/>' u\ 

To each row in T[4>], assign a polynomial in the homogenized roots according 
to the following two rules: for i, j E {1,2,. . . ,«} and a , j8G$, 

(4.5) [a 0|i A^-bkiVj-Viikj), [a u\i u] ^-{ii^ - vty). 

The polynomials (ji,.?. — î ./i.) and (/i,* — *>,>>) are called differences. 
(This assignment can be visualized as a substitution by interpreting 

[a f$\i j] and [a u\i u] 

as the determinants 

det («lOi (P\J)i 

(«l02 (0L/)2 
and det («lOi 

(«I02 

where (a | / ) , , (a | i ) 2 , . . . are new variables, and making the substitutions 
(a 11)! «- /iy, (a I i)2 <- ?,., ux *- y, and w2 <- x.) 

Taking the product of all the differences, we obtain the polynomial Th[$]9 

given explicitly as follows: 

Th[<P] = (tLi,vj,-vi,iiJ,)(iik,pr 

Step 4. Set 

*v/v) *•• (/y*~ vP>y)-

H(U\T))=^d^Th[<!>l 

where the sum ranges over all functions $ from the set of Greek umbral letters 
& to the set Sln of permutations of {1,2,. . . ,«} and g, the index of the covariant 
(U\T), equals the number of brackets in T not containing the Roman letter u. 
• 

EXAMPLE. Let D be the discriminant of a binary quadratic form. Then D is 
an invariant and is given by 
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An umbral representation for D is \[a ft]2. Following the above algorithm, 
we obtain four double tableaux: 

\a p 
[a ft 
\a fi 
[a p 

1 
2 

2 
1 

f 
2 

1 
2 

1 
2 

1 
2 

a 
a 

a 
a 

P 
P 
P 
P 

1 
2 

2 
1 

2 
1 

2" 
1 

On substituting according to the rules (4.5), we obtain for each of the tableaux, 

°> i(/*i"2 ~ *\Hi)(W\ - "2/*i)> liVi^x ~ ^ f i)(/*i"2 ~ v\V>i)> 0. 

Thus, in terms of homogenized roots, the discriminant has the representation 

# = - ± U i " 2 - "i/*2)
2-

THEOREM 4.1. Algorithm 4.1 computes the representation of the covariant 
(U\T) in terms of the homogenized roots. 

PROOF. Let m be the number of rows in T and label the rows in T with the 
integers { l ,2 , . . . ,m}. For y a Greek umbral letter occurring in T and Z a 
subset of { l , . . . ,m} , let Ex(y, Z) and Ex(y, Z) be the subsets of row labels 
defined by 

£,(y, Z) = {/: i E Z and y is the first letter in the /th row}, 

£,(y, Z) = {/: i £ Z and y is the second letter in the /th row}. 

Similarly, let 

E2(y, Z) = {/: / G Z and y is the second letter in the /th row}, 

£2(y, Z) = {/: / g Z and y is the first letter in the /th row}. 

Let 

el(y9Z)=\El(y,Z)\+\E](y,Z)\ 

and 

e2(y9Z)=\E2(y9Z)\+\E2(y9Z)\. 

By the assumption that the Greek umbral letter y occurs exactly n times in T9 

we have 

(4.6) ei(y9Z) + e2(y9Z) = n. 

For the Roman letter w, the sets Et(u9 Z), Ef(u9 Z) and the numbers et(u9 Z) 
are defined similarly. 

LEMMA 4.1. As a polynomial in the variables y}9 y2, y E 6E, a«d w,, w2, f/ze 
tableau T can be expanded as 

(4.7) r=2(-i)m~'^(z) , 
Z 
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where 

M{Z)= ( II Yfi(T.Z)yj2(r.Z)J||eI(«,Z)||e2(«fZ)j 

and the sum is over all subsets Z of the set of row labels {1,2, . . . , m). 

PROOF. Recall the algebraic identity 
m 

(4.8) nu-A)=2(-irBn^ni», 
1=1 z IGZ ygz 

where the sum is over all subsets Z C { l , . . . , r a } . As a polynomial in y1? 

y2,...,u {9 u2, the tableau T is a product of type (4.8) where the factor At — Bi 

is the result of expanding the bracket in the i th row of T. Suppose this bracket 
is [y 8]. Then 

Ai = yA a n d Bi = y2s\' 
Hence, in (4.8), 

i(EZ V y ' 

where the second product ranges over all y in 6E, and for any Greek umbral 
letter y (and similarly for the Roman umbral letter w), /?(y) =| Ex(y, Z) | is the 
number of times y is the first entry in a row labelled by an integer in Z, and 
q(y) =\E2(y, Z) | is the number of times y is the second entry in a row labelled 
by an integer in Z. Similarly, 

JlBj=[]lyphpAur>uF\ 

where r(y) =\Ex(y, Z) | and s(y) =\E2(y, Z ) | . Since for any umbral letter y, 

p(y) + r(y) = ex(y9Z) and q(y) + s(y) = e2(y, Z), 

we have 

II At II ^ = ( II y^^yi^^)u^u^u^u^. 
i(EZ j&Z ' y G « ' 

This concludes the proof of the lemma. • 
Returning to the proof of the theorem, apply the umbral operator U to both 

sides of (4.7) to obtain 

(U\T)=2(-l)m~m(U\M(Z)) 
z 

= 2(-l)m~lZ][U\( II yf^z)y^z))Mf^z)W^z)V 
z \ Se« ' I 
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Using the definition and the multipHcative property of the umbral operator U, 
we obtain 

,Z) (t/iM(z)>=(n^1(Y,z))^2(M'z)(^)e,(M" 

e2(u,Z)(yy\(u,Z)^ 

l y G « 

A
ei(a,Z)A

ei(fi,Z) ' ' ' Ae,(8,Z)X^ 

where a, /?, . . . ,to are all the umbral letters in 6E. To compute h((U\ M(Z))), we 
replace each coefficient Ak by the corresponding symmetric function in the 
homogenized roots. This yields 

h«t / |M(z)»=-^n(- i ) e 2 ( i " Z ) 

X 

(n\)d y 

2d *V(1) * * ' Vir(e2(a,z))ll7r(e2(a,Z)+\) ' ' ' M*r(w) 
IT 

2dVa(l) ' ' ' Vo(e2(P,Z))llo(e2(P,Z)+\) ' * * Ma(„) 
a 

. . . xe2(«,Z)(_yyi(«,Z)^ 

Bringing the sums out of the products and collecting the negative signs 
together, we obtain 

(4.9) h((U\M(Z))) = ( ! / „ i ) r f (_i) '2(«' z )+^^)+-+*2(«.z)+. I (w,z) 

X 2d *V(1) * * * Vir(e2(a,Z))llir(e2(a,Z)+l) ' ' ' /*»(«) 
IT,a,... 

the sum ranging over all d-tuples IT, a,... of permutations of { l , . . . ,m} 
indexed by the Greek umbral letters in 6B. 

LEMMA 4.2. 

e2(a, Z) + e2(j3, Z) + • • • + e2(<o, Z) + 2̂(M> Z) = m> 

wAere w w the number of brackets in T. 

PROOF. AS the set E2(y, Z) are pairwise disjoint, it suffices to prove 

E2(a, Z) U £2(j8, Z) U ••• U£2(<o,Z) U E2(u, Z) = {1 ,2 , . . . ,m}. 

To show this, let i be an integer in (1, . . . ,m}. If i E Z, then / E 2s2(Y> ^)» 
where y is the second letter in the /th row. If i £ Z, then i G £2(y', Z), where 
y' is the first letter in the ith row. Hence, / is in the union E2(a, Z) 
u ••• UE2(U,z>. n 

Using the lemma, we conclude that 

e2(a9 Z) + e2(p9 Z) + • • • +e2(w, Z) + ^ ( K , Z) 

= m — (e{(u9 Z) + e2(w, Z)) =m — p (mod2), 
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where/? is the number of occurrences of u in T. Observing that m — pis simply 
the index g of the covariant (U\ T) (see §3.4), we obtain 

/_*y2(a,Z) + e2(p,Z)+-+e2(e),Z) + ex(u,Z) _ / _ i \ 2 

Substituting this into (4.9) and summing over all subsets Z in {1,2,...,m}9 we 
obtain 

_ ( - i ) g 
vm- |Z | (4.10) h((u\T))=^-2(-l) 

X 2u *V(1) * * * Vv(e2(a,Z))tlir(e2(a,Z))+\) ' ' ' /*»(*) 

. . . xe2(u,Z)yex{u,Z)^ 

To finish the proof, we will show that the polynomial in (4.10) equals the 
polynomial 

(4.11) ^ 2 r W , 

computed by Algorithm 4.1. To this end, consider the tableau f of integers 
constructed in Step 1 of Algorithm 4.1. For Z C { l , . . . ,m} , letD^y, Z) be the 
subset of {1 , . . . , n) defined by 

Dx(y9 Z) = [j:j is the first entry in the /th row of 7 for some i E Ex(y9 Z)} ; 

Thus, Dx(y9 Z) can be constructed by first listing all the rows of T whose row 
labels^are in Ex(y9 Z) and then extracting the first entry from each row. The 
sets Dx(y9 Z), D2(y9 Z), and D2(y9 Z) are defined analogously. Note that 

\Dl(y9Z)UDl(y9Z)\=el(y9Z) 

and 

\D2(y9Z)UD2(y9Z)\=e2(y9Z). 

LEMMA 4.3. Let $ be a function from & to the set of permutations on {1, . . . ,«}. 
As a polynomial in ni9vi9x andy9 

(4.i2)r*[*] = 2 ( - i ) 
Z 

m-\Z\ n n /*o(y,/) 
yG(£ /GZ>,(y, Z)UZ),(y, Z) 

x n _ *•< 
j(=D2(y,Z)UD2(y,Z) 

xe2(u,Z) ex(u,Z) 

and the sum ranges over all subsets Z of {1,.. . ,m}. 

PROOF. AS in Lemma 4.1, we use the algebraic identity (4.8). As a poly­
nomial in ni9 vi9 x and>>, Th[$] is a product 

m 

nu-*,) = 2(-ir"lz,n^n*,, 
/=i z /ez j&z 
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where the factor At — Bt is the result of substituting for the double bracket in 
the ith row of T[<P] according to the rules (4.5). Suppose the double bracket in 
the ith row is [y 8\$(y, p) 0(6, q)]. Then 

Hence, as in the proof of Lemma 4.1, 

1 1 ^ 1 1 * , = n n M*(Y,O 
Ye6B/eZ),(Y,Z)UD1(Y,Z) 

X n F*(y.y) 
/ G Z ) 2 ( Y , Z ) U Z > 2 ( Y , Z ) 

xe2(u,Z) ex(u,Z) ^ |-j 

Substituting (4.12) into (4.11) and changing the order of summation, we 
obtain 

(4.13) 
(«!) * («!) z 

x2 11 11 _ /**(y,i) 
, ye f i / G Z ) , ( Y , Z ) U Z > , ( Y , Z ) 

X n ^*(Y,y) 
^ ( l ^ Z ) ^ ( K . Z ^ 

yez>2(Y,Z)uz>2(Y,z) 

It remains to show that the polynomials on the right-hand side of (4.10) and 
(4.13) are equal. Let Z be a subset of {1 , . . . , m) and let ¥ be a function from & 
to the set S2n of permutations on {1, . . . ,/i} such that for all y G 6E, ^(y) sends 
the subset 

{ l , 2 , . . . , | £ 2 ( y , Z ) | } to D 2 (y ,Z) , 

( | £ 2 ( y , Z ) | + l , . . . , e 2 (y ,Z)} to D2(y,Z), 

{e 2(y,Z) + l , . . . , e 2 (y ,Z) + |£ 1 (y ,Z) | } to Dx(y, Z), 

{e 2 (y ,Z) + | ^ ( y , Z ) | + l , . . . , « } to Dx(y, Z). 

If O: 6E -> fl„, then let O' be the function given by O'(y) = 0(y) ° ^(y), the 
binary operation ° being composition of permutations. As <P ranges over all 
functions from & to ftw, so does $'. Hence, the inner sum in (4.13) can be 
rewritten as 

11 y*(Y,l) * ' * VQ(y,e2(y,Z))li<l>(y,e2(y,Z)+\) ' ' ' P<S>(n) 
xe2(u,Z) ex(u,Z) ̂  

On writing a function <I>: 6£-> fln as a J-tuple (TT, a,...) where 77 = 0(a), 
a = $(/?), • • • > we obtain the inner sum in (4.10). 

This completes the proof of the theorem. • 
Algorithm 4.1 can be extended without major changes to find the representa­

tion of a joint covariant (U\ T) of several binary forms/^JC, y\... ,/r(x, y) in 
terms of the homogenized roots of fx(x, >>),••• ,fr(

x> JO-
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Let f(x,y) be of degree n(i) and let $\...,ii%)9 v<j\...,v% be the 
homogenized roots of f(x, y). 

ALGORITHM 4.2. Let &t be the set of Greek umbral letters belonging to the form 
f(x, y) appearing in T and let dt be the cardinality of&r We shall assume that 
every letter in &i occurs exactly n(i) times. If not, h((U\T)) — 0 and the 
algorithm terminates. 

Step 1. Construct the tableau T by repeating Step 1 in Algorithm 4.1 for 
each set &. of Greek umbral letters. 

Step 2. Let O be a function from &x U &2 U • • • U6£r to the set of permu­
tations such that if a G &i9 then $(a) is a permutation of the set {1,2,. . . ,«(/)}• 
The double tableau T[$] is defined as in Algorithm 4.1. 

Step 3. Let T[$] be as given in Algorithm 4.1. To each row in T[$], assign a 
polynomial in the homogenized roots according to the following two rules: 

If a G &p and £ G &q9 then 

(4.14) [a j3|j j] *- ti'h}* - v\>Yf\ 

[a u\i u]+-n\p)x-v}p)y. 

The polynomial Th[$] is obtained by taking the product of all the difference 
so obtained. 

Step 4. Set 

h((U\T)) = ({-!)'/ J] (*(,•)!)'') 2 r*[»] , 

where g is the index of the covariant (U\T) and the sum ranges over all 
functions 4> of the type defined in Step 2. 

For many applications it is more convenient to work with the roots rather 
than the homogenized roots. Algorithm 4.2 can be easily modified to obtain 
the representation of (U\ T) in terms of the roots. 

Let/(jc, y) be of degree n(i). Let X((\...,X(l
n\0 be the roots of ft(x, 1), and let 

An{i) be the leading coefficient of f(x, y). 
ALGORITHM 4.3. To obtain the representation of (U\T) in terms of the roots, 

proceed as in Algorithm 4.2 with the following modifications. 
I. In Step 3 use the following assignments instead of (4.14): if a G &p and 

[a p\i j] 4- A</> - X</», [a u\i u] *-x - Xf>y 

The expressions A ( / } — X\p) and x — X[p)y are also called differences. The 
polynomial Tr[<P] is obtained by taking the product of all the differences so 
obtained. 

II. In Step 4 set 
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We end this section with an example. 
EXAMPLE (TRANSVECTANTS). The A:th transvectant of two binary forms 

/(JC, y) and g(x, y) of degree n and m, n> m> k, is the joint covariant 
defined umbrally by 

{f,g}"={u(f,g)\[a fi]k[a «]"-*[/* «]""*>, 

where a is an umbral letter of / and ft an umbral letter of g. The first 
transvectant is the Jacobian of/and g; the last, or (n — m)th transvectant is 
the apolar covariant of/and g (see §5). 

Applying Algorithm 4.2, the expression of the kth transvectant in terms of 
the homogenized roots /i l 5 . . . ,/*„, vl9... ,vn of / (*, >>) and £l9... ,£w, rj^... ,ijm 

of g(x, j ) is given by 

{/> g} = ("I) 2 (M»(l)^(l) ~ (̂1)̂ 0(1)) * * • (PwOifloik) ~ V7T(k)L(k)) 
IT, a 

x (/*»<*+D* - *v<*+i).y) • • • (i*w(n)x ~ v«(n)y) 
X Ua(*+1)* - 1a(*+l)>0 * * * (L(m)X ~ l)o(m)y)-

4.3 Covariants and differences. In the previous section, we showed that the 
symmetric functions of homogenized roots which represent covariants can be 
expressed as polynomials in the differences of homogenized roots. The con­
verse is also true, provided that certain simple numerical constraints are 
satisfied. 

Let / i j , . . . ,/!„, pl9..., vn be the homogenized roots of a binary form of degree 
n. Recall that a difference of homogenized roots is a polynomial of the form 
ptPj — iiJvi or [itx — vty. A difference monomial N is a product of differences. If 
i is an integer in {1,2, . . . ,«}, the multiplicity mt of / in the difference monomial 
N is the number of differences in N containing the variable /iz (which equals 
the number of differences in JV containing vt). The order of N is the number of 
differences containing the variable JC. The index of N is the number of 
differences not containing the variable x or y. A difference monomial N is said 
to be regular of degree d if the multiplicities of i are equal to d9 that is, if 
mx = m2= - • - = mn = d. If 

N = (Wj ~ ^jvi)(^kvi ~ V>ivk) '' * (/V< - vpy)(iiqx - vqy) • • • 

and IT is a permutation of {1, . . . ,«} , the difference monomial ir(N) is defined 
by 

A symmetric difference term (of index g) is a polynomial of the form 2„7r(N)9 

where TV is a regular difference monomial of index g and the sum is over all 
permutations IT of {1, . . . ,«}. By definition, a symmetric difference term is a 
jointly symmetric in the variables /AI and vt. 

THEOREM 4.2. Let R be a polynomial in the algebra of homogenized roots 
k[[il9... ,/iw, vl9... 9vn9 x9 y]. Then R is the representation in terms of homoge­
nized roots of a covariant I of index g of binary forms of degree n if and only if R 
is a linear combination of symmetric difference terms, all of the same index g. 
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PROOF. Let / be a covariant. We will show that h(7), the representation of / 
in terms of homogenized roots, is a linear combination of symmetric difference 
terms. By linearity it suffices to prove the assertion in the case when / = (U\ T), 
where T is a bracket monomial in the umbral space. Let & be the set of Greek 
umbral letters in T9 d the cardinality of 6E, and g the index of /. Using 
Algorithm 4.1, we obtain 

(4.15) h((U\T))=^2Th[*l 

where the sum ranges over all functions $ from & to £2W, the set of all 
permutations on {1, . . . ,«}, that is, over all d-tuples ($(a): a E £ ) in ̂  X fin 

X • • • Xflw, the <i-fold direct product of Qn. Consider tin X • • • XQn as the 
d-fo\d direct product of the symmetric group fiw. Let A be the subgroup 
consisting of all J-tuples of the form (TT, TT,. . .) where TT E £2W, and let 6 be a 
set of right coset representatives of A in Q>n X • • • XS2W. Then the sum (4.15) 
can be broken down into smaller sums: 

^ 2 2 r*[™,»r,...], 

where the outer sum ranges over all /̂-tuples of permutations in 6 and the inner 
sum ranges over all d-tuples of permutations in the subgroup A. Now let 
(a, T,. ..) be an d-tuple of permutations in Q. The polynomial Th[o, r,...] is, 
by construction, a regular difference monomial (of degree d9 the number of 
distinct umbral letters in T). Hence, the inner sum can be rewritten as a 
symmetric difference term: 

2 r*[w,irT,...]= 2 »(r*[o,T,...]). 

Thus, h((U\ T)) is a linear combination of symmetric difference terms. This 
proves the implication. 

To prove the converse, it suffices to prove that a symmetric difference term 
R is the representation in terms of homogenized roots of a covariant /. First, 
observe that when R is expanded as a polynomial in the variable pi9 vi9 x and y, 
every one of its monomials is regular of the same degree. Thus, R is regular as 
a polynomial in /xl and vt. As R is jointly symmetric in /A, and vi9 by Proposition 
4.1, there exists a polynomial I(a0,...,an, x, y) such that 

R = l(a0(iii9 vj),... ,a„(ni9 Vj)9 x9 y). 

It remains to show that I(A09... 9An9 X9 Y) is covariant. 

LEMMA 4.4. Let (c, d) be a linear change of variables from x andy to x andy. 
Then 

Pi*] ~ M// = U d]{iitVj - iijVj), 

Pi* ~ W = /*,•* ~ W' 

PROOF. Under the linear change of variables (c, d)9 the linear form /if.jc — vty 
is transformed into jS-ic — vty. This proves the second identity. Equating 
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coefficients of x and y, we have 

M, = ciPi + qf,-, ^ = -</2/A, - d^,. 

Observing that the difference \iivj — fiJvi can be rewritten as a determinant 

M,*y _ My",- = det 

we conclude that 

/ c2 c\\ I M, My \ 
Mi", " Mŷ i = det^ _ ^ _ ^ J det | „. ^ J = [c </]( /I ,P, - / * / , ) . D 

To finish the proof, let g be the number of differences of the type ntVj — tijPt 

in a monomial in R. Using the lemma, we infer that 

R(jii9 vj9 x9 y) = [c d]gR(ixi9 vj9 x, y). 

Thus, for any binary form f(x9 y) — ^Pk=^{X)akx
kyn~k with homogenized 

roots /i,., vi9 and any change of variables (c, d)9 

I(a0,... 9an9 x9 y) = l(a0(fii9 Vj)9... ,a„(jii9 Vj)9 x9 y) 

= *(Mi> *y> *> i7) = [c d]gR(tii9 vj9 x, y) 

= [c d]8l(a09...9an9x9y). 

Hence, I(A09... 9An9 X9 Y) is a covariant of binary forms of degree «. • 
Symmetric difference terms can be written more elegantly by using bracket 

notation. Briefly, set 

[' j]=Wj-HJi'i> V "] = Pi* ~ Pty 

and let T be the subalgebra generated by these brackets in the algebra of 
homogeneous roots. Define the symmetrization operator S on Tby setting 

(S\[i j][k / ] • • • [ /> «]> 

= 2[*(0 *U)][«(k) *(/)]•• •[»(*) «] 
IT 

on bracket monomials and extending by linearity. Thus, in this notation, a 
symmetric difference term is the image of a bracket monomial under the 
symmetrization operator. 

This description yields another representation of the space i[n9d9t] of 
covariants of degree d and order t of binary forms of degree n. 

PROPOSITION 4.2. Let <Ys[n9 d9t] be the space of all symmetrized bracket 
monomials formed with the n integers {1,2, . . . , n) each occurring d times and the 
Roman letter u occurring t times. Then 

i[n,d,t]^^s[n,d,t], 

the isomorphism being given by restricting the homomorphism hto $[n9 d9t]. 

PROOF. Observe that if / is a covariant and h(7) is zero, then / must be 
identically zero. • 

Pi My 
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By Theorem 4.2 the symmetrization of a difference monomial M represents a 
covariant if and only if M is regular. This condition, stated in terms of 
brackets, yields 

PROPOSITION 4.3. Let M be a nonconstant bracket monomial in T. Then 
(S\M) is the representation in terms of homogeneous roots of a covariant I of 
degree d and order t of binary forms of degree n if and only if the following 
conditions are satisfied: Let 

mtJ = number of occurrences of the bracket [i j] or [j i] in M, 

tt = number of occurrences of the bracket [i u] or[u i] in M. 

Then: 
A. For all i andj9 mtj = mji and mH — 0. 
B. For all i, 

tt + mn + mi2 + mi3 -f • • • +min = d. 

C. tx + t2+ ••• +tn = t. 
D. The sum of all the tt

9s and m^'s is even: that is, there exists a positive 
integer h such that 

n n 

2 *i + 2 mij — ih. 

Conversely, any covariant can be represented in terms of homogenized roots as a 
linear combination of symmetric difference terms (S\M)9 where M satisfies the 
above conditions. 

PROOF. This result follows readily from Theorem 4.2, on observing that: 
A. As M is nonzero, the number mn of occurrences of the bracket [/ /] 

must be zero. Furthermore, as the definition of mtJ is symmetric in i and j , 
miJ = mjt. 

B. tt + mn + mi2 + • • • +min is the number of occurrences of the variable 
ju, (or the number of occurrences of vt) in the bracket monomial M. By 
regularity, these numbers are all equal, say, to d. When (S\M> is written as a 
polynomial / in the homogenized symmetric functions a0(ni9 Vj),... ,an(fxi9 Vj), 
each variable JUX belongs to exactly one homogenized symmetric function 
ak(ni9 Vj). Hence, d equals the total degree of the variables A09... 9An in /. 

C. tx + t2 + • • • +tn equals the total order of the variables x and y in 
( S | M ) and, hence, equals the order of /. 

D. The sum of all the f/s and w/y's equals the total number of integers from 
{l ,2, . . . , / i} or letters u (counted according to their multiplicity) occurring in 
the bracket monomial M. As each bracket contains two entries, this number 
equals 2h9 where h is the number of brackets in M. • 

EXAMPLE. Let (S\M) be a symmetric difference term representing an 
/^variant of the binary cubic. Then the nonzero entries mij9 i ¥=j9 i9 j = 1,2,3, 
satisfy the following diophantine equations: 

mij = mji9 

m\2 + m\3 = m2\ "*" m23 = W 3 1 "*~ m 3 2 = ^ ' 

m\2 + m13 + m21 + m23 ^ m3\ "*" m32 = ^h. 
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Solving these equations, we obtain 
"hi = ml3 = m23. 

Thus, 

M=([l 2][l 3][2 3])k 

for some positive integer k. As 

[w(l) 7r(2)][W(l) IT(3)][W(2) 7r(3)]=sgnW[l 2][1 3][2 3], 

(S\M) equals zero if k is odd. Thus, 

(S\M)=([l 2][1 3][2 3])*, 

where k is even, are the only nonzero symmetric difference terms representing 
invariants. For k = 2, 

([1 2][1 3][2 3])2 = ((w2- W\)(W3~ Wi)(W3~ Wi))2* 
a constant multiple of the discriminant of the cubic. We conclude that every 
nonzero invariant of the binary cubic is a constant multiple of a power of the 
discrirninant. • 

By suitably extending the notion of regularity, the results in this section 
generalize to several binary forms. Let/^x, y\... ,/r(x, y) be binary forms of 
degrees «(1),... ,n(r), and let /A***, vjk\ i— 1,2,... ,n(k)9 be the homogenized 
roots of the kth binary form fk(x, y). A difference is a polynomial in the 
algebra k[fi\k\ vjk\ x, y] of homogenized roots of the form 

itVrjO - ltpv<V or /i<*>* - ?<*>>>, 

and a difference monomial is a product of differences. The multiplicity m\k) of i 
relative to the kth binary form in a difference monomial N is the number of 
differences in N containing the variable jtt^. A difference monomial N is said 
to be regular of degree (dl9...,dr) if the multiplicities of / relative to the kth 
binary form are all equal to dk9 that is, if m\k) = mik) = • • • = m^n

k)
k) — dk. 

With this definition of regularity, both Theorem 4.2 and Proposition 4.3 extend 
readily to several binary forms. 

4.4. Hermite's reciprocity law. The bracket notation for differences, com­
bined with the umbral notation, yields a transparent proof of Hermite's 
reciprocity law. 

THEOREM 4.3 (HERMITE'S RECIPROCITY LAW). Let c(n,d,t) be the dimension 
of the vector space of covariants of degree d and order t of binary forms of degree 
n. Then 

c(n,d,t) = c(d,n,t). 

PROOF. Representing the covariants of degree d and order t of binary forms 
of degree n umbraUy, we have, by Theorem 3.4, 

c(w, d, t) = dim%s[n9 d, t], 
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where %s[n, d,t] is the vector space spanned by all symmetrized bracket 
monomials formed with d distinct Greek umbral letters a, /? , . . . , S each occur­
ring n times and the Roman letter u occurring / times. On the other hand, 
representing the covariants by homogenized roots, we have, by Proposition 4.2, 

c(d9n,t) = dimcVs[d,n9t], 

where <Ys[d, n,t] is the vector space spanned by all symmetrized brackets 
monomials formed with d integers {1,2,...,*/} each occurring n times and the 
Roman letter u occurring t times. These two vector spaces are isomorphic on 
identifying the first umbral letter a with the integer 1, the second letter f$ with 
2 , . . . , and the d\h letter 8 with d. • 

5. Apolarity. 
5.1 The apolar covariant. By making suitable changes of variables, a binary 

form may sometimes be brought to a simpler form. For example, a binary form 
may be written as the «th power of a linear form, or it may be written as the 
sum of k, but no fewer than k, powers of linear forms. Such properties of a 
binary form are independent of the choice of coordinates, and we therefore 
expect them to be expressible by the vanishing or nonvanishing of covariants. 
We shall now see how such covariants may be constructed. 

Consider two binary forms 

(U(f,g)\[a «]">, 

(u(f,g)\[P u]m), 

where /(JC, y) is of degree n, g(x, y) is of degree m, m < n, a is an umbral 
letter for/, and f$ is an umbral letter for g. Their apolar covariant {/, g} is the 
binary form of degree n — m defined umbrally by 

{f,g) = (u(f,g)\[a /?]m[« « ] " " " ) . 

LEMMA 5.1. Let ^n be the vector space of all binary forms of degree n. Then the 
apolar covariant {/, g} is a bilinear mapping from f „Xf w to %-m which is 
jointly covariant in f and g. Conversely, any jointly covariant bilinear mapping 
from %^<^mto%_m is a constant multiple of {/, g}. 

PROOF. The lemma follows from two easy observations: (a) A joint covariant 
/ of / and g is bilinear in / and g if and only if / can be represented umbrally 
by a bracket polynomial in which every bracket monomial contains exactly one 
umbral letter belonging to / and exactly one umbral letter belonging to g. (b) 
The only standard tableau with n occurrences of a, m occurrences of /?, and 
n — m occurrences of w, where a < ft < w, is [a fi]m[a u]n~m. • 

In the special case when n = m9 the apolar covariant {/, g} has the explicit 
expression 

{/.*}= i (-D""*( J)«A-*-

f(x,y)= 2 (£)«**V-
m 

g(x,y)= 2 (*)MV"-
fc=0 
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This is a scalar and is called the lineo-linear invariant. In general, the apolar 
covariant is given explicitly by 

n — m m 

(5.i) {/,*> = 2 (n im) 2 ( - i r " * ( J ) ^ - * ^ ^ " — f . 

Let 

/ (x , y) = a(\ixx - vxy)(fi2x - v2y) • • • (nnx - vny), 

g(*> y) = b(£\x ~ v\y)(iix ~ v2y) • • • (Smx - vmy) 
be factorizations of /(x, y) and g(x, y) into Hnear forms. We say that two 
linear forms JU,X — vty and [LJX — Vjy in the factorization of/(x, y) are distinct 
if for all constants c, ntx — vty T̂  C(HJX — Vjy). From Algorithm 4.2, we 
immediately obtain the expression of the apolar covariant {/, g} in terms of 
the coefficients /*,., vt and {,., TJZ of the Hnear forms occurring in the above 
factorizations, namely, 

(5.2) { / , g) = ~ m,ni
a 2 ( ^ i ) ^ i ) - *V(i)*o(i)) 

IT, a 

' ' ' \P,ir(mjtlo(m) ~ Pir(m)€o(m)) 

X (P«(m+\)X ~ V«im+\)y) ' ' ' (Pf,(n)X ~ V^n)y), 

where the sum ranges over all permutations IT of {1,2,. . . ,«} and a of 
{1,2,. . . ,m}. 

A useful fact about the apolar covariant is 

LEMMA 5.2. Let /(x, y) be a form of degree «, g(x, y) a form of degree mx, 
h(x, y) a form of degree m2, with m, + m2 < n. Then 

{f,gh} = {{f,g},h}. 

The proof is an easy computation using the umbral representation of {/, g}. 
As a corollary, we obtain 

COROLLARY 5.1. Under the same hypotheses as Lemma 5.2, if {f, g) = 0, then 
{/, gh} = 0. 

5.2 Forms apolar to a given form. Two binary forms/(x, y) and g(x, y) are 
said to be apolar if their apolar covariant {/, g} is the identically zero form. 
The basic question about apolarity which we will study in this section is: Given 
a form of degree s and a positive integer /, what is the dimension of the vector 
space of all forms of degree t apolar to the given form? The answer turns out to 
be different depending on whether (A) / > s or (B) t < s. 

The answer for case (A) is given by 

PROPOSITION 5.1. Let g(x, y) be a nonzero form of degree m, and let n be a 
positive integer such that n> m. Then the dimension of the vector space of all 
forms of degree n apolar to g(x, y) equals m. More explicitly, if 

g(x, y) = a(nxx - vxy)mx{ii2x - v2y)mi • • • (/i x - v y)m* 
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is a factorization ofg(x9 y) into distinct linear forms, then the binary forms 

(PiX- viy)n~mi+xxjym~j~\ i= 1,...,/?, j = 0, l , . . . ,m, - 1, 

form a basis for the vector space of all forms of degree n apolar to g(x9 y). 

PROOF. Let 

m . . 

A:=0 

Then the condition {/, g} = 0 yields n — m + 1 Hnear equations which have 
to be satisfied by the coefficients ak of f(x9 y) if / is apolar to g: 

(5.3) 

(oK*0 " (7)*m-l«l + (2)^-2*2 - - ± ( S V « =0 

(j)*m«l " ( 7 K - l ' 2 + - ±(m)Vm + l = 0 

(fybman_m - (^)bm_lan_m + l + ••• ± (™) V « = °-

As g(x, >̂ ) is nonzero, these Hnear equations are Hnearly independent and 
hence determine a subspace of the vector space of all binary forms of degree n 
of dimension exactly (n + 1) — (w — m + 1) = m. 

To prove the second assertion let ntx — vty be a Hnear form occurring with 
multipHcity mt in the factorization of g(x9 y). Let 

(5.4) h(x9 y) = (M,* " F^)"-m'+,^>m'"y"1. 

Using (5.2), we have 

'*' g* = ~m\n\ ^ (^(1)^(1) -~ A7r(i)̂ a(i)) 
w, a 

X (^(m+l)* ~ ^ m + l ) ^ ) * * * (*«*)* " A*(«)>0> 

where ic,., X,. are the coefficients of the linear forms in the factorization (5.3) of 
h(x9 y) and £,, i\t are the coefficients of the Hnear forms in the factorization of 
g(x9 y) given in the statement of the proposition. Observe that the coefficients 
/iy, vi occur with multiplicity n — mt + 1 among the Ki9 Xi9 and with multipHc­
ity mt among the £,, TJ,. As m, + (« — m, + 1) = « + 1 > «, and there are 
exactly n factors in each summand in the above sum, there must, by the 
pigeonhole principle, be a factor of the form (fxivi — î /i,.) in each summand. 
Hence {h, g} = 0 and h(x, y) is apolar to g(x9 y). 

Finally, consider the forms 

(liix-viy)"-mi+lxJy>"<->"-l
9 1 =! , . . . , /> , y = 0 , l , . . . , m , - l , 
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where (fixx — vxy),.. .,(npx — vpy) are all the distinct linear forms occurring 
with multiplicity mx,...,mp in a factorization of g(x, y) into linear forms. 
There are mx + m2 + • • • +m = m such forms and they are all apolar to 
g(x, y). To finish the proof it remains to observe that they are linearly 
independent. The proof of this fact is elementary. • 

The answer for case (B) cannot, in general, be given explicitly. However, the 
following partial answer often suffices. 

PROPOSITION 5.2. Let / (x, y) be a binary form of degree n and let m be a 
positive integer such that m<n. Then the subspace of all binary forms of degree 
m apolar to /(x, y) has dimension greater than or equal to 2m — n. 

PROOF. Given 

f(x,y)=2(n
k)°kx

kym-k> 

the condition {/, g} = 0 yields n — m + 1 linear equations on the coefficients 
bt of any form g(x9 y) of degree m apolar to/(x, y): 

(5.5) 2 (-l)""*(£)«*+A,-* = 0, / = 0 , 1 . . . . , » - « . 

These linear equations may be dependent. Thus, the dimension of the subspace 
of all binary forms of degree m apolar to /(x, y) has dimension at least 
m + 1 — (n — m + \) = 2m — n. • 

Analyzing the proof of the previous proposition, we obtain a somewhat more 
useful result. 

COROLLARY 5.2. Under the same hypotheses as Proposition 5.2, the space of 
binary forms of degree m apolar to f(x, y) has dimension m — r + 1, where r is 
the rank of the system (5.5) of linear equations. 

5.3 Sylvester's theorem. We now have all the tools in hand to prove 
Sylvester's theorem on canonical forms for binary forms of odd degree. 
Sylvester's theorem states that, in general, a binary form of odd degree 
n = 2j + 1 can be written as a linear combination of j + 1 «th powers of 
linear forms. Thus, it gives "generically" a canonical form for binary forms of 
odd degree. 

THEOREM 5.1 (SYLVESTER). Let / (x, y) be a binary form of odd degree 
n — 2jJr 1. Then there exists a nonzero form g(x, y) of degree m =j + 1 
apolar to / (x, y). If, in addition, there exists one such form g(x, y) with m 
distinct linear factors [ixx — vxy,. ..,\kmx — vmy, then there exist scalars ct such 
that 

m 

f(x>y) = 2 cAPiX - vty)n. 

PROOF. By Proposition 5.2 the dimension of the space of all forms of degree 
m apolar to/(x, y) is at least 

2m - w = 2(y + 1) - (2y + 1) = 1 
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and is thus nonzero. If there exists one such form g(x, y) with m distinct linear 
factors, then the second assertion follows from Proposition 5.1. • 

By using the full power of Proposition 5.2, we can sharpen Sylvester's 
theorem so as to omit the qualification "generically". 

THEOREM 5.2. Let f(x, y) be a binary form of odd degree n = 2j + 1 and let 
g(x, y)be a nonzero form of degree m=j+ 1 apolar tof(x, y). If 

g(x, y) = (MI* - v\y)mi(v>2x ~ viy)m2 • • • (/v* ~ v
Py)mp 

is a factorization of g(x, y) into p distinct linear forms, then there exist forms 
ht(x, y) of degree mt — 1 such that 

p 

/(*> y) = 2 *,-(*> yXni* - vty)n m'+1-

When the system (5.5) of linear equations is of rank m, then the nonzero 
form g(x, y) in Sylvester's theorem is determined up to a constant multiple. 
When this is the case, the form g(x, y) is in fact a covariant, classically 
denoted by / , of binary forms of degree n. Our next result provides an explicit 
umbral representation for / . 

LEMMA 5.3. Let f(x, y) = 1n
k=Q(n

k)akx
kyn~k be a binary form of odd degree 

n = 2j + 1 and m =j + 1. Let J be the covariant given umbrally by 

J=(u\TL[t 6]2m« -]), 
* 8<e 8 I 

where {a, /?, . . . ,co} is a set of m linearly ordered umbral letters off(x, y\ the 
first product is over all pairs (6, c) of umbral letters such that 8 < e, and the 
second product is over all letters 8. Then J(a0, al9...,an, x, y) is apolar to 
/(x, y\ and ifJ(a0, ...9an9x,y)& 0, every form of degree m apolar to f(x, y) 
is a constant multiple ofJ(a0,...,an,x,y). 

PROOF. Let g(x, y) = 2k=o(k)bkx
kym~k be a form of degree m apolar to 

/(x, y). Then the coefficients b0, bl9...,bm of g(x, y) satisfy the following 
system of linear equations (see Proposition 5.2): 

(5.6) 

(-ir«b**, +(-ir-1 (7)«i*m-i +(-ir-a (f)a2bm_2 +... + «m*0 = o 
(-ir«i*w+(-ir-1(7)^m .1+(-ir-2(2)^m-2 + 

( - i r^_ 1 ^+(- ir - i (7 )^^ m _ 1 4- . . . +a2m _^0=0 . 
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Solving this for bQ,... ,bm using Cramer's rule and regrouping the terms into a 
determinant, we obtain 

(5.7) g(x,y) = (-\y 

am-y 

(7k 
(T)-= 
(T)«: 

-(7K ••• 
~2„2 

0n, -1 

We can express g(x, y) umbrally by 

g(*,y) n (-ir 
k=\ 

'(7) 

X £/ ( / ) ! 

a,a: 
H - l 

1"2 

3 

3f l« -3 >8f>8: 

riS"-2 

w— \,sm 0)0 

yhr 

u 1 ^ 2 CO j C«?2 

a"a 1"2 
/9m + l / ) m - 2 
P i Pi 

where a, /? , . . . , (0 are m Greek umbral letters of f(x9 y) linearly ordered in such 
a way that a < 0 < • • • < co. Let A denote the determinant inside the umbral 
expression. Factoring out the first entry in each row, we obtain 

A = a2^&',~1Y2Y2',~2 

1 ax/a2 (ax/a2) 

1 fix/Pi (Pi/Pi)2 

X 

1 w 2 "2 

2 

1 Y1/Y2 

1 6>]/<i>2 

1 Wj/ l /2 

( « l / « 2 ) " 

(ft/A)" 

(co,/co2)
m 

( « l / « 2 ) 
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Apart from a factor, the determinant A is a Vandermonde determinant and we 
obtain 

A = aiwr'yfyr2• • • »rx«i«? ,5 ( £ ' S ) ? ( £ ~ S ) • 

Since 

82 e2 82e2 82e2 

and there are m terms in the products containing a given Greek umbral letter, 
we obtain 

A = «rVM*2m~2Y.2Y2m-3 • • • < - ' I I I * *]II[* «]• 
8<e 8 

The determinant A is not yet a bracket polynomial, but on symmetrizing the 
letters (see §3.3, although full details will be be given here), we will obtain a 
bracket monomial. 

Let IT be a permutation of the set {a, /?, . . . ,<o} of Greek umbral letters. The 
permutation TT acts on A by permuting the letters in A, that is, 

W(A)=w(«)rV(J8Wi8)2
m-2---7r(<o)rln['r(«) " W I I I M * ) «]. 

8<e 8 

As the product 

8<e 8 

is alternating, we have 

»r(A) = 8 g n ( V M « ) r I » ( i 8 M / 8 ) 2 " - 2 . . - f r ( c 1 ) ) r , I I [ « " l i l t* «]• 

Observing that a, /? , . . . , co are equivalent umbral letters, we have 

( t / ( / ) | 7 T ( A ) > = ( f / ( / ) | A ) . 

Averaging over all permutations, we have 

« ! ( t / ( / ) | A ) = 2 ( t / ( / ) K ( A ) > 

= (u(f)\l s g n W W V / O n K / ^ " - 2 

•••"(oor'in* "im* «])• 
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But 

2 sgn(7r)7r(a)^ TT(P)MP)? • • • W ( « ) 1 
m-\ 

vm-\ a.a 1"2 
m-2 

P. m-\ PiP. m-2 /*>" m-\ 

sm-l , m - l 

5<e 

We conclude that 

^ / ) l l l [ * *]2II[S «] 

is a constant multiple of g(x, y) and, hence, is apolar to f(x9 y). Further, if 
J(a09 aj,...,an9 x9 y) ^ 0, then one of its coefficients is nonzero and the 
system (5.6) of linear equations is linearly independent. From this we conclude 
that the dimension of the space of all binary forms of degree m apolar to 
f(x, y) is exactly one, or every form of degree m apolar to/(jc, y) is a constant 
multiple of J(a09 al9...9an9 x9 y). • 

As an illustration of the relation between apolarity and canonical forms, we 
derive the canonical forms for the binary quintic. Let 

f(**y)= 2 l5
k)akx

ky5'k
9 a5*09 

k=oXK/ 

be a binary quintic with nonzero leading coefficient. The space of all binary 
cubics 

k=0XK/ 

apolar to f(x9 y) can be found by solving the following simultaneous linear 
equations for the unknowns b09 bl9 bl9 and b3: 

(5.8) -a0b3 + 3axb2 ~ 3a2bx + #3̂ 0 ~ ̂  

-axb3 + 3a2b2 — 3a3bx + a4b0 = 0 

-a2b3 + 3a3b2 — 3aAbx + a5b0 = 0. 

If this system of linear equations is linearly independent, then all the cubic 
forms apolar to f(x9 y) are a constant multiple of J(aQ9...9a59x9 y)9 where/ 
is the covariant 

(U\[a j8]2[j8 y]2[y «]2[« u][fi u][y « ] ) . 
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If J(x9 y) has three distinct linear factors, nxx — vxy, \L2X — v2y, and fi3x — 
v3y, then we have 

A. f(x, y) = a{pxx - vxy)5 + b(fi2x - v2y)5 + c(n3x - v3y)5. 

If 

J(x> y) = (PI* - "iy)2(v>2x - viy)> 
then we have 

B- /(*> y) = (ox + by)(iLxx - vxy)A + C(/A2X + v2y)5. 

Finally, if 

Ax, y) = {px - vy)\ 

C. f(x9 y) = (ax2 + bx + cy2)(fix - vy)3. 

Now suppose the system (5.8) of linear equations is not linearly independent. 
This is the case if and only if J(x, y) is identically zero. If (5.8) has rank 2, 
then we can set b3 — 0 and solve for b2, bx, and b0 to obtain a nonzero 
quadratic Q(x, y), uniquely determined up to a constant multiple, apolar to 
/(JC, y). If Q(x, y) has two distinct linear factors, nxx — vxy and /i2x — v2y, 
then we have 

D. f(x, y) = a(nxx - vxy)5 + b(fi2x - v2y)5. 

If 

Q(x, y) = (fix - vyf, 

then we have 

E. / ( * , y) = (ax + by)(fxx - vy)4. 

Finally, (5.8) may have rank 1. We can then set b3 = b2 = 0 and solve for bx 

and b0 to obtain a nonzero linear form /(x, y) — fix — vy apolar to/(x, y). In 
this case, we have 

F. / ( * , y) = a(iix - vy)5. 

This completes the classification of the canonical forms of the binary quintic. 
There is no analogue of Sylvester's theorem for binary forms of even degree 

in general. However, under certain conditions, we can obtain a similar canoni­
cal form. 

Let 

f(x,y)= 2 (I)«**V 
k=0 
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be a binary form of even degree n = 27. The catalecticant of /(JC, y) is defined 
to be the determinant 

\ao a\ 
\al a2 

\a2 a3 

\aj aj+\ '" a2j I 

LEMMA 5.4. The catalecticant has the umbral representation 

where &= {a, /?, . . . ,e) is a set off 4- 1 linearly ordered umbral letters off(x, y) 
and the product is over all pairs (y, S) of umbral letters such that y < S. 

The proof is similar to that of Lemma 5.3. 
As examples, the catalecticant for the quartic has the umbral representation 

(U(f)\[a 0]2[a y]2[fi y]2), 

and the catalecticant for the sextic has the umbral representation 

(U(f)\[a /J]2[« Y]2[« 8}2[f} y]2[/J 8]2[y 8]2). 

THEOREM 5.3. Let f(x, y) be a binary form of even degree n = 2j. Then there 
exists a nonzero form g(x, y) of degree j apolar to f(x, y) if and only if the 
catalecticant off(x9 y) is zero. Further, if there exists one such form g(x, y) with 
j distinct linear factors, fixx — vxy,..., fijX — Vjy9 then 

J 

f(x>y)= 2 ^{11^ - vty)n. 
i=0 

PROOF. Let 

f(x,y)= 2 (fc)«**V-fc 

k=oXK' 

be a form of even degree n = 1j. The rank r of the system (5.5) of linear 
equations 

2 (-l)J-k(i)ak+lbm_k = 0, 7 = 0 , 1 , . . . J , 
k=o XK> 

is strictly less thany + 1 if and only if the catalecticant is zero. But r <j + 1 if 
and only if the space of all forms of degreey apolar to/(jc, y) has dimension at 
least one. This proves the first assertion. The second assertion follows from 
Proposition 5.1. • 

5.4 The Hessian and the cubic. In this section we shall apply invariant 
theoretic reasoning to the cubic. To this end, we first consider a covariant, the 
Hessian, which is of independent interest. 

aj+\ 
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The Hessian H(x9 y) of a binary form f(x, y) of degree n is defined 
umbrally by 

H(x,y)=W(n-lf{u(f)\[a 0]2[a u]"-2[fi u]"'2), 

where a and fi are umbral letters of f(x9 y). A more effective way to compute 
the Hessian is given by 

LEMMA 5.5. 

H(x, y) = det 

' d2f d2f * 
dx2 dxdy 
a2/ a2/ 

dx dy 9j2 

PROOF. TO show this, we note the following commutation relations: 

Txu(f) = u(f)1t2> Yyu^ = -U^lx-
Applying this to f(x, y) = (U(f)\[y u]n), y an umbral letter of/, we obtain 

92 / 

0 = / t / ( / ) | ^ [ Y u]"\=(u(f)\n(n-l)y2[y "l""2)-

dx2 

32 

Thus, 

det 
dx2 d* ^y 

32/ &i 
dx dy 3^2 

= det 
92 (i/(/)|[« «]") £("(/)|[/> «]" 3x3j \ w ' | i ' j / a^2 

= « 2 ( n - l ) 2 ( l / ( / ) | ( a 2
i 8 2

2 - a 1 a 2 J 8 l i 8 2 ) [ « « r 2 [ / J a]"'2). 

As a and /? are equivalent umbral letters, we can replace a2fi2[a u]n~2 

[£ u]n~2 in the above expression by \(a2ft + cefiSfXa u]"~2[j8 u]n~2. 
The proof can now be completed by observing that 
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More useful theoretically is the following expansion of the Hessian in terms 
of the homogenized roots of /(*, y): 

LEMMA 5.6. The expression of the Hessian in terms of homogenized roots /A,., vt 

is given by 

H(*> ^ = TTt ^ ^ ( /Ml )"a( l ) ~ Ma( l )^ ( l ) ) (^(2)"a(2) " Ma(2)^(2)) 
2((n — 2)\) n,a 

n 

X II (M«<O* ~ v^y)^mx ~ (̂o-̂ )-
i = 3 

PROOF. This can be obtained immediately from the umbral representation 
and Algorithm 4.1. • 

The importance of the Hessian in the theory of canonical forms is due to the 
following property: if the Hessian of a binary form vanishes identically, then 
the binary form has the simplest possible canonical form. More precisely, we 
have 

PROPOSITION 5.3. The Hessian of the binary form f(x, y) of degree n vanishes 
identically if and only if the form is the nth power of linear form. 

PROOF. If f(x, y) is the nth power of a linear form, the homogenized roots 
of/(x, y) are all equal. Using Lemma 5.4, we conclude that H(x, y) = 0. 

Now suppose H(x, y) = 0. From the umbral representation or Lemma 5.5, 
we obtain the following equations: 

anan_2-a
2
n_l=0, 

an-3an~ an-2an-l = °> 

(n - 3)anan_4 - (n - \)a\_2 + 2an_xa„_3 = 0, 

Suppose first that an ¥^ 0. Setting an = a, an_l = aX, and applying these 
equations one by one, we obtain 

an_2 = a\2, an_3 = a\3, ... 9 a0 = a\n. 

This implies 

f(x,y) = a(x + \y)n. 

If an = 0, a similar argument shows that/(*,>>) = ayn. • 
We now turn our attention to obtaining the canonical forms of a binary 

cubic f(x, y) with nonzero leading coefficient. If the Hessian of /(x, y) is 
identically zero, then/(x, ĵ ) is the cube of a linear form and 

A. / ( * , y) = (ixx - vy)\ 

In the case of the cubic, the Hessian plays another role. It is also a multiple of 
the covariant 

J=(u(f)\[a /?]2[« u)[p « ] ) . 

Thus, by Lemma 5.3, H(x, y) is apolar to/(x, y). 
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We shall now assume H(x, y) ^ 0. If H(x, y) = (\ix — vy)2, then, by 
Proposition 5.1, 

B. / ( * , y) = (ax + by)(fix - vyf. 

In particular,f(x9 y) has the same repeated linear factor as H(x, y). If H(x, y) 
has two distinct linear factors nxx — vxy and \k2x — v2y, then by Proposition 
5.1, 

C. f{x, y) = a(fixx - vxyf + b([i2x - v2yf. 

This completes the classification of the canonical forms of the binary cubic. 
This classification offers a procedure for solving a cubic polynomial p(x) by 

radicals. Let /(x, y) be the homogenization y3p(x/y) of p(x). Find the 
Hessian H(x, y) of/(x, y) by the formula in Lemma 5.5. If H(x, y) = 0, then 
p(x) is a perfect cube and the triple root can easily be found. If H(x, 1) is a 
quadratic, its roots \x and X2 can be found explicitly by the quadratic formula. 
If \x = X2, then \x is also a double root of p(x) and the remaining root can be 
found by division. If A, =£ \2, then 

p(x) = a(x — Xx) + b(x — X2) 

where 

<*=p(*2)/(*2-K)3 and b = p(\x)/(Xx - \2)\ 

Once in this form, the roots of p(x) can easily be obtained by extracting cube 
roots. If H(x, 1) is linear with root X, then 

p(x) = a(x — X) 4- b. 

The numbers a and Z> are given by 

a = (/>(/*) - / K M ) / ( / * - M 3 where/i7 tX,Z>=/?(X), 

and the roots of p(x) can be obtained by extracting cube roots. 
Among all the methods for solving a cubic equation by radicals, the present 

one, which is closest in spirit to the method described by Mark Kac in his first 
published paper, is easiest to apply and remember. 

6. The f initeness theorem. 
6.1 Generating sets of covahants. We shall now consider the central problem 

of both classical and modern invariant theory: Does there exist a finite 
generating set for the set of covariants? 

A set S of covariants of binary forms of degree n is said to be a generating 
set if for every covariant / , there exists a polynomial P(XX9... ,XS) such that 
/ = P(CV...,Cs)9 where CX,...9CS are covariants in S. The central result of 
the invariant theory of binary forms is 

THEOREM 6.1 (THE FINITENESS THEOREM). There exists a finite generating set 
for the covariants of binary forms of degree n. 

We shall present two constructive proofs of the finiteness theorem. The first, 
which occupies §§6.2-6.4, is based on the idea of circular straightening. The 
second, which occupies §6.5 relies on a combinatorial lemma of Gordan. 
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6.2 Circular straightening. In order to prove the finiteness theorem, we first 
describe another basis, the basis of cyclically standard bracket monomials, for 
the space <S of bracket polynomials. This basis has combinatorial properties 
similar to the basis of standard bracket monomials and is useful in other 
contexts. 

Let & = {a, /?, y, 8, . . .} be an alphabet. A cyclic order T on the alphabet T is 
a relation, denoted a => /?, satisfying: for every letter /? in & there exists a 
unique a such that a => f$ and a unique y such that /? =» y. The letter a is called 
the predecessor of /? and the letter y is called the successor of /?. A cyclic order 
T can be visualized as a directed graph, also denoted by T, on the vertex set & 
such that there is a directed edge from a to fl if and only if a => ft. This 
directed graph is a directed cycle and there is a unique simple path (that is, a 
path without any repeated vertices) from any vertex a to any other vertex 8. We 
say that fi is between a and 8 and write a->/?-»8i f /Hsa vertex distinct from 
a and 8 on the unique simple path from a to 8. If &' is a subset of &, the 
restriction of T to &' is the cyclic order defined by: a => /? if every letter 
between a and /J is not in &'. 

Now let % be the umbral space formed with the alphabet & and let % be the 
space of bracket monomials. Let M be a bracket monomial in <$. Two 
brackets, [a y], [>8 8], in M are said to form a crossing pair if a -» /? -> y -> 8. 
This may be visualized as follows: let the letters in # be placed, according to 
their cyclic order, on a circle in the plane and represent every bracket [a fi] 
by a straight line segment between the points a and /?. Then two brackets cross 
if and only if their line segments have a point of intersection inside the circle. 
We say that a bracket monomial is cyclically standard if it is nonzero and no 
two brackets in M form a crossing pair. 

THEOREM 6.2. The cyclically standard bracket monomials form a basis for the 
space % of bracket polynomials. 

The proof consists of the following two lemmas. 

LEMMA 6.1. Every bracket monomial can be written as a linear combination 
with integer coefficients of cyclically standard bracket monomials. 

PROOF. Let M be a bracket monomial and let 6 be a list (with suitable 
multiplicity) of the crossing pairs of brackets in M. The length \Q\ of 6 is 
called the crossing number of M. Suppose that M is not cyclically standard. 
Let [a y], [/? 8] be a crossing pair of brackets in M and write M =[a y] 
[p 8]M'. By the syzygy (Lemma 3.1), 

M=[a y][j8 8]M'= [a 0][y 8]M' + [a 8][j8 y]M'. 

We claim that both bracket monomials on the right-hand side have crossing 
numbers strictly smaller than |Q\. To see this, let [£ 77], [f w] be a crossing 
pair of brackets in [a fl][y 8]M'. If [£ TJ] and [f co] are both in the 
submonomial M', then the pair [£ T?], [f w] is also in C. If [£ TJ] = [a /?], 
then we have a -> f -* /? -> w. If co is between /? and 8, then f -> /? -» w -» 8 
and [J w], [/? 8] is a crossing pair of brackets in 6. Similarly, if co = 8 or is 
between 8 and a, then J -> y -* w -* a and [f co], [a y] is a crossing pair of 
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brackets in 6. A similar argument can be applied if [£ TJ] = [y 8]. Hence, to 
every crossing pair of brackets in the bracket monomial [a /?][y 8]M' is 
associated, in a one-to-one manner, a crossing pair of brackets in 6. However, 
the pair [a y][/? 8] in Q is not associated with any crossing pair in [a /}] 
[y 8]M'. Hence, the crossing number of [a /?][y 8]M' is strictly smaller 
than 161, the crossing number of M. Similarly, the crossing number of [a 8] 
[P y]M' is strictly smaller than the crossing number of M. 

Iterating this procedure, we can write the bracket monomial M as a linear 
combination (with integer coefficients) of bracket monomials whose crossing 
numbers are zero, that is, cyclically standard bracket monomials. • 

LEMMA 6.2. The cyclically standard bracket monomials form a linearly indepen­
dent set. 

PROOF. Suppose not. From the set of all nontrivial linear dependence 
relations between cycUcally standard bracket monomials, choose one, 
2%=lckMk — 0, in which (a) ck ¥* 0 for all k, (b) the number of distinct letters 
is as small as possible, and (c) subject to (b), the maximum number of brackets 
in a monomial Mk occurring in the linear relation is as small as possible. Let &' 
be the set of all letters occurring in the linear relation cycUcally ordered by the 
restriction of the cycUc order on &. Let 8 and e be two letters in &' such that 
8 => e in the restricted order. By condition (c), [8 e] is not a common factor of 
all the bracket monomials Mk. Thus, on setting 8 equal to e, not aU the bracket 
monomials Mk vanish. By our choice of 8 and c, those bracket monomials 
which remain nonzero also remain cycUcally standard. We thus obtain a 
nontrivial Unear relation with a strictly smaUer number of distinct letters, 
contradicting our initial choice. • 

For our purposes, the most important property of cycUcally standard 
bracket monomials is that they have outer segments. If a and e are letters in &, 
the segment (a, e) is the set of all letters (strictly) between a and e: that is, 

(a9e) = {y:a^ y ^ e}. 

Note that the segments (a, e) and (e, a) are distinct: indeed, & — (a, e) U 
(e, a) U (a, e}. Let M be a bracket monomial. A bracket [y 8] is said to be 
diagonal if neither y => 8 nor 8 => y. Now let &M be the set of letters occurring 
in M cycUcaUy ordered by the restriction of the cycUc order on &. A nonempty 
segment (a, e) in &M is said to be an outer segment of M if for aU y in (a, e), 
there are no diagonal brackets in M containing y. An outer segment is said to 
be maximal if it is not strictly contained in any outer segment. 

PROPOSITION 6.1. Let M be a cyclically standard bracket monomial. Then 
either M has no diagonal brackets or there exist {at least) two maximal outer 
segments of M. 

PROOF. We proceed by induction on | &M \, the number of distinct letters 
occurring in M. If M has no diagonal brackets, we are done. Now, if [a e] is a 
bracket, the distance of [a e] is the length of the shortest undirected path 
between a and e. Among aU the diagonal brackets in M, choose one, ±[a e], 
for which the distance is at a minimum and is attained by the directed path 
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from a to e. As M has no crossing pair of brackets, the segment (a, e) is a 
maximal outer segment. 

To find the second maximal outer segment, observe that the brackets in M 
can be partitioned into three blocks: the brackets containing only letters from 
{a, e} U (a, E), the brackets equal to [a e], and the brackets containing only 
letters from {a, e) U (e, a). Consider the submonomial M' of M consisting of 
all the brackets in M from the second and third blocks. As Ifi^l^ffi^l, by 
induction, M' has no diagonal brackets or M' has two disjoint maximal outer 
segments. In the first case, (e, a) is a maximal outer segment. In the second 
case, one of the outer segments does not contain the subset {a, e) and is also 
an outer segment of M. • 

6.3 Elemental bracket monomials. We shall now consider a space % of 
bracket polynomials formed with the alphabet & = {a, /?,. . . ,e, u) consisting 
of a finite number of Greek letters and the single Roman letter w. As in §4.3, a 
bracket monomial M is said to be regular of degee d if for every Greek umbral 
letter a in 6E, the number of occurrences of a in M equals d\ the number of 
occurrences of u need not equal d and is called the order of M. An elemental 
bracket monomial is either a regular bracket monomial of degree one or a 
regular bracket monomial of degree two which is not the product of two 
regular bracket monomials of degree one. For example, if & = (a, /?, y, 5, e, «}, 
then [a 0][y S][e u]9 [a 0][y u][8 u][e u], and [a )&][/» y][y 6] 
[6 e][e a] are all elemental bracket monomials. 

The main result in this section is that the elemental bracket monomials form 
a generating set for the set of regular bracket polynomials. 

PROPOSITION 6.2 (KEMPE'S LEMMA). Every regular bracket monomial formed 
with the alphabet &= {a, ft,... ,e, u) can be written as a linear combination with 
integer coefficients of products of elemental bracket monomials. 

PROOF. We proceed by induction on | &\ — 1, the number of Greek letters in 
&. To do so we need to strengthen the induction hypothesis slightly. Let £ be 
another alphabet of Greek letters, and let e: S -» & be a function whose image 
is {a, /?,...,£}, the subset of Greek letters in &. Two letters | and TJ are said to 
be equivalent (to y) if e(£) = e(-q) = y. A bracket monomial M formed with 
letters from S U {«} is said to be a bracket monomial with equivalent letters. If 
M is a bracket monomial with equivalent letters, we extend our terminology by 
saying that M is regular, cyclically standard, etc. if the bracket monomial 
formed from M by replacing each Greek letter £ by e(£) is regular, cyclically 
standard, etc. As all our results are proved by exhibiting a constructive 
algorithm, the version for bracket monomials is equivalent to the version for 
bracket monomials with equivalent letters. 

By definition of an elemental bracket monomial, our assertion is true if 
16B| — 1 = 1 or 2. By examining cases, it is also true for |&\ — 1 = 3. We will 
now assume there exists an algorithm for writing any bracket monomial with 
equivalent letters as a linear combination with integer coefficients of products 
of elemental bracket monomials with equivalent letters if & has n — 1 or fewer 
Greek letters. 
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Let M be a regular bracket monomial on the alphabet & consisting of n 
Greek letters and the Roman letter u. By Theorem 6.2 it suffices to prove our 
assertion for M a cyclically standard bracket monomial. If M is cyclically 
standard, by Proposition 6.1 there are two maximal outer segments in M and, 
hence, there exists a Greek letter ft in an outer segment. There are now two 
possible cases: first, there exists such a Greek letter ft such that both its 
predecessor a and its successor y are Greek letters, or, second, for all such 
Greek letters, either the predecessor or the successor is the Roman letter u. 

To deal with the first case, we first prove the following lemma. 

LEMMA 6.3. The bracket monomial M can be -written as a linear combination 
with integer coefficients of bracket monomials N (which may not be cyclically 
standard) such that ft is still in an outer segment and [a y] does not appear as a 
bracket in N: that is, 

N=[a /J]m-*[/J y]kN', 

where N' is a bracket monomial not containing the letter /? or the bracket [a y]. 

PROOF. Let M be a bracket monomial of degree d and order t containing r 
brackets equal to [a y]. A simple counting argument shows that there are 
r + \t + \d(n — 4) brackets in M not containing a, /J, or y. As n> 4, there 
are at least r such brackets in M. 

Now, if [8 e] is a bracket not containing a, /}, or y, we can write M as a 
linear combination of bracket monomials (which are not necessarily cyclically 
standard) containing r — \ brackets equal to [a y] by using the syzygy 

[a y][S e] = [a e][8 y] - [a 8][e y] . 

As there are at least r brackets of the form [8 e], we can continue this process 
till none of the brackets [a y] remains in any of the bracket monomials. • 

It now suffices to prove our assertion for a monomial of the form 

N=[a (}]m-k[f! y]kN', 

where N' contains no bracket equal to [a y]. The total number of occurrences 
of a and y in N' is exactly d9 the degree of N. Thus, if a and y are defined to be 
equivalent to a new letter f, N' is a regular bracket monomial with letters 
equivalent to the alphabet (& — {a, /?, y}) U {f} with n — 1 Greek letters. By 
induction we can write N' as a linear combination 

N'= 2*^«£/2 •••£/*(/) 

of products of elemental bracket monomials Etj with equivalent letters. Multi­
plying by [a P]d~k[P y]^, we obtain 

iv = 2>,.[« fi]'-k[fi y)kEnEi2---Eim. 
i 

We shall next distribute the brackets [a /*] and [/? y] among the elemental 
bracket monomials Etj with equivalent letters to obtain elemental bracket 
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monomials Etj with letters from &. This distribution is done according to the 
following scheme: 

I. If Etj is of degree two and contains two occurrences of a (or y), then set 
EiJ = [P y]2Eu(oT[a 0]%). 

II. If Etj is of degree two and contains one occurrence each of a and y, then 
set EtJ = [a PIP y]Eu. 

III. If Etj is of degree one and contains one occurrence of a (or y), then set 
EtJ = [P y]EtJ(or[a p]Etj). 

A simple counting argument shows that the number of brackets [a ft] and 
[ft y] matches up with the number of different types of elemental bracket 
monomials. Thus, 

i 

This completes our proof for the first case. 
In the second case, every Greek letter /? in an outer segment has one of its 

predecessors or successors equal to the Roman letter u. This is possible only in 
the case when there are exactly two maximal outer segments and they are of 
the form (a, u) and (w, 8) and contain a single Greek letter. Thus, we have 
a -> ft -> u -> y -* 8 in the cyclic order, where (a, u) — {/?} and (w, 8) = {y}. 

LEMMA 6.4. Under these conditions, [J u] is a bracket in M for every Greek 
letter f in &. 

PROOF. Suppose [£ u] is not a bracket in M. Then J ^ /? or y. As £ is not in 
an outer segment, there exists a Greek letter t\ such that [f t\] is diagonal. 
Choose TJ such that the distance is smallest. Then, as in Proposition 6.1, we can 
conclude that one of the segments (f, TJ) or (TJ, f) is an outer segment, contrary 
to our assumptions. • 

By the lemma, 

M=( n is U])M'. 

As IIf G#[f u] is elemental of degree one and M' is regular of degree one less 
than the degree of Af, we can repeat our entire argument using the smaller 
bracket monomial M'. 

This completes the proof of Proposition 6.2. • 
6.4 Reduction of degree. To prove the finiteness theorem, recall from §4.3 

that every covariant of binary forms of degree n can be expressed as a linear 
combination of symmetric difference terms (S\M), where M is a regular 
bracket monomial formed with the alphabet {1,2,. . . ,«, u). Regarding the 
integers 1,2,...,a as Greek letters, we can use Kempe's lemma to conclude 
that every regular bracket monomial M is a linear combination of products of 
elemental bracket monomials: that is, the finite set {El9...9Em} of elemental 
bracket monomials is a generating set for the set of regular bracket monomials. 
However, it is not true (except when n = 1) that the set { ( S \ Ex >, . . . ,( S \ Em > } 
is a generating set for the set of symmetric difference terms and we need to 
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take a larger (but still finite) set constructed from the elemental bracket 
monomials. This construction is given in the following lemma. 

LEMMA 6.5 (HILBERT). Let r = n\ and let {El9... ,Em} be a generating set for 
the set of regular bracket monomials on the alphabet {1,2, . . . ,« ,«} . Then the set 
of symmetric difference terms 

(S\E?Ep--E2"), 0<et^r- 1, et¥=0 for some i, 

(S\E[), Ki<m9 

is a generating set for the set of symmetric difference terms. 

PROOF. Let Et be a bracket monomial in the generating set and let TT(^) be 
the bracket monomial obtained from Et by replacing each integer h in Et by its 
image ir(h) under the permutation IT on the set {1,2, . . . ,«}. Let ax{^{Et% 
a2(ir(Ei))9... ^X^iEf)) be the elementary symmetric functions of the r brac­
ket monomials 7r(^f), TT G fiw. As 

II (S-»(£,)) = S'-«,(»(£,))$'-• 

+a2(v(Ei))S
r-2 +••• ±ar(*{Ei)), 

we have 

Ef = a^(Et))Erx ~ ajMEtfEr2 +••• ±ar(«(E,)). 
More generally, for k > r, we have 

E,k = aMEM"-1 ~ a2(„(Et))Er2 + • • • ±ar(«(E,))Er'-
Now observe that the elementary symmetric functions ay(7r(j l̂)) are invariant 
under permutations of the integers {1,2,. . . ,«} inside the bracket monomials 
w(^/). Thus, if M is a bracket monomial, 

(s\aJ(w(El))M)= 2 aJ(*(Ei))*(M) = aJ(v{El))(S\M). 
^«„ 

From this, we obtain, if k > r, 

( S | £ f •••£*•• • E*m-)= a^{Et)){S\EV • • • £*"' • • -E'm-) 

- • • • ±ar(*(Ei))(s\E;> • • • E,k~r • • • £ ' - ) . 

The degree of Et in every term on the right-hand side is strictly smaller than k. 
Therefore, by iterating this process, we can write any symmetric difference 
term 

(S\M)=(s\2b,E;"El«---EZ-\ 
* i ' 

as a linear combination of products of aj(v(Ety) and (S\E*X • • • E%"), where 
0 < eif < r — 1 and e, =̂  0 for some /. 

To complete the proof, recall that the elementary symmetric functions 
fly(7r(£l)) can be written in terms of the power sum symmetric functions 
A/ir(JE,)), where 
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Hence, the set consisting of the symmetric difference terms 

(S\Ef*Ep •••££"•), 0<et <r- 1, et=£ 0 for some i, 

and 

(S\E[), i=\,2,...,m, 

is a generating set for the set of symmetric difference terms. • 
Applying this lemma to the set {Ex,...,Em} of elemental bracket monomi­

als, we obtain the following, more explicit, version of the finiteness theorem. 

THEOREM 6.3. Let {Ex,...,Em} be the set of elemental bracket monomials 
formed with the alphabet (1,2, . . . ,n,u). The set of covariants whose representa­
tions in terms of the homogenized roots are given by 

(S\E{*Ep • • • £ £ - ) , 0 < ef < n\-1, et =£ 0 for some i, 

(S\E?1), 0<i<m, 

is a finite generating set for the set of covariants of binary forms of degree n. 

6.4 Gordan 's lemma. Our second proof of the finiteness theorem is similar in 
structure to the first proof. Once again, we begin by finding a generating set 
for the set of regular bracket monomials. The combinatorial tool for doing this 
is a lemma of Gordan. 

Consider the system 

auXx+al2X2+---+almXm = 0 

ak\X\ + ak2X2 + ' ' * +akmXm = 0 

of linear equations in the variables Xi where the coefficients atj are (positive or 
negative) integers. Let N be the set of nonnegative integers and consider the set 
91 of solutions s = (st) in Nm. As the system is linear, 91 contains the zero 
solution and is closed under componentwise addition. 

PROPOSITION 6.3 (GORDAN'S LEMMA). There exists a finite set ( b ^ , . . . ,bp} 
of solutions such that ifs is a solution, then 

p 

s = 2 cjbJ9 

7 = 1 

where cj are nonnegative integers. Such a finite set is called a basis of solutions. 

PROOF. We need a preliminary combinatorial result concerning the order 
structure of Nm. The set N of nonnegative integers is a totally ordered set 
under the usual order relation < of less than or equal to. The m-fold product 
Nm can be given a partial order by: (st) < (*,.) if st < tt for every index /. Two 
elements (st) and (/,.) are comparable if either (st) < (/,.) or (st) > (tt). An 
antichain is a subset of Nm in which no two elements are comparable. 

LEMMA 6.6. Let (s^)^=1 be an infinite sequence of elements in Nm. Then there 
exist indices i andj such that i <j and s, < sy. In particular, Nm has no infinite 
antichains. 
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PROOF. We proceed by induction on m. The lemma is certainly true when 
m = 0. Suppose that it is true for Nm~l. Consider Nm as the product 
Nm-1 x N a n ( j | e t ^ a ^ Sk))<x>= j be an infinite sequence of elements in Nm~l X 
N. 

We first show that there exists an infinite nondecreasing subsequence (sk>) in 
the sequence (sk) of nonnegative integers. Suppose first that the set {sk: 
1 < k < oo} of elements in the sequence (sk) is finite. Then there exists an 
element s such that sk, = s for infinitely many k'. The subsequence (sk>) is 
constant, hence nondecreasing. Now consider the case when the set {sk} is 
infinite. Let S, be the set {sy. j>\ and Sj>s{}. As {sk} is infinite, Sx is 
nonempty and so there exists jx such that 1 <jx and sx < sJx. Repeating this 
argument, we obtain an infinite nondecreasing subsequence (sJk). 

Finally, let (sk>) be a nondecreasing subsequence of (sk). Consider the 
infinite sequence (a^) in Nm~l. By induction, there exist indices /' a n d / such 
that V < / and a r < ay,. For the same pair of indices (a r, sr) < (a^, sf). D 

Consider the set {b^bj,... 9bp] in % of minimal nonzero solutions, that is, the 
set {bj} of all solutions in % satisfying: by > 0 and there exists no solution b' 
such that bj > b' > 0. This set {b,} is an antichain in Nm and is therefore finite 
by the preceding lemma. It remains to show that every solution s is a linear 
combination of b,, b 2 , . . . 9bp. 

Let s be a solution in %. If s ¥= 0, then s > bj for some j . The vector 
s' = s — by is still in Nm and by linearity is a solution. Further, 2$, > 2$/. 
Thus, if we iterate this process, we must arrive at the zero solution after a finite 
number of steps. Thus, s — 2cyby = 0 for some nonnegative integers cj9 as 
desired. • 

Now consider the system of diophantine equations in the unknowns miJ9 ti9 

d,t,h9 where ij = 1,2,...,« from Proposition 4.3: 

mij = mJt> ma ~ 0> 
ti + mn "*" ma + • ' ' +min ~ d for/ = 1,2,...,«, 

(6.1) f, + /2 + • • • + * „ = *, 
n n 

i = l 1 , 7 = 1 

If s is a solution to the system (6.1), then, by Proposition 4.3, the bracket 
monomial M(s), defined by 

" « = ( n [«• ; ]" v ) (n [ ' «]"). 

is a regular bracket monomial, and conversely. Now let ( b ^ . . . ,bp} be a basis 
of solutions of (6.1). As 

M(s + s') = M(s)M(sO, 

every regular bracket monomial is a product of bracket monomials of the form 
M(bi): thus, {M(bl),...,M(bp)} is a generating set for the set of regular 
bracket monomials. The proof of the finiteness theorem can now be completed 
as in §6.4 by using Lemma 6.5. 
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The finiteness theorem holds for joint convariants of several binary forms. 
The second proof generalizes immediately. However, Kempe's lemma does not 
hold in general for several binary forms. 

6.6 The binary cubic. We end by computing explicitly a generating set for 
the covariants of the binary cubic. 

We begin by listing the elemental bracket monomials formed with the 
alphabet {1,2,3, u), grouped according to their order: 

order 0: [1 2][2 3][3 1]; 
order 1: [1 2][3 u], [1 3][2 n], [2 3][1 u]; 
order 3: [1 u][2 u][3 «]. 
(Note: There are no elemental bracket monomials of order 2 since the only 

regular bracket monomials of order 2 are of the form [1 2][2 3][3 w][l u], 
and they are products of two elemental bracket monomials of order 1. All 
regular bracket monomials of order greater than 3 are not elemental.) Since 

[2 3][1 M] = [l 3][2 u]-[l 2][3 a] , 

we can take as a generating set for the regular bracket monomials 

A = [l 2][2 3][3 1], B = [\ 2][3 u], 

C=[\ 3][2 « ] , D=[\ u][2 «][3 «]. 

Thus, by Lemma 6.5, a generating set for the covariants of the cubic is given 
by 

(S\AaBbCcDd), 0 < a, b, c, d < 5, 

(s\A6), (S\B6), (S\C6), (S\D6). 

This generating set is highly redundant and may be reduced considerably. 

PROPOSITION 6.4. A generating set for the covariants of the binary cubic 
consists of A = (S\A2)J= (S\D),-H = (S\B2),andT = (S\B2C), where 
A, the discriminant, / , the form itself, H the Hessian, and T, the Jacobian of the 
form and the Hessian, are given umbrally by 

A = ¥ ( t f | [ « P]2[« y][fi *][y s]2)> 

f=(u\[a uf), 

H=1S(U\[CL 0]2[a u][fi u]), 

T=\0S(u\[a 0]2[a y][fi u][y u]2). 

The proof consists of showing that all the covariants in the list (6.2) can be 
expressed in terms of A, / , H, and T. 

Observe first that the elemental bracket monomial D is invariant under 
permutation of the integers {1,2,3}. Hence, for any bracket monomial M, 

(S\DM)= 2 Dir(M) = D(S\M). 
7rGQn 

Thus, except for (S\D) itself, all symmetric difference terms (S\M>, where 
M contains D as a factor, can be deleted from (6.2). 
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Similarly, ^42 is invariant under permutations of the integers {1,2,3}, and 
except for (5|^42>, every symmetric difference term (5 |M>, where M con­
tains A2 as a factor, can be deleted from (6.2). 

The remainder of the proof consists of somewhat tedious computations. We 
first consider symmetric difference terms of the form (S\BbCc). These yield 
two covariants not already obtained, namely, (S\B2)= -H and ( S \ B 2C > = T. 
Further computations show that the other symmetric difference terms are 
either zero (examples of such symmetric difference terms are (S|2?), (S\B3), 
(S\B5), (S\B4C), etc.) or yield covariants expressible in terms of A, / , H, or 
T (examples are: (S\BC)=-±H9 (S\B4)= £i/2 , (S\B6)= ±H3 + 4A/2 , 
(S\C2B)= r , etc.). To finish the proof, we consider symmetric difference 
terms of the form (S\ABbCc). Computations show that these are either zero 
(examples are ( S \ A > = ( S \ AB )= (S\AC)= 0) or yield covariants expressi­
ble in terms of A, f,HorT (an example is (S\AB2C)= |A2 / ) . This com­
pletes the proof of Proposition 6.4. • 

7. Further work. We have chosen to list only a few of the open problems in 
the invariant theory of binary forms. The selection is short and disregards the 
problems arising in the applications of invariant theory to number theory, 
algebraic geometry, computational complexity, and other fields. We have also 
limited the selection to problems which could have been formulated in the last 
century, though they seldom were. 

1. Gram's theorem, as it is somewhat optimistically called, asserts that in 
certain cases, the vanishing of covariants is equivalent to a projective property. 
A clear statement of this widely held doctrine has not been given, yet the 
correspondence between geometric properties and the vanishing of covariants 
is admittedly the raison d'etre of invariant theory. What is needed is a 
formulation of the first order logic of binary forms and an algorithm coding 
sentences of such a first order logic into the vanishing of sets of covariants. 

2. The vanishing of some covariants expresses properties of binary forms 
which can be stated without invoking the underlying projective geometry. For 
example, the vanishing of the Hessian indicates that the form is a power of a 
linear form; the vanishing of other covariants, such as the catalecticant, 
obtained by apolarity have similar meanings. As a further example, the 
vanishing of the Jacobian of two forms indicates that the two forms are 
algebraically dependent. On the other hand, the vanishing of the Jacobian of a 
cubic form and its Hessian cannot be given a "meaning" without using the 
vanishing of certain cross-ratios, and a rather stilted meaning at that (see 
Gurevich, p. 270). Is there a criterion for distinguishing the two kinds of 
covariants? 

3. There is a class of covariants, namely covariants of a form of degree n that 
are obtainable by setting to zero certain coefficients of a form of degree « + l , 
which can be regarded as covariants of a single form of infinite degree. Such 
"stable" covariants were classically known as perpetuants. There is strong 
evidence in the work of Cayley, Grace, MacMahon, and Stroh that perpetuants 
and their syzygies can be completely classified. This area is in a particularly 
sorry state. MacMahon's method of partitions is at variance with Grace's use 
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of tableaux and with Cayley's differential operators, or hyperdeterminants as 
he called them. Perpetuants may in fact provide the answer to the previous 
problem, and it may well turn out that the explicit computation of a generating 
set of covariants for a form of degree n other than perpetuants will be a sterile 
exercise. 

4. Among the transvectants, only the first (the Jacobian) and the last (the 
apolar covariant) have been interpreted. Do the intermediate transvectants 
have a "meaning"? 

5. Little work has been done on the significance of the vanishing of 
covariants in the real or /7-adic fields. Sylvester expressed Sturm's theorem in 
terms of real invariants, but it is hard to find other work in the same spirit. 
Inequalities between covariants preserved under the group of linear changes of 
variables with positive determinant seem never to have been investigated, even 
though such inequalities are essential in the study of the distribution of roots in 
the complex plane. Similarly, P. Cohen's decision procedure for />-adic fields 
can be invariantly expressed. 

6. Another interesting group of covariants, expressed in terms of the roots of 
a form of degree w, is given by the cumulants. Cumulants originated in 
statistics. Keeping to the simplest case, let 

n \k 

sk= l h 

and write 
S skt

k I c2t
2 \ 

It can then be verified that for k > 1, the expressions ck are invariants of the 
translation group. We conjecture that the ĉ 's and their associated multilin-
earized joint invariants provide a basis for all "interpretable" invariants. An 
explicit interpretation of the ck

9s probably exists, but it has not been stated. 
7. The expression of covariants in terms of determinants of partial deriva­

tives of the form is as yet poorly understood. Cayley's hyperdeterminant 
notation can be used as an alternative to umbral notation—in fact, it is a 
thinly disguised equivalent—but does not give, for example, even the expres­
sion of the Hessian as a determinant of second partial derivatives. What is 
missing is an algorithm for obtaining one expression in terms of the other. 

8. Some connections between covariants (especially transvectants) of binary 
forms and ordinary differential operators were investigated by F. Klein (see 
Grace and Young, Appendix II). It would be worthwhile to re-examine Klein's 
work in the light of differential algebra. 

9. Gordan's method of transvectants for his proof of the finiteness theorem 
was based on an ingenious method of substitutions of brackets into brackets. 
After Hilbert's work, Gordan's ideas were abandoned. However, Gordan's 
method remains the most effective one. Further insight into the explicit 
generation of covariants will require a systematization of Gordan's brackets of 
brackets (plethysms) and a concomitant deepening of the straightening algo­
rithm. 
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10. On a smaller scale, the umbral representation of discriminants and 
resultants can be of use in the study of these covariants, particularly for forms 
in more than two variables. However, not much that is explicit is known at 
present, even for binary forms. 

11. Kempe's lemma (see §6.3) does not extend immediately to several binary 
forms. Is there a similar result for several binary forms? 

12. A generalization of circular straightening to higher dimension would be 
of the utmost interest, since it would yield, among other returns, another 
explicit construction of the representations of the symmetric group. 

13. Apolarity is the study of invariant bilinear forms on tensor spaces. For 
forms in more than two variables, there are several notions of apolarity 
corresponding to various symmetry classes of tensors. No systematic classifica­
tion has ever been attempted of such invariant bilinear forms. The closest 
analogue to the apolar covariant for binary forms is an apolar covariant 
defined for forms in several variables which are products of linear forms. An 
analogue of Sylvester's theorem can be proved for such forms. 

14. Our proof of Hermite's reciprocity law in §4.4 yields an explicit isomor­
phism i between the space °lLs[n, d, t] of symmetrized bracket polynomials and 
the space °VS[d> n9t] of symmetrized difference polynomials. Combining this 
isomorphism with the homomorphism h sending the umbral representation of 
a covariant into its representation in terms of homogenized roots as follows, 

%s[n, d, t] -T s [« , d9 t] Ws[d9 «, /] -T5[</, n, t] W [ « , d, t], 

we obtain a linear map from the space of covariants into itself. There is some 
evidence to suggest that this is the identity; if so, Algorithm 4.1 can also be 
applied to obtain the umbral representation of a covariant from its representa­
tion in terms of homogenized roots. 
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