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RESEARCH ANNOUNCEMENTS 

CLASSIFYING G SPHERES1 

BY IB MADSEN AND MEL ROTHENBERG2 

Introduction. Let G be a finite group. The results announced here come 
from a study of the following general question: Classify all G actions on a sphere 
S, G homotopic to a given linear action. 

This question has smooth, piecewise linear, and topological versions. Wall 
[W] solved the pi and topological problem, for free actions, when G is cyclic 
of odd order, and the dimension of the sphere is greater than 3. There are many 
partial results in the nonfree case. For example, if S is locally smooth, if dimen­
sion S > S and S satisfies the mild gap condition i.e. dimension — dimen­
sion > 2, for both nonempty and Hx ÇH2, then by G engulfing [I] S is 
topologically linear, and further if S is a pi G manifold, by G s-cobordism 
theorem [R] S is equivariantly pi determined by a generaUzed Whitehead torsion 
invariant. 

In this note we announce some new results on this question. 

Statements of results. In what follows G will always represent a cyclic group 
of odd order. We work in the locally linear i.e. locally smooth topological or pi 
category. 

THEOREM A. Locally linear pi or top G-vector bundles are oriented with 
respect to KOG( ) ® Z[Vi]. 

From this, the methods of Schultz-Sullivan, cf. [S] and character theory one 
deduces easily the answer to the specific question which motivated our work. 

THEOREM B. Topologically conjugate representations of groups of odd 
order are linearly conjugate. 
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This theorem has also been proved independently using different methods 
by Hsiang and Pardon [HP]. 

Theorem A has another interesting consequence, a pi G signature theorem. 
Consider a closed even dimensional pi G manifold M embedded in U, a complex 
G representation with pi normal bundle e. Then by Theorem A we have an index 
map ^ which is the composition, 

KO%(M) —• KO%(e+) <g> Z[%] - * KO^U*) 9 Z[tt] C R(G) <8> Z[Yi]. 

We also have the G signature of M denoted by SgnG(M). Further we have pi 
normal G block bundles y(M, Aft), for every g EG. Since stably they are micro-
bundles, by Theorem A they are KO% ® Z[&] oriented and the Euler classes 
e(M, Afi) in KO%Qrf) ®Z[K] are defined. 

THEOREM C. (i) SgnG(M) = $#(1). 

00 SgnG(M) feX V ( M ' M*))(S) = Sgn(M), and 3>Jie(M, M*))(g) * 0 for 
allgGGifM* * 0. 

There is a weaker and more complicated version of Theorem C in the topo­
logical category. The motivation to look for a pi G signature theorem was in­
spired by conversations with Hsiang and Pardon for whom the proof of a pi ver­
sion of the G signature theorem is a key step in their proof of Theorem B. In 
our approach it is a byproduct of the method and does not figure in our proof. 

Finally there is a classification result. Recall from Wall [W] that if L is a 
homotopy Lens space, dimension L > 5, then L is determined up to pi equiva­
lence by two invariants, a Reidemeister torsion invariant T(L)9 and the p or 17 in­
variant; p(L). If S is a pi G manifold, G homotopy equivalent to the unit sphere 
of a complex representation, then both invariants can be generalized. We then 
have the following: 

THEOREM D. If S satisfies the strong gap condition i.e. Hx Ç H2 C G, 
=£ 0 then dimension /2 > dimension , then S is deter­

mined up to G pi equivalence by T(S) and p(5). 

As in Wall we get more precise results. They are too technical to state 
explicitly here. If SG ^ 0 then p(5) is trivial but T(S) determines S as was 
already observed in [R]. Hence this theorem simultaneously generalizes both 
Rothenberg's and Wall's earlier results, at least under the hypothesis of the strong 
gap condition. We would like to replace the strong gap condition in Theorem D 
by the weak one but do not know how to prove it. 

In the topological category p is still defined but r is not a topological invar­
iant. Theorem D, forgetting r, is true up to a 2 torsion indeterminacy A, in some 
stable range. 
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Method of proof and auxiliary results. Theorem A follows from an equi-
variant generalization of techniques of Connor-Floyd [CF] and a stable transver­
sality theorem. Our main task is to prove such a theorem. In the pi category 
such a theorem holds without restriction, while in the topological category there 
is an obstruction, but it is a 2 torsion obstruction of a simple sort that we can 
control. 

Our strategy is to first analyze the pi case using a pi variant of the equi-
variant surgery exact sequence developed in [DR]. Our main result here is an 
explicit calculation of the G homotopy type of the surgery space F/PL. The G 
action on F/PL is given by thinking of it as the fiber of BPL(G) —• BF(G), (see 
[LR]). We have 

THEOREM E. Let M satisfy the strong gap condition. Then 

[M/dM,F/PL]G®Z[tt] = 2 * KOG/H(MH, dMF)QZ[%]. 
HCG 

This calculation is based on having a stable transversality theorem for the isotropy 
subgroups ofM. 

The reason that this result is linked to transversality is that G transversality 
can be reduced to questions of G homotopy via the theory of G submersions. 
This theory has been developed by Lashof along the lines of the G immersion 
theory as worked out in [LR]. In both pi and top, the problem of equivariantly 
deforming stable G maps to transversal ones can be reduced to the connectivity of 
the map Aut(K) —• Aut(T 0 W), where V, W are representations of G and Aut 
means G automorphisms. We write pl(F) and top(K) for Aut(F) in the respective 
categories. We say V is stable if it satisfies the strong gap condition. In the topo­
logical case we need a more restrictive condition on Vwhich we call super stability. 

THEOREM F. Suppose V CT are stable representations and V and T have 
the same isotropy subgroups. Then pl(K) —• pl(7*) is dimension Ve - 1 con­
nected, while top(K) —• top(7) is dimension Ve - 2 connected. For i = dimen­
sion Ve -land T/V super stable andV=W ®R, 

image^topCr), top(W))) C ^(XopCT), top(F)) 

is a finitely generated 2 group. 

The proof of Theorem F in the pi case uses Theorem E for proper sub­
groups of G. The proof in the topological case uses the pi case and the methods 
of [AH] and [LR] to compare the two categories. In turn Theorem F for G im­
plies Theorem E for G which implies Theorem D. 

Let M, Y be locally linear G pi manifolds, e —> Y a locally linear G pi vec­
tor bundle. We say that (M, e, Y) is stable if for all H C G, x G MH, y G Y*1, 
TJA = Vxy 0 eyi where Vxy9 ey are stable representations of H and e^ =£ 0 
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implies V^ ¥= 0. We have the analogous notion in the locally linear topological 
category. Theorem F now yields the following stable transversality theorem. 

THEOREM G. Let f: M —• e+ be a G map, where (M, e, Y) is a stable (resp, 
super stable) triple of G manifolds, 

I. In the pi case f is G homotopic to a G map transverse to the 0 section. 
The reasonable relative version is also valid, 

II. In the topological case assume also MH =£ 0 , simply connected. Using 
the connected sum of M with itself we can define nffor an arbitrary positive in­
teger n, which also satisfies the same condition. Then 2kf is G homotopic to a 
map transverse to the 0 section, for sufficiently large k. The reasonable relative 
version is also valid, 
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