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1. Introduction. We shall describe a structure built from several components 
—functional analysis, a few symmetric spaces, a Lie group over a function 
field, and Nevanlinna-Pick interpolation theory—all fixed on a framework of 
engineering motivation which determines the relationship between them. A 
large branch of functional analysis concerns linear spaces of analytic functions 
called Hp spaces and linear operators on them. Here we describe an analogous 
study for some sets of functions which while not linear have a very rigid 
structure patterned on that of the Poincaré disk. There are several basic results 
in linear Hp theory which have good "non-Euclidean" analogs. One is the 
classical Szegö theorem which computes the L2(d[i) distance of a function ƒ to 
H2. Actually our non-Euclidean result is closer to a theorem of Nehari which 
computes the supremum norm distance of an ƒ in L°° to H°°. Another is the 
Beurling-Lax-Halmos theorem from which such things as the existence of 
Weiner-Hopf factorizations and the F. and M. Riesz theorem immediately 
follow. 

The rigidity of a geometry on a space is expressed in terms of the group of 
isometries on that space. These are thought of as rigid structure preserving 
motions and an early notion of geometry championed by Felix Klein was to 
specify a space, a group of motions on it, and then to study invariants of these 
motions. That viewpoint seems highly appropriate for the physical situations 
we shall encounter. 

Recall that the Poincaré disk is the unit ball 

9)C= {z:\z\< 1} 

of C along with the linear fractional transformations 

§g(s) = (as + P)(KS + y)"1 

of %C onto itself. Each § in this group of rigid motions has a coefficient 
matrix g which satisfies 

<-> «•(! -".)«-(* -°.)< 
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2 J. W. HELTON 

in other words g is in the Lie group commonly denoted by (7(1,1). The natural 
metric on this space 

(1.1) p(z\> zi) = arctanh 
1 - zxz2 

is invariant under these linear fractional maps and is called the Poincaré 
metric. That p is invariant plays a major role; that it is a metric never enters 
our proofs. 

A function space analog of %C is $L°°, the set of all functions defined on 
the unit circle n which have supremum norm less than one. The "rigid 
motions" II are simply the linear fractional maps 

(1.2) %(S)(eie) = (a(e")S(e") + fi(e»))(K(e»)S(e») + y(e">)yl 

with functions as coefficients. The coefficient matrix must take values2 g(eie) 
which are in £/(l, 1) for almost all 0. While there are many natural invariant 
metrics such as 

Pq(F,G) = j2"p{F{e«),G{e«)yd0X/q 
Jo J 

which we could place on $L°°, we concentrate on 

P°°(F9 G) = &upp(F(ei$), G(eie)) 
e 

since our electronics problems force us to it. 
Not any functions in L°° will do for engineering purposes, in fact mostly 

rational functions arise (see footnote 6). Consequently the field 

A 
<3l = (functions defined on II which have a rational continuation to C} 

plays a special role. Usually we shall work with <3L n ®L°° and the Lie group 
1/(1,1) over the field <5l; denote these by <ft<SL°° and 9U/(1,1). Actually much 
of this article could be viewed as a study of the Lie group tflU(m,n). However, 
there is a major point of departure from the route one would expect of a purely 
group theoretic study. It occurs because the subset 

A (functions analytic on the unit disk whose 
supremum on the disk is less than one} 

of ®L°° is very important. In particular the only mappings g in 91(7(1,1) which 
occur physically have the property 

(1.3) §'9)H°° ^« i f 0 0 . 

2Actually to guarantee that S maps %L°° into the open ball in Ve one must have || §g(Q)\\ Loo < 1 
in addition to g(e'e) E C/(l, 1). Henceforth we always assume this nondegeneracy condition. 
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The inverse of a g with this property usually doesn't have the property, so we 
are not dealing with a group. A constraint3 on g which guarantees4 (1.3) is 

0.4) *WU »>><(; ») 
for all | z |< 1. The set of g's in 91 £7(1,1) satisfying (1.4) will be designated by 
<3l£/+(l, 1) and this will be called the physical subsemigroup of 91 £7(1,1). We 
ultimately give <3l£/+ (w, n) much attention and find that it is tightly bound to 
classical interpolation theory, modern commutant lifting theory, and kindred 
topics. 

We could, of course, work with spaces of matrix valued rather than scalar 
valued functions. Let Mmn denote the set of mX n matrices and %Mmn its 
unit ball. Linear fractional transformations of the form (1.2) with matrix5 

coefficients a, /?, K, y map Mmn into Mmn generically. Furthermore, if the 
coefficient matrix g = (£^) satisfies the matrix version of (1.0) then §g is a 
biholomorphic map on %Mmn. The group U(m9 n) of these g constitutes the 
"rigid motions" for 9>Mmn. There are infinitely many U(m, n) invariant 
metrics on ®Mm n and the most natural one for our electronics problems is 
ironically the first to have been discovered. It is called the Carathéodory metric 
and its definition is a little more complicated than (1.1); we denote it by p(, ). 
Definitions of the function spaces %Lcc(Mm n), %H0C(Mm „), the group 
$lU(m, «), the semigroup <3l£/+(m, «), and the metric P00 follow the pattern 
of the scalar case exactly. Most of this exposition is done in terms of these 
objects and matrix valued functions. A list of their precise definitions appears 
in the notation guide at the end of this section. 

The goal of this paper is to present the prominent features of <3l£/(ra, «), 
<3l£/+(w, n) and their action on the set %L°°(Mmn) of functions endowed 
with the "Poincaré" metric P°°. An outline of the main structure is 

(a) There is an explicit formula for computing the distance of a rational 
function F in ®L°°( Af„) to %H°°(Mn). This is a "non-Euclidean" analog of the 
Szegö and the Nehari distance theorems in linear Hp theory. 

{h)A closed subspace 91 of H2(Cm+n) has the form 
G)\i=gH2(Cm+n) 

for a matrix function g analytic on the disk with boundary values g{eid) in 
U(m, n) a.e. if and only if 911 is invariant under multiplication by z and also 
meets some mild nondegeneracy conditions. The space 9\i is cofinite dimensional 
if and only if g is rational. This is a direct generalization of the Beurling-Lax-
Halmos theorem (which is after all just the first statement with n — 0). An 
equivalent formulation amounts to characterization of sets of the form 
S(9>H°°(Mn)). This formulation might be thought of as a "non-Euclidean" 

3By A *s B when A and B are selfadjoint matrices on C" we mean {Ax, x) < ( Bx, x) for all x in 
C". 

4 Conversely any rational g which satisfies (1.3) must equal an element g+ of $IU+ (1,1) up to 
a multiple (from <&). 

5The appropriate dimensions are a E Mm m, /? e Mm n, K E Mn m, y E Mn n. 
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analog of the Beurling-Lax-Halmos theorem. The surprising thing is that this 
contains most of classical interpolation theory. 

(c) The orbits 

Os={8g(S):g<=&U(n,n)} 

of^lU(n,n) have a nice explicit characterization {at least when S is a constant 
function.) Note the main difficulty is that ?Ü is not algebraically closed. 

(d) Let E be a submanifold of %L°°(Mn). The P°° closest point G in E to a 
given F in %U°{Mn) has the property that a P°° geodesic from F to G hits G in a 
direction "orthogonal" to the tangent space of E at G. Here orthogonal means in 
a standard Banach space sense. This generalizes a simple result in Banach 
space theory which is basic in approximation theory. 

Typically one section of this paper is devoted to each of these subjects. Their 
locations are listed as a 

TABLE OF CONTENTS 

§2 Is an elementary exposition of the circuit theory which motivated this 
enterprise. 

§3 Contains the generalized Beurling-Lax-Halmos theory along with a 
survey of modern (Nevanlinna-Pick type) interpolation theory. Most of inter­
polation theory is a simple and direct application of this theorem. 

§4 Solves the P°° distance to %H°° question and several close relatives of it. 

§5 (a) Treats orbits of U(n, n). 
(b) Concerns the semigroup C of linear fractional maps §g of %Mn into 

itself and shows that there are many U(n, n) invariants i in addition top which 
are diminished by g in C; that is 

i(êg(zl),§g(z2))<i(zl,z2) 

§6 Applies §§3,4,5 to the circuit problems in §2. 

§7 Lists (mostly qualitative) physical conclusions. 

§8 Epilogue. 

There is a little redundancy in the paper to make various sections indepen­
dent. To skip the circuit theory go from here directly to §§3,4,5, then maybe 
§6. For a self-contained account of modern interpolation go directly from here 
to §3. For an exposition of circuits read the rest of §§1 and 2. For circuit 
theoretic conclusions read §1 then §7, and maybe part of §6. The approxima­
tion theorem (d) above will not be presented in this article. It holds for many 
metrics other than P°° and can be found in [Bdr]. 

For many pages the reader has seen vague allusions to electronics. The time 
has come to be a little more specific. An electronic box having two terminals 
on its face can be thought of as a function S in tflH00. An energy conserving 
box with four terminals corresponds to a matrix function g in $IU+ (1,1). Wire 
the two terminals of the first box to two of the four terminals of box two; this 
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leaves two free terminals which, of course, amounts to a new two-terminal 
circuit (see Figure 1.1). This new circuit must correspond to a new function S" 
in 9L and miraculously the rule for computing S' is simply to apply the linear 
fractional map § with coefficient matrix gtoSl 

FIGURE 1.1 

Thus the orbit 0$ of S under 9L£/+ (1,1) corresponds to all circuits which can 
be made from a fixed circuit S by the basic construction in Figure 1.1. 

There in a nutshell is why we are forced to study 91 H°° and the action of 
9l£/+ (1,1) on it. Even from this primitive starting point it takes little imagina­
tion to suspect that a thorough mathematical study of these subjects is justified 
and that any basic mathematical structure one finds will be physically im­
portant. Probably the best way to give a mathematician an idea of what is 
involved in several areas of old-fashioned linear circuit theory is simply to list 
the mathematical questions which arise. The word "arise" is probably too weak 
since these mathematical subjects actually constitute various areas of circuit 
theory. We should emphasize that the most naive considerations in circuit 
theory force one to an overwhelming collection of mathematical questions. So 
in this article we restrict attention to situations involving power gain and 
power transfer (and omit consideration of phase, of voltage or current gain, 
and of network sensitivity). Even the narrow topic of power gain leads to a 
large enough class of problems that we can only describe some of the most 
basic ones. We begin with passive (energy dissipating) circuit theory. 

A basic type of problem in classical passive filter design can be summarized 
mathematically as: 

Given S] and S2 in 91® i/00 find a 2 in the orbit 0S+ of Sx under 9l£/+ (1,1) 
with pointwise Poincaré distance pÇ2(el6)*, S(el6)) equal to a prescribed 
functionF(ei$) for alio. 

Here * denotes the complex conjugate. Subdivisions of the question corre­
spond to various branches of the classical theory of filter design. 

(i) What is the supremum norm smallest function F which can be obtained 
this way? (The problem of broadband impedance matching.) 

(ii) Which functions F can be obtained this way? (The problem of gain 
equalization.) 

(iii) Take S] = 0 and S2 = 0 and add the constraint that 2 be rational of 
(prescribed) low order and approximate a given F(eid) with the functions 
/?(2(e'*),0) so obtained. (The insertion loss approximation problem; includes 
the first step in Butterworth, Tchebychef, elliptic filter design.) 

(iv) Do (iii) not with the full semigroup 9K/+ (1,1) but with a subsemigroup 
having prescribed generators. Using different subsemigroups corresponds to 
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allowing different components in construction of the circuits (includes RC, 
LC, Fujisawa ladder filter design.) 

Amplifiers provide another large class of power transfer problems. Typically 
one wants to design a (stable) amplifier with maximum power gain or pre­
scribed power gain. Again optimization of a particular function over an orbit 
Oc is the central issue. For example in (the small signal analysis of) a single 
transistor amplifier the transistor corresponds to a large S in H°°(M2), the 
amplifier corresponds to §g(S)9 and its gain (at the worst behaved operating 
frequency) is 

fi(W)21i 
where Mtj means the //th entry of the matrix M. Thus finding the amplifier 
with greatest gain over all frequencies amounts to maximizing 

(1.5) i n f | 2 2 I | 
v 

over 2 in 0$ . Practical amplifiers must be " stable" which adds the constraint 
that 2 be chosen from (a slightly smaller class than) H°°(M2) (1 0$ . 

Although the discussion has centered on ^U(n,n)9 $IU+ (n, n) and their 
orbits, the semigroups 

C(«, n) = (g e GL(2n): g(z) satisfies inequality (1.4) for all | z |= 1} 

and 

C+(n,n) = {g G <3tGL(2«): g(z) satisfies (1.4) for all | z\< 1} 

of <31GL(2«) are also important, because for a passive circuit g lies in 
<3lC+ (n, n). Typically a simple amplifier consists of a transistor together with 
passive circuitry which compensates for undesirable properties of the transis­
tor. For the situation in the previous paragraph this says we should not work 
with the orbit 0£ of 5* but the orbit CO^ of S under <3lC+ (n, n). This appears 
to give rise to a whole new class of problems, but fortunately it does not 
because the physically important functions have the same optimum over 0$ as 
over the larger set CO/ . Mathematically this is related to the old principle that 
the Poincaré metric is contracted by analytic maps of %C into itself and more 
is said in §6. At any rate we may restrict our attention to <31U+ («, n) and 0$ 
for analyzing most power transfer problems. 

While these engineering problems don't seem close to the theory we de­
scribed, the discrepancy is not actually so great. We shall ultimately see (§6) 
that the power transfer problem (i) reduces to finding the Poincaré distance of 
S* to ^)H°° and so it is completely solved by result (a). Problem (ii) is settled 
by an easy generalization of result (a) which is mentioned but not belabored in 
this paper. Amplifier problems amount to a strict mathematical generalization 
of this P°° distance problem. For example, a transistor with Sl2 — 0 is called 
unilateral and a very common gain optimization problem for a unilateral 
transistor actually is equivalent to the passive filter problems (i) and (ii) which 
(a) solves. The approximation problems (iii) and (iv) are not related to the 
main mathematical theme of this paper and were included only for general 
information. 
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The present state of affairs is that the machinery described herein and some 
extensions of it [B-H4] convert about any power gain problem to an interpola­
tion problem. The simplest physical problems correspond to old fashioned 
Nevanlinna-Pick interpolation and so are completely solved. More difficult 
physical power transfer problems correspond to vast extensions of 
Nevanlinna-Pick theory developed in the early 1970's and so are solved. 
Analyzing the full stable amplifier as in (1.5) requires a direct extension of 
interpolation theory of the 1970's and so is far from completion. Thus 
considerable progress has been made on power transfer problems, but more is 
needed to fully understand some extremely basic situations in electronics. 
Possibly profound extensions of today's interpolation theory will someday 
settle all of the problems we have raised. However, it is more likely that 
mathematical efforts in this area will take a qualitative turn. Although explicit 
solutions have been the main goal so far this will ultimately become too 
difficult as it is in most subjects. Fortunately, the theory here seems well suited 
to deriving general properties which optimal amplifiers and power transfer 
circuits must have. 

From the mathematical point of view it is worth mentioning that while we 
have focused on U(m,n) it is natural to develop a similar theory for other 
classical Lie groups. Such work is in progress. Several of these other Lie groups 
have physical significance. 

Thanks are certainly due to J. Ball, L. Chua, H. Tan and my students J. 
Allen, E. Fletcher and D. Schwartz for their comments on this manuscript. 

NOTATION GUIDE 

Some common symbols are: 
H2 (resp. H2) = the functions in L2 of the circle II whose negative (resp. 

positive) Fourier coefficients are zero. 
H°° — the uniformly bounded functions in H2. 
Hf° = the functions of the form ^H00 where <p is some Blaschke product 

having at most / zeroes inside the disk. Loosely speaking these are functions in 
H°° except for possibly having / poles inside the disk. For matrix valued Hf 
the function <p is naturally a matrix valued Blaschke product. 

Mm n = the m X n matrices; they map Cn -» Cw. 

<3l = functions on n with a rational continuation to the complex plane. 
<$ (resp. ®) = a prefix meaning the open (resp. closed) unit ball. 

®L™ = {fEL(»:\\f\\O0<\}. 

Combinations of these symbols while cumbersome looking are very easy to 
interpret. For example, ^l(S)H0O(Mmn) is just the set of rational functions in 
the open unit ball of m X n matrix valued H°°. 

The main groups and semigroups which occur involve ànm + nXm + n 
matrix valued function g and the inequality 
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Let GL(k) denote the invertible kX k matrices and $lGL{k) denote the 
group of matrix-valued g with entries in <3l and values g(ei0) in GL(k) a.e. 
Then 

<SlU(m, n) = (g G <&GL(m + n): for which g(ei$) satisfies (1.4) 
with equality and II §g(0)\\ L«> < 1}. 

6XU+(m, n) = {g G <3lt/(m, «): satisfying (1.4) for all | z |< 1}. 
*HC(/w, «) = {g G <3lGL(m, «): for which g(e /ö) satisfies (1.4) 

and||gg(0)||Loc<l}. 
<3lC+(m, w) = { g £ t C ( w , « ) : satisfying (1.4) for all | z |< 1}. 

The notation for the orbit of S: 
under tflU(n, n) is Os\ 

under <3lt/+(«,n) is 0 / ; 

under &C(/i, «) and <3lC+ («, w) is C0S and CO/ . 

Also in §2 one finds a group II X SL2(.R), isomorphic to U(\91) and some 
spaces tfG and ?P+ 6 biholomorphic to ®L°° and ®//°°. Since these appear only 
in §2 we won't put these definitions here in our reference list. Always mf 

denotes the transpose of the matrix m and m* denotes its conjugate transpose. 
A useful convention is that lower case roman letters usually denote scalars or 

matrices, while functions are (usually) capital letters. The one prominent 
exception is that g typically denotes an element of the group U(m,n) or 
at/(/w, n). 

2. An exposition of classical filter design for mathematicians. This exposition 
begins generally, but ultimately emphasizes issues of electronic power transfer. 
An even more classical subject is circuit synthesis (building a circuit to meet 
given specifications) and this is treated in a fine article by Effimov and 
Potapov [E-P]. The basic circuit texts [C-L], [D-K], [K-R], [W] give a variety of 
viewpoints. An excellent book on the related subject of linear systems is [K]. 

a. Connecting boxes. The mathematical study of electric circuits is rife with 
linear fractional maps both of the usual and of very general sorts. This is true 
for a simple reason. Think for the moment of a box which takes in a vector 

and then puts out a vector 

\ln) 

' V 

\°nl 

At the moment we are considering boxes in the abstract (and the vectors / and 
o do not necessarily have the interpretation of voltages and currents). We shall 
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say the box is linear provided it acts as a linear function, namely, there is a 
matrix M so that 

(2.1) MÎ= o. 

Such a box with «-inputs and outputs is called an «-port. Suppose that we want 
to connect two boxes in order to obtain a new one; to make things simple we 
consider the simple case where one box is a two port M = (a

c
b

d\ the other is a 
one port m and we connect the boxes as in the figure to obtain a one port q. 

i n 

out Ol 

> K 

M 
it 

fabl 
[c dj / 

/ ' 
/ ' 

m 

FIGURE 2.0 

What is q in terms of M and ml The definitions of M and m say 

aix + bi2 — ol9 cix + di2 — o2, mi — o 

while connecting m to M dictates o2 = i and i2 = o. Substitution gives 

aix + bmi — ox, d, + dmi = /. 

Use the second equation to eliminate / from the first equation and obtain 
°\ ~ ^A/(m)/i wh^e ^M^m) *s defined to be 

(2.2) %{rn) = a + bm(\ - dm)~lc. 

Thus q = ^ ( m ) and one can think of this type of network connection (called 
cascade connection) as the action of a linear fractional map ¥M on the number 
m; in particular, if inputs and outputs are vectors rather than numbers then 
a, b, c, d, m become vector space operators and the formulas still hold (subject 
to invertibility of 1 — dm)\ now ®iM maps an operator m to another operator. 

Naturally there are several conventions one could use in associating a matrix 
to an «-port and consequently several equivalent (except for degeneracies) 
formalisms for describing boxes and their connections. While the formalism 
just presented is the most intuitively appealing there is another one which is 
handier for computation and so more commonly used in both engineering and 
mathematics. It is usually called the chain formalism and we now present it for 
2-ports. 
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Suppose that a given 2-port takes inputs (j^) to outputs (£JJ^). Associate to 
it a matrix N, called its chain matrix, defined by 

The computational advantage becomes quickly apparent when we consider the 
cascade connection of two two-ports Nx and N2. This type of connection is 
illustrated in (and essentially defined by) Figure 2.1. Note that in the figure a 
2-port is drawn (entirely for convenience) as having one port coming out one 
side and the other port coming out the other while in Figure 2.0 both ports 
come out to the left. The equations actually defining the connection are 

in2 = out3. and out2 = in3 

while the chain matrix N for the total cascade circuit satisfies N(l^u) = (f^1)-
Clearly N = NXN2 where NXN2 indicates ordinary composition of the map­
pings, and this simple composition law for chain matrices is obviously what 
motivated this otherwise peculiar way of associating matrices with 2-ports. 

"1 
i n l 

1 out . 

N l 

f out i n 
2 3 

i n 0 out . 2 3 

N2 

OU\ 1 

| ' 
l n -

1 I 
FIGURE 2.1 

Another basic (easily checked) fact about the chain formalism is that the 
cascade connection (as in Figure 2.0) of a 2-port having chain matrix N = ("&) 
with a one-port corresponding to m (according to (2.1)) gives a 1-port corre­
sponding to 

(2.3) SN(m) = (am + j8)(icm + y) ' 1 . 

So we see that the chain formalism gives linear fractional maps in the 
conventional form. 

b. Electric circuits driven by direct current, (i) The impedance matrix. Suppose 
we have a (1-port) electric circuit which we think of as a box with two wires 
sticking out. If we connect the circuit to a battery after a very very brief 
moment of chaos we observe that a current / flows steadily through each wire 
and there is a voltage v across the wires (which does not change with time). 
Now one could test the characteristics of the circuit by connecting batteries of 
various different strengths and thereby obtain a family of current voltage pairs 
(/,t)>. The circuit will be called linear provided v is proportional to /, that is, 
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provided there is a real number z, called the impedance of the circuit, such that 
v = zi. From the viewpoint of an observer the behavior of a circuit (with 
respect to steady current flows) is completely described by z. 

A similar procedure can be used to describe most circuits with more than 2 
wires. To describe it we will only consider circuits which have an even number 
2n of wires sticking out. We think of the wires as occurring in n pairs and each 
pair of wires is assumed to have the property that in the course of normal 
operation the current flowing in one wire equals the current flowing out the 
other. This seems like a very restrictive setup but by the artifice of appending 
'virtual wires' one can describe most circuits this way (see, for example, the 
forthcoming example of a transistor). The situation is best described by Figure 
2.2. 

1 
L 

v i { 

v, ( 

i 1» 

V n { 

n 

Z 

n 

FIGURE 2.2 

To associate a matrix with the circuit simply tie one battery to each pair of 
wires thereby creating some current flow 

/ = 

\lnl 

and a collection of voltages 

/ * > . 

v = 

For a linear circuit there is a matrix Z, called its impedance matrix, which 
satisfies Zi = v. Most classical textbook circuits behave linearly; many practi­
cal circuits do not. 

There are obviously many other ways to identify a circuit with a matrix and 
practically all of them are used from time to time. For example, if Z is the 

A 

impedance matrix for a circuit, Y — Z l is called its admittance and S = 
(1 — Z)( / + Z)"1 is called the scattering matrix for the circuit. One can define 
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Y and S directly without ever actually mentioning Z itself and do circuit 
design in terms of them. There is yet another identification and we will use it 
heavily in this paper. To a 2-port assign H by the rule 

It is called the chain matrix for the circuit. 
(ii) Power consumption. The instantaneous power consumed by an «-port 

circuit with current / flowing in and voltage v across its wires is 

P = {v, i)Rn = t?,/, + v2i2 + • • • + t y n . 

So the instantaneous power consumed by a circuit whose impedance matrix is 
Zis 

P={Zi,l)Rn. 

Thus a circuit driven by direct current conserves energy, dissipates energy or 
creates energy according to whether or not Z and its transpose ZT satisfy: 

lossless (P ~ 0) ** z ~ ~zT> 
passive (/> > o) <=> Z + ZT > 0; 

strictly active (/> < 0) ~ Z + Z r < 0. 

Note an active circuit must be plugged into the wall (or have batteries) but for 
our purposes we completely ignore this external connection in our account of 
what happens at wires coming into the box. 

(iii) Circuit connections. Simply take the convention that the currents are 
inputs and voltages are outputs. Then circuit connections are described 
mathematically in §2(a). For example, let n = 2 in Figure 2.2 and connect the 
second pair of wires to the two leads emanating from a one port with 
impedance z; the result is a circuit with two wires coming out. Its impedance 
(by the calculation surrounding Figure 2.0) is ^z(z). One can check (but 
probably shouldn't) that if the two port Z is lossless (passive), then the linear 
fractional map (5Z takes the right half plane R.H.P. onto (into) itself. Passive 
1-ports correspond to the positive real axis [0, oo) and this clearly maps into 
itself. 

To describe connections in the chain formalism one simply adopts the 
seemingly arbitrary convention that 

in2 = v2, o u t ^ ü , , out2 = -i2> inj = / , . 

This immediately makes the general chain matrix N of §2(a) the same as H, the 
specific circuit theoretic one. Also the circuit theoretic cascade connection is a 
special case of the general one. For example, let z be the impedance of a one 
port zi = ir, cascade it with the two port described by H: that says / = -i2 and 
v = v2. This is the same as z(out2) = in2 as required for the general cascade 
rule. 

(iv) Power transfer. Suppose we have a source of electricity and a one port 
with impedance m which the source powers. How much power does the circuit 
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m receive? The first step is to give the conventional description of a power 
source. An ideal voltage source (voltage v) is a box with two wires sticking out; 
a voltage meter across the wires reads v volts no matter what you connect the 
wires to. To see that this model is deficient suppose that a mischievous soul 
connects our source to a heavy copper bar of resistance r « 0. The power 
consumed by the bar is ri2 = v2/r. Now r is roughly 0 so if we insist that our 
source maintains a voltage v of moderate size the power consumed by the bar 
is roughly oo. That makes the electric bill too high even for nature so what 
happens in practice is that as the demand on a power source increases the 
voltage falls. Thus a voltage source is usually described as an ideal voltage 
source in series with a resistor of resistance r called the internal impedance of 
the source (see Figure 2.3). In this section we will analyze what happens when 
a source of this type is connected (as in Figure 2.4) to a one-port with 
impedance z which is passive (z > 0). 

r 
_AAAAAA_ 

v ideal source 

-t 
z i 

source 

FIGURE 2.3 

To compute the power P consumed by the load note 

ideal voltage = v = ri + zi = (r + z)i 

l oad 

so 

' - ( • O H T T Ï ) ' (r + z)2 

As we ultimately shall see what is interesting in most design situations is not 
the absolute power delivered to the load, but the ratio 

power received by load z A_ Pz 

power available from source ?s 

The power available from the source Ps is always taken to mean 

maxPr = max 
* (r + z)2 

which by calculus is Ps — rv2/(2r)2 — v2/4r. Thus 

v 

4zr 

(r + z)' — (SÎ) 
which we note is independent of v (the strength of the ideal source). The 
business part of the power ratio is ô(r, z) = | (r — z) / ( r + z) | and we call it 
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the power mismatch between source rand load z, since if it is small (big) the 
power transfer ratio is high (low). Note that arctanhô(r, z) is the classical 
R.H.P. Poincaré distance between the real numbers r and z. Thus computing 
the power mismatch between r and z is equivalent to computing the Poincaré 
distance between r and z. 

(v) Summary. Passive one ports correspond to positive numbers. Power 
mismatch corresponds to R.H.P. Poincaré distance restricted to (0, oo). The 
cascade connection of a lossless 2-port with a passive one port corresponds to a 
linear fractional transformation (L.F.T.) of the R.H.P. which maps (0, oo) -> 
(0, oo). 

c. Electric circuits driven by a sinusoidally varying current, (i) General theory. 
In the previous subsection we studied circuits which were powered by a source 
whose output does not vary with time. Now we consider a power source which 
varies sinusoidally with time; say the current it produces is i0 sin cot. Connect it 
to a (linear) one-port. You will observe that after a very brief moment of chaos 
the voltage across the wires entering the 1-port is 

v(t) = v0sin(ut + 6). 

The voltage function has the same frequency but a different phase. Now we all 
recognize that the easiest way to compute with waves like this is in complex 
notation. Let j = ^ T . One could think (loosely) of a complex current i(t) in 
the wires and corresponding complex voltage v(t) = eJ6v0i(t)/i0 across them. 
For a linear circuit the ratio v0/i0 and 6 are independent of i0 and one defines 
the impedance of the circuit at frequency <o to be the complex number 

z(«) = Vfe'9. 
l0 

For example, if co = 0 there is no phase shift and we get z(0) = v0/i0\ precisely 
the situation in §2(b). As before an «-port still has an n X n impedance matrix 
Z(o)) associated with it, only now the entries may be complex numbers. 

Now §2(b) extends in a straightforward way to sinusoidally varying currents. 
We now list the generalization and mention that someone with a serious 
interest in the physical issues should ultimately consult a standard text since 
what we have said is abbreviated beyond the point of being a physically solid 
explanation. Let Z* denote the conjugate transpose of the matrix Z. The power 
consumed by an n-port is 

P = Re(t?, i)c*. 

An n-port is 

lossless if and only if Re Z(co) = Z(co) + Z(w)* = 0, 
passive if and only if Re Z(co) > 0, 

strictly active if and only if Re Z(co) < 0, 

or for 2-ports the chain matrix H = (" Ç) is 

lossless if and only if 3 A with 1X1=1 such that 

Aa, -/Aj8, i\y, and XK are real and det XH = 1. 

Cascade connection of a 2-port whose impedance Z (resp. chain matrix is H) 
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with a 1 port having impedance z gives a 1-port with impedance f z (z) (resp. 
§H(z)). If H is lossless, then §H(z): R.H.P. -> R.H.P. For one ports the power 
transfer ratio called the transducer power gain (T.P.G.) for a source with 
impedance zx and load with impedance z2 is 1 — 8(z,, z2)2 where the power 
mismatch 8 is 

(2.4) 8(*„z2) = 

That is, the mismatch is essentially the Poincaré distance between zx and z2. 
Thus the basic setup looks like it comes from the beginning of an introduc­

tory complex variables course. In fancier language the study of circuits 
operating at one fixed frequency and built by cascades of lossless 2-port 
circuits is just a study of the Lie group n X SL2(JR) where SL2(#) is the usual 

SL2(R) = U= (l
n *? ) : / , m9n,p real and det ic = l ] , 

and II is the circle group. This is obscured slightly by the fact that engineers 
use different conventions; in particular they work not on the U.H.P. but on the 
R.H.P. Soon we shall summarize the structure just described in terms of 
n X SL2(i*), the U.H.P., and other familiar mathematical objects. Then we 
give numerous examples. First we mention that instead of working with 
L.F.T.'s on the U.H.P. or R.H.P. we could work with L.F.T.'s on the unit disk. 
This is accomplished with the usual mapping z -> (1 — z)(l + z)"1 = s of the 
R.H.P. onto the disk. As already mentioned engineers call s the scattering 
parameter for the circuit with impedance z. Naturally the transformation 
group n X SL2(R) on the U.H.P. is converted to a transformation group on 
the disk by composing with the mapping im -> z -> s; one finds that this Lie 
group is £7(1,1). We shall now summarize the engineering, the SL2(,R), and the 
U(\,\) (scattering) conventions. The conversion rule is 

Impedance 
matrix 

Chain 
matrix 

ENG. 

z 

MATH, 

n x SL2(R) 

m = iz 

'-G-°K?M-;5) 
i 

U(l, 1) 

s = (l +im)(l -im)~l 

Ht/ \Hi 1) 
i 

The key structure is 

CIRCUIT 

passive 1-port 
lossless 2-port 

cascade of 2 and 1 -port 
cascade of a 2-port and 

a 2-port 
power mismatch source 

m, and load m2 

n x SL2(/?) 

m in U. H. P. 
g in n x SL2(/?) 

tg(m) 

g = gxg2 

p(-m{, m2)-Poincaré 
distance 
on U.H.P. 

U(\, 1) 

s in disk 

* in 1/(1,1) 

**(*) 
g = gig2 

p(Fj, s2)-Poincare 
distance 

disk 

£i £2_ 
Z\ + 2̂ ' 
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(ii) Examples and common procedures. We begin by listing the impedances 
m(o)) of common 1-ports operating at frequency <o. We always use our 
mathematics SL2 convention and not the usual engineering one. 

re 

m( 

i 
< 
< 

! 

s i s t o r 

u>) * i r 

T 
C 

capac i tor 

m(aj)= — 

tan 

1 
i 

r i 

k cd 

m(o)/ - -

FlGU 

>* 
! L 
) 
) 

Lrcui t 

L-u>zLC 

RE 2.4 

J 
^ T 

1 

inductor 

m(ü>) « - o)L 

The two most common two ports are simply made from a 1-port m. They and 
their chain matrices are 

senes 

m 
parallel 

"->*(* T) * ( i ) - ( i I 
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There are others: 

transformer 

Ik/n 0 \ 
I 0 n/kj 

uniform transmission line 

cosh r ( o) ) z0i sinh T( et ) 

.sinhr(co) 
coshr(w) 

crossed wires 

(-.' .°.) 
FIGURE 2.5 

Note that the chain matrices of everything but the gyrator are actually in 
SL2(i£) when the circuits are lossless. 

Though a transistor has three wires coming out it is (almost) always regarded 
as a 2-port (see Figure 2.6). Unfortunately it is nonlinear and so for use in an 
amplifier it is embedded in a circuit which has the effect of linearizing its 
nonlinear chain function near a certain point. The resulting linear chain matrix 
can be a fairly general element of GL2(C). This is what is used in studying the 
effect of the amplifier on small signals (like the ones you want to amplify). 

FIGURE 2.6 A transistor as a 2-port. 
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Now we work some trivial exercises to insure that the reader has the basic 
ideas locked in. 

(A) Let's compute the chain matrix for the 'series' two port in Figure 2.5. 
One connects a voltage generator to each pair of wires thereby forcing voltages 
Ü, and v2 across them as in the figure 

Expanded Figure 2.5 'series'. 

This sets up a flow of current in the circuit. The relationship between the 
current and voltage is easily seen to be 

t>i = Ü , + mil 

That is, 

G'K T)C 
So the chain matrix H is the one indicated. 

(B) Exercise in Lie groups. At a given frequency w is it possible to build a 
lossless two port whose chain matrix is any g in SL2(#) using only 

(1) a ladder of inductors and capacitors (Figure 2.7) 

HH _eee -? 
1<L-

4-

FIGURE 2.7 

(2) a capacitor or inductor in series with a transformer and a shunt capacitor 
or inductor (Figure 2.8). 

„eei ̂ > 

cd C5 L. 
T 

FIGURE 2.8 

SOLUTION. (1) Yes, by elementary algebra SL2 = MNMN. This actually is a 
standard SL2 lemma. 

(2) The Bruhat decomposition says MAN is dense in SL2 so one gets most of 
them this way; to get them all you also need M(? ~l)AN. For the less scholarly 
simple algebra will do. 
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Many manipulations engineers commonly do in this context are surprisingly 
like what one would expect on purely mathematical grounds. A compelling 
illustration is the special collection of electrical engineering programs which 
Hewlitt Packard puts on magnetic cards and sells for use with its HP67-97 
hand calculators. So instead of inflicting a few pages of something theoretical 
like a junior level engineering text on the reader I will summarize the 
instruction manual for H.P.'s market tested collection of programs (called 
E.E.PacI). This gives an interesting perspective. 

Several programs amount to automating the solution of some typical home­
work exercise in an introductory complex variables course. 

PROGRAM 1. You select any number of elements of SL2(C) of the form e(aj) 
or h(bk) with aj and bk real or positive imaginary numbers. The program will 
multiply them together for you in any order which you choose. This allows you 
to evaluate how a ladder circuit will behave at a fixed frequency. For cultural 
interest the instruction manual's description is reproduced in Figure 2.9. 

NETWORK TRANSFER FUNCTIONS 

y v w ' yjtf'j'vwivipjn • i f nu 

This program computes tjrk<ut lrjn.-ltr ftimKooj nf j IjJJe» network com­
peted ol »ny number of slirtjjrü element». The IjJikr u 6-JIII up one clement 
M • urn* hy vleOing «hunt « « n o elements from the following menu. 

MKNU OF CIRCt'lT CLEMENTS 

Name Circuit Chain-Parameter MatrtV 

Shunt roi.'o» 

Shunt inrlu» «ff O j 

"f~ 

Smart Capacitor Or 1 •» 

©_. . — 1 O 

• * h the Cyrillic (ener "cha" 

llLO R / . o l 
*" Jo 1/.0J 

[ I L O O l 

1 " I 0 I t O j 

[ MO 0"j 

* lwC£90 I 1.0 J 

Shw*L-C o - j o - u o 0 , 

o . — ? ^ — - - o U - « = L C 

The chain-parameter rrarm is <*( Ted by the Mlosing sketch jnd mamt 

I, — * - o -

Ö •[::::][:] 
The operation of the proprim n t»»v«v' o* the tact tlut the chj'n-parjr 
malm <>f r»o Ci>cattrJ circuit* it ci|ual to tl«e ptoOiK.1 of lhc<r indui 
« r u m - p * * . * ^ r^no» . 

A* the c:rtun i» huiît up fr.wn npht to left, the 9%rrall chjinp.iran 
nvarrit a upJjteO win the jOJition ol e*h e'emert When the en 
•V.-wnpiK'fi i% «-umpfcit. the «vifiJ card ••» <v HJ in jnJ jm ..ƒ (Sc foil.» 
transfer firviHWH mav he computed lro<n if* overall chjio par .U-H-UT injii 

Voltage transfer ratio 

P.. ITI Re{7~} 
Fnr»ard tram/er admittance 

V. ^ „ Z ^ 

Carrent trailer ratio 

- I 

V, %„Zc • H „ 

For***! tumicr impedance 

V, 

FIGURE 2.9 

PROGRAM 2. Given w, and m2 in the U.H.P. the program computes a g in 
SL2(9

fl) so that Qg{mx) — m2. This tells one how to build an energy conserving 
circuit g which transfers maximum power from source with internal impedance 
m, to load m2. 

PROGRAM 16. Computes the set of all points at a given Poincaré distance 
from a given point. This is set in the unit disk rather than the half plane. This 
is used in computing the gain of a transistor amplifier. See Figure 2.10. 
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FIGURE 2.10 

A couple of programs do parameter conversions. For example, 
PROGRAM 6. Computes the Cayley transform T of a 2 X 2 matrix T, that is 

r = (/+ r)( / - r)"1. 
Now we get to programs which aren't mathematical exercises of this flavor. 
PROGRAMS 13, 14, 15. Compute the g in SL2(R) (or some entries in it) for a 

transmission line at high frequency. The line is given in several different ways, 
e.g. spacing for lines, dielectric constant for (miniaturized) microwave wave­
guides. 

Four programs remain. Two are described in the next section, one does 
Fourier series and the other analyzes a ladder of resistors. 

d. Circuits driven by a mixture of sine waves: Problems. The theoretical 
design problems described in the preceding section were trivial. That is because 
the objective was to design a circuit which behaved in a desired way at one 
fixed frequency. An example of such circuitry is the power transmission system 
to your house. It operates and is designed to operate at 60 cycles/sec. If the 
frequency suddenly shifted to 120 cycles, the power company's circuitry would 
behave peculiarly, since the characteristics of some of its components would 
change and the design doesn't allow for that. 

Many circuits don't have the luxury of operating at one fixed frequency. For 
example, a telephone must faithfully process various mixtures of frequencies 
ranging between 300 and 3500 cycles/sec. Obviously, this circuitry is designed 
to meet specifications which are given at every co between 300 and 3500 
cycles/sec. Many mathematical problems in the design of such 'broadband' 
circuits are extremely hard. In this subsection we describe the setup and basic 
power transfer problems. 
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Note that all circuits listed in §2(c) except for the transmission line have 
impedance and chain functions which are rational in co. In this article we 
restrict attention to rational functions; thus we cannot include transmission lines 
in our study. This restriction is more technical than real, because there is a very 
general class of functions called pseudomeromorphic which are appropriate for 
transmission lines and which behave mathematically about like the rational 
functions for the purposes in this article (see footnote 6, §3). Their use is well 
understood in the context of theoretical engineering (see [A, deW, D-H, F, H6]) 
and attention to them here would be a distraction with little benefit. 

We are now interested in impedances and chain matrices as functions (of co). 
The impedance function m of a physically interesting 1-port has the striking 
property that it has no poles in the U.H.P. The reason is that if m has a pole at 
xQ + iy0 in the U.H.P. then when one feeds signal e_>vsin x0t into the circuit 
the circuit puts out an infinite signal; in practice the circuit burns out. Such a 
circuit is called unstable and unstable circuits are anathema. The classical 
passive circuits are all stable. 

Passivity forces m to lie in the function space analog of the upper half plane 

9G = {/rational: Im /(<o) ^ 0 for co real} 

and stability forces m to lie in a subset 

ópg+ = { ƒ G 96: ƒ continues analytically to the U.H.P. 

and Im f(p)>0 for/? G U.H.P} 

of 9&. Lossless two ports obviously correspond to a certain subset £ of 
n X SL2 over the field of rational functions with real values on the real axis. 
The physically obvious property that cascading a two-port in £ with any 
passive one port yields a passive one-port corresponds to the mathematical 
statement 

(2.5) S gmaps9e+ into?Pe+ . 

This property determines £ protectively, but rather than completing the precise 
mathematical description of £ we change coordinates and describe a transform 
of it. 

Instead of continuing the discussion with this SL2 formalism we shall switch 
now to the scattering formalism. While the SL2 'impedance formalism' is more 
appealing to the physical intuition and so might be more appropriate here, the 
reader should be able to mentally convert back and forth and switching now to 
the conventions used through the rest of the paper improves the transition to 
entirely mathematical considerations. We shall make two transforms. The first 
has been described. It is the map m -> (1 — im){\ + im)~l = s which takes the 
R.H.P. to A. The second is on the variable co; it is /co -+ (1 — /co)/(l + /co) = eiB 

which takes the R.H.P. to the disk. We refer to 6 somewhat loosely as the 
frequency variable even though it is a transform of the true frequency variable 
co. For example a function ra(co) in 9Q transforms to s(ei9\ 

s{eie) = (1 + im{o>))(\ - /m(co))"1, 
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a function in ^1%U° and vice versa. Also 96+ becomes 9l®i/°° under the 
transformation and the key property (2.4) of lossless two ports becomes 

§g: <ft®i/°° <&%H« 

Now a g in the semigroup 9 l t / + ( l , l )o fS l t / ( l , l ) defined in the introduction 
has this property (and g with the property must equal <p« for some <p in 91 and 
« in <3l£/+(l, 1)). In fact <5l£/+(l, 1) equals the (scattering) chain matrices of 
the lossless 2-port networks. The proof is a straightforward algebra exercise. 

The extension of all this to «-ports is easy and we list the outcome since it 
sets the conventions we use through the rest of the paper. 

passive «-port <-> S E ^ ® / P ° ( M j , 

lossless 2-port cascade on S <-» § (S) with g E<3lU+ ( « ,« ) , 

passive 2-port cascade <-> §(S) with g E <316+ ( « , « ) . 

In this article we are interested primarily in power transfer problems and 
now we list some basic ones. Suppose we are given an «-port passive circuit 
with scattering matrix function S(ei0) and a A:-port Q{ei0). The problem is to 
find a lossless (k + «)-port with matrix g(eie) so that the circuit in Figure 2.11 
delivers a certain amount of power to the load S at each frequency eld. 

Qg(s>-

l o s s l e s s 

FIGURE 2.11 

The discussion so far has prepared us to state the problem mathematically 
when k — n = 1 and this case fully demonstrates the problem. So g is in 
9U/(1,1). 

The cascade of g with S has scattering matrix S^e^Sie'0)) and the power 
consumed by this circuit at a frequency eiB equals the power consumed by S at 
eid, since g is lossless. The mismatch between the source Q and §g(S) at 
frequency eid is 

«(e^"),^,.,^")). 
Thus as we sweep through all g the possible power mismatches sweep through 
all 

a ( ô ( e " ) , 2 ( e " ) ) 
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where 2 G 0 / , the orbit of S under the semigroup $l£/+ (1,1). Two problems 
are 

(i) (BROADBAND IMPEDANCE MATCHING). What is the largest power transfer­
able uniformly over all frequencies! Which g attains it! That is minimize 

n u n i m i Z e | ô ( ô ^ , 2 ( ^ ) ) | t œ . 

(ii) Which power transfer ratios G(eld) are obtainable from this kind of circuit! 
There are several variations on (ii) which are fundamental problems of classical 
filter design called insertion loss problems: 

Restrict Q(ei9) = S(eie) = 0. 

(iii) Restrict g to have rational entries of prescribed (low) order. In other 
words there is a crude upper bound on the complexity of the lossless coupling 
circuit. Given a frequency interval a < 6 < b and a function T on it find a g 
which gives power transfer ratio as close to T as possible. 

(iv) Suppose you can only build g by cascading circuits from a (small) subset 
91 C 9l£/+(l, 1). For example, the technology or cost restricts the parts you 
can use. Thus g must equal a product gxg2 • • • gk of g .'s from 9t; let S^ denote 
the semigroup generated by 91. Which T are obtainable with a g in S^? Given 
an obtainable T write the corresponding g as a product of generators. 

The mathematical problems stated in the introduction for passive circuits 
derive directly from these physical problems. Actually, the mathematical 
version of part (iii) of the insertion loss problem which engineers attack is a 
compromise of what we have stated. 

There is another broad class of power transfer problems. One is, given an 
amplifying device (e.g. a transistor) use it to build an amplifier with prescribed 
gain. The amplifier consists of the given device together with any passive 
circuitry the designer chooses to build. The problem is to design the best 
amplifier. There are several different types of amplifying devices and several 
basic configurations for the total amplifiers. A general model for the most 
common (e.g. a transistor) amplifier is 

C6 
y 

1 < 
< 

Vy 

g 

passive 

t ransis tor 

S 

load 

FIGURE 2.12 

One is given 2 X 2 scattering matrix S, and wishes to find the 4 X 4 chain 
matrix g of the passive circuit which maximizes the gain. By gain one means 
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the power transferred from source to load. At 'frequency 0' the gain for the 
amplifier in Figure 2.12 is 

&(s)2,('")|2. 
A worst case analysis requires one to make the inf of this expression over all 
frequencies 6 as big as possible. If we are permitted to use any lossless g this is 
precisely problem (1.5) of the introduction. One must use an extension of §5(b) 
to show that one gets the same answer for passive g as lossless g. A further 
consideration is that typically one wants the gain to be constant over the 
frequency range where you operate the circuit. 

A more restricted but common form of transistor amplifier looks like the 
one in Figure 2.12 except that the equalizer circuit g is decoupled (see Figure 
2.15). That is, g does not mix input and output channels; the source feeds 
through g directly into the transistor and the transistor output feeds solely to 
the amplifier output. The gain of such an amplifier (see Figure 100 [HP2] for 
complete derivation) is 

(2.6) G=\S2l\
2 i — I r, l | r 2 | 2 

11 - 5nr, p 11 •^22-^2 | 

whenever the transistor's S-matrix has 512 — 0 (i.e., is unilateral). Here T, and 
T2 are functions determined by g and range through 9)H°°. The gain optimiza­
tion problem is to maximize (2.6) over all Tl and T2 in 'S//0 0 . 

source 

r A A A _ _ 

1 H 
load 

k r \ \ / 

\v \r*i y/ 
^ 

FIGURE 2.13 

c i r c u l a t o r 

g S 

Another type of amplifier is the reflection type. One is given a one port S 
and wishes to find a passive g so that there is a large flat gain from source to 
load in Figure 2.13. The gain of this amplifier at frequency 6 is | Qg(S)(ei9) |2. 
At the worst frequency it has gain 

(2.7) inf|(L(S)(e")| 
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The best gain obtainable from an amplifier based on S is the maximum of 

inf | | 2 ( ^ ) | | 
e 

over 2 in CO£ . This equals the maximum over 0 / . Guaranteeing stability of 
the amplifier forces us to restrict 2 to 0 / Pi H°°— actually a slightly smaller 
set is necessary. We must emphasize that in designing an amplifier stability is 
an overriding consideration. This imposes a strong constraint on the optimiza­
tion problems just stated. 

As we said in the introduction these amplifier optimization problems give 
rise to generalizations of the Poincaré distance problems solved in §4. In fact 
(2.6) is a product of terms which have the form of a power mismatch (2.4) and 
optimizing the broadband gain of this amplifier amounts to the Poincaré 
distance problem solved in §4. Also (2.7) without the stability constraint is 
equivalent to finding the Poincaré distance of the function S~l to %H°°. So it 
is solved. The connections between optimization over orbits and Poincaré 
distance problems are explained in §6. Also explicit results appear there. 

We conclude the section by returning to our favorite collection of examples, 
the H.P.E.E. Pac I. Programs 16,17,18 can be used in design of a transistor 
amplifier of the form in Figure 2.12 where the channels of the coupling circuit 
don't interact (see Figure 2.14). 

H e - 1 

_L L 

e(m(u))) m(o)) 

FIGURE 2.14 

Fix g,; the programs tell you which g2's give an amplifier with prescribed (or 
maximum) gain; conversely fix g2 and find g,'s. The reason there are three 
programs is that they operate under various assumptions on the transistor M 
and also they do stability calculations. Program 4 computes voltage and 
current (rather than power) gain of a given transistor. Program 3 is not of 
interest here; it concerns biasing of a transistor. 

Program 9 addresses the insertion loss problem of type (b). The set 91 of 
allowable elements consists of chain matrices for 

8 i j = r e p l a c e s i n F i g . 2 .12 

FIGURE 2.15 

To use the program feed an interval [a, b] and (roughly) the length of product 
you are willing to allow. The program computes a g in S^ which is a product of 
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n generators so that the power delivered to the load resistor in Figure 2.14 
(with a purely resistive source) closely approximates the characteristic function 
X[a,b) °f ta> b]- Program 10 evaluates the approximating function obtained in 
Program 9 on a grid of frequencies so the function can be graphed. 

That concludes a description of programs in the E.E.Pac for the HP67-97 
calculator. All programs have been mentioned here so one sees that this brief 
description of old-fashioned circuit design is more complete than one might 
expect. We have indeed explained what is in about § of them. The HP41C is 
larger. The E.E.Pac for it does calculations like the one in Program 1 above for 
a broad range of frequencies (not just one). Also it analyzes the behavior of 
more general classes of circuits than mere ladders. 

A more serious description of engineering literature on these problems 
appears in sections where the problems are treated. We wish to thank the 
Hewlett-Packard Corporation for allowing us to reproduce Figure 2.9 and 
Figure 2.10. 

3. A non-Euclidean Beurling-Lax-Halmos theorem, interpolation and supre-
mum norm approximation. The theory of interpolation could be viewed as part 
of the study of <SIU+ (m, n). This certainly is not how it is treated classically 
but it seems fair to say that this is the most powerful approach to the subject. 
Although it is not apparent from the outset interpolation theory essentially 
amounts to a Beurling-Lax-Halmos theory based on the Lie group U(m, n). 
From the mathematical viewpoint the goal of this section is to present some 
basic facts about the Lie group <3lU(m, n) and the subsemigroup <3l£/+ (ra, n). 

From the physical viewpoint in this and in the next three sections we shall 
be building a mathematical machine which applies to the design of circuits 
with prescribed gains. While classical circuits and gain studies were our 
original motivation subsequently interpolation found its most widespread use 
in the realm of digital signal processing (see the works of DeWilde, T. Kailath 
and coworkers). A forthcoming special issue of Circuits, systems and signal 
processing with articles from a conference in Leuven (1981) on rational 
approximation should emphasize this subject and applications of this type of 
mathematics to the 'state space reduction' problem of system theory. Recently 
interpolation techniques have been introduced into control theory by G. Zames 
and B. Francis [Z-F]. Another application of interpolation by J. Evans and 
myself concerns a test for pulmonary function [E-H]. 

The agenda for §3 is 
3(a) indicates how the 'non-Euclidean' Beurling-Lax-Halmos theory serves 

to parameterize all solutions to an interpolation problem. 
3(b) surveys classical interpolation theory. 
3(c) describes the correspondence between interpolation and supremum 

norm approximation. 
3(d) presents an algebra trick. 
3(e) proves one side of Theorem 3.1. 
3(f) sketches the rudiments of an H2(V) theory for V a vector space with 

signed bilinear form; proves the other side. 
3(g) lists some further problems. 
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A casual reader might stop after §3(c) although §3(f) presents a topic of 
fairly general interest. 

a. Non-Euclidean Beurling-Lax~Halmos Theorem. The classical Beurling-
Lax-Halmos theorem characterizes subspaces of L2(Cm) of the form 

VH2(Cm) 

where V is in <3lU(m, 0) (actually it handles a larger6 field $ as well as <3l). It is 
of crucial importance to us that this generalizes to g in %U(m, n) and allows 
one to characterize subspaces 

gH2(Cm+n) 

of L2(Cm+n). Actually the key case for us is m — n. The linear fractional 
version of this amounts to characterizing subsets of %U°{Mn) of the form 

gg($tf°°(M„)). 

This subsection takes the linear fractional viewpoint and subsection (f) pre­
sents the subspace (Grassmannian) viewpoint. 

It turns out that the range of §g acting on Si/0 0 always equals a set of 
functions which satisfy some interpolation conditions. The simplest type of 
interpolating condition is to require that a function F take given values vvy at 
given points zj in the disk. A good convention is to denote the TV-tuple of 
complex numbers z — (z,, z2 , . . . ,zN) by z, the TV-tuple w — {w,,..., wN} by w, 
and then to define ?T(z, w) to be the set of functions F meromorphic on the 
open disk which satisfy 

F(zj) = wj. 

Here we have assumed that all | zj\< 1. That is, ?Tis a (big) class of functions 
meeting a certain 'interpolation' constraint. 

An illustrative case of the general theorem we eventually derive is 
SIMPLEST THEOREM. For a generic g in $IU+ (1,1) there exists z, w so that 

§g{^^H°°) = 3"(z,w) n <3L<$#°°. 

Conversely, given any z, w for which the set on the right is nonempty there 
exists a g in <3l£/+ (1,1) making the equality hold. 

Thus the range of %g is the set of all solutions in 91®H°° to a particular 
interpolation problem. This ultimately allows us to reduce engineering prob­
lems to interpolation problems of Nevanlinna-Pick and much more general 
type. Also it gives a simple parameterization of all solutions to a given 
interpolation problem. 

To state the general result we need a fancier notation for 9"(z,w) D H°°. 

6 The field i// of pseudomeromorphic functions is defined to consist of functions F on II which 
have meromorphic continuations F< on {| z | < 1} and F> on {| z | > 1}. The continuations must 
have radial limits which agree with F almost everywhere and F> must be the quotient of two 
functions bounded and analytic in {| z \ > 1}. Any Kin H°°{Mn) unitary a.e. on II has all entries in 
\p\ this is because the 'Schwartz reflection' V*(-Z)~x of V can be used to continue the entries of V 
outside the disk. A similar argument applies to U(m, n) and for this reason \p is the 'mathemati­
cally natural' field for our study rather than $1. However, we use <3l for pedagogical convenience. 
Functions in ^ occur physically, for example, in connection with transmission lines (Figure 2.5). 
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Though it looks overly elaborate at first it gives a very condensed formulation 
of high multiplicity interpolation for matrix valued functions. Let 0 denote the 
finite Blaschke product whose zeros are precisely Zj and let G be any function 
in?r(z,w) D //°°.Then 

G + $i/°° = {G + # : / i G H°°} 

obviously equals ?T(z, w) Pi H00. 
This last description extends easily to very general matrix valued functions. 

Define H^iM^ — {F G L°°(Mn): F extends to a function analytic on the disk 
except for / poles}. Let O, ¥ be inner functions in Hco(Mn) and let G G 
H°°(Mn). Define 

%,*AG) = iG + 0 i /* : # G #/°(*0}-
Clearly when n = 1 the set 9*^f/(G) is of the form ?T(z,w) n T/,00. Also these 
sets have a straightforward though messy description as an interpolation set. 
For example, suppose 0 = 7 and ^ has zeroes ty(zj)x. = 0 of multiplicity at 
most 1; set Wj = G(ZJ)XJ. For convenience set 

(3.1) ?T(z,x,w) = {FŒ ®,L°°(Mn): F{Zj)xj = Wj). 

Then clearly 

&%*#(<*) = ^(z>x>w) n H°°(Mn)-

When ¥ = I and 0(z7)*j>y = 0, set G(zj)*yj — Wj. Then the appropriate inter­
polating set is 

?T*(z,y,w) = {F G <&L™(Mn): F(zj)*yj = Wj) 

in that 

(3.1*) ®<%xs>(G) = ?T*(z,x,w) H i f°°(Mj. 

At last we can begin to describe the range of S . It turns out that it consists 
of all functions satisfying a certain interpolation condition up to a strong type 
of equivalence which preserves magnitudes. To be precise we say that two 
matrix functions M and N have equivalent magnitudes if and only if there exist 
rational matrix functions Œ and H with unitary values on II so that ŒME = N. 
Frequently we shall just call the functions M and N equivalent. The main 
theorem is 

THEOREM 3.1. Given g in <3lU(n, n) there exist functions G, $, ¥ in ^H°°(Mn) 
with <I>, ¥ inner and an integer IX) such that 

^ ( ^ « 7 / ° ° ( M j ) and?T*f*f/(G) n fl,«L°°(Afn) 

have equivalent magnitudes. Conversely, given such G, $, ^ let I be the smallest 
integer for which this set is nonempty. Then there is a g in tflU(n,n) for which 
this relationship holds. Note when n — 1 we could have taken either $ = 1 or 
yp" = 1 throughout. 

The theorem is actually concrete in that all functions and / can be computed 
explicitly. This emerges in the proof and is essential in getting the main explicit 
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results of the paper; however, it doesn't matter much to conceptual under­
standing. The theorem at a greater level of generality can be found in a slightly 
different form in [B-H4] and [HI] for the forward and converse directions 
respectively. For / = 0 it is in [A-A-K3], also [A-C-F]; for n = 1 it is in 
[A-A-K2]. We sketch a proof in §3(e)(f). 

b. Classical interpolation. An item left dangling in Theorem 3.1 was how one 
computes the integer /. This is the subject of interpolation theory. An early 
interpolation theorem was published by Pick in 1916. It says 

THEOREM 3.2 (PICK). There is a function F in 9"(z, w) n <3l <$>H°° if and only if 
the matrix 

is nonnegative definite. The proof is constructive. 

The relationship of this theorem to Theorem 3.1 is that for scalar G, ¥ and 
$ = 1 the Theorem 3.2 gives an elegant practical test for determining if 
/ = 0. Instead of moving immediately to the general result for arbitrary / we 
proceed historically. 

Carathéodory-Fejer gave a matrix positive definiteness test to determine if a 
function F in 61®//00 exists whose derivatives F(r)(0) at the origin equal a 
given sequence a09al2...,an of complex numbers. The general problem of 
finding an F in ^%H°° satisfying F(r\zj) = wf for r = l,...,fcy can be 
approached with the classical method of divided differences but wasn't really 
solved until the advent of the commutant lifting theory of Ando-Nagy-Foia§-
Sarason; see [N-F, Fo]. Sarason [S] originated this operator theoretic approach 
to interpolation by which it was a straightforward exercise to derive a 'Pick 
matrix' for the general interpolation problem. This Pick matrix is positive if 
and only if an interpolating function exists. The explicit computation of this 
Pick matrix was carried out independently by Rosenblum and Rovnayk [R-R] 
and the author, §6 [H2]. 

Takagi studied Carathéodory-Fejer type interpolation not with H°° func­
tions but with functions having at most / poles in the disk. Löwner in 1934 
analyzed interpolation at Zj satisfying \zj\ = 1 rather than | z y |< 1 as the 
others had. 

Interpolation with matrix valued functions was successfully treated first by 
Nagy and Koranyi [N-K] in 1958. They found the natural matrix generalization 
of Pick interpolation. Their methods also have substantial success with Löwner 
interpolation. The commutant lifting approach handles interpolation to any 
order with H°°(Mn) functions readily (but not of Löwner or Takagi type). A 
forthcoming paper of J. Ball gives the most general result. Ball shows how to 
write down a Pick matrix for arbitrary order Pick, Löwner, Takagi, etc. 
Interpolation with matrix valued functions. In particular, given functions 0, ¥ , 
and G define a matrix 

(3.2) A,,*(G) 
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according to a recipe in [B]. Then 

THEOREM 3.3. (BALL). There is a function F in %^4{G) D ^%L°°(Mn) if 
and only if A^^(G) has at most I negative eigenvalues. Moreover, F can be 
chosen to be an inner function. 

We shall refer to A as a 'Pick' matrix for the interpolating problem: As an 
example the 'Pick matrix' for the interpolating set S"*(z,y,w) corresponding to 
%,r(G) is 

(3.2,) A,.,(0)'\^i:^Wt) 

J j,k 

Recall from (3.1*) that G(zJ)*yl = Wj. Theorem 3.3 completely settles the 
problem of determining / in Theorem 3.1. We remark that Ball's proof is an 
extension of the Nagy-Koranyi method for / = 0. 

Note that a selfadjoint matrix A has / negative eigenvalues if and only if 
M*AM has / negative eigenvalues for any invertible M. So there are many 
matrices you might use in Theorem 3.3. For example, another common recipe 
for building a matrix A gives one of the form I — %%* where % is a certain 
Hankel matrix. This will soon be discussed in more detail. 

More refined results were given by Adamajan-Arov-Krein [A-A-K1,2] who 
gave a representation for all solutions to a given interpolation problem (when 
/ = 0 or n = 1) of the form in Theorem 3.1. Many of these results were 
obtained independently by D. Clark [CI] when n = 1. One side of Theorem 3.1 
is a special case of this. They also were the first to write down an explicit 
matrix test for existence of solutions to the full n > 1 interpolation problem 
when / = 0. They used a A obtained from a Hankel recipe. A highly developed 
study of these representations when / = 0 is [A-C-F]. When n > 1, / > 0 the 
existence of the representation as well as a new proof of Theorem 3.3 (for all 
but the Löwner case) is given in [B-H4] which will be described in §5(f). 
Further work on interpolation by Russian functional analysts is [K-P; Fdl, 2; 
IV1,2,3; Nul, 2]. To keep our explanation simple we have kept all functions 
rational. This constraint is not essential in most of the results we have cited 
here. 

c. The sup norm distance to H°°. There is a different viewpoint to interpola­
tion which we shall also use heavily in this paper. It is very good for practical 
engineering treatment of some problems as we shall see in §4, but does not 
seem to generalize well to the harder problems in §5. A theorem (due to Nehari 
in the scalar case when / = 0) says 

THEOREM 3.4. Given F in L°°(Mn) the L°° norm distance of F to Hf°(Mn) 

inf \\F-H\\L„(Mn) 

equals A, the Ithfrom largest eigenvalue of(%F%^f/2. The minimum is attained 
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when F is rational Here any continuous spectrum is considered to have °° multi­
plicity and %F means Hankel operator1 with generating function F. 

THEOREM 3.4'. For F rational, 1 = 0 and n = 1 there is a practical algorithm 
{cf. [Htz]) which uses the eigenvector x f or the largest eigenvalue \x of 

J\/ p v7v/ FX f\ i X 

to construct the best approximating H. Also [A-A-K] gives algorithms which hold 
when I ¥=0. 

This is equivalent to Theorem 3.3 when F is rational. The idea (essentially 
due to Nehari) is very simple. In Theorem 3.3 we wanted to find an H of the 
form 

(3.3) H=G + $K<i' 

where A G Hf°(Mn) and ||if|| L0O(A/) < 1. Here G, 0, ^ are rational. In other 
words 

(3.4) <t>lH*1 = F + K 

where F= ^" 'G^" 1 has norm < 1. So the problem in Theorem 3.3 has a 
solution H if and only if the distance of the function F to Hf°(Mn) is less than 
or equal to one. We have seen that the approximation and interpolation 
problems are equivalent. Now we need some explanation why the answers are 
equivalent. With some work (which this author has only seen performed in the 
scalar case) one can surely compute an invertible operator M: Range %F -» CM 

so that A^^(G) = M(I — %F%F)M*. Here ju. equals the number of inter­
polating points together with multiplicity. Clearly A is positive if and only if 
ƒ — %F%* is positive. 

d. An algebraic rephrasing. Linear fractional maps obviously can be written 
in several ways. Here is one which is particularly useful in dealing with 
<3l£/+(«, n). Presenting it as an entire subsection might be misleading since 
this was done mainly for convenience. We already mentioned both ways of 
writing these maps in §2(a), but we need the explicit conversion rule and 
specific properties of the coefficient matrix; so the purpose here is to list them. 

Straightforward algebra allows one to write the linear fractional map §g(s) 
with g = (J £) e GL(2«) in the form 

(3.5) %(s) = a + hs(l -ds)~lc. 

7The definition of Hankel matrices goes as follows: Given F on II denote its y th Fourier 
coefficient by Fk. Define the Hankel matrix for F to be the infinite matrix 

%F= F-2 F_3 • • . 

\F.3 •• • • / 

For F in LJJ each Fk is of course an « X « matrix. 
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Here u = (a
c
b
d). If c is invertible, then % = %g provided 

(36) g-( -c-v A 
Conversely, if y is invertible % - %g provided 

\ Y - y * I 

One can show that g is in U(n, n) [resp. C(«, «)] if and only if u is a unitary 
[resp. ®M2w] matrix. This can be used to show that g is in <SIU+Jn9 n) [resp. 
<3lC+ («, «)] if and only if u is a rational inner function [resp. (&,<$>H*i(M2n)]. 
Note c is a uniformly invertible function if and only if || fiy~l || Loo < 1. Use of 
the form (3.5) rather than the usual §g conventions was developed thoroughly 
by R. Redheffer (cf. [R]). 

e. Proofs—elementary complex variables. The basic structure necessary for 
the rest of the paper has been presented. In the next two subsections we give 
some idea of proofs. These subsections can be skipped entirely or read 
independently because they have a completely different flavor. This subsection 
proves one side of Theorem 3.1, namely, given a linear fractional map find its 
range. The proof we give uses elementary complex variables only. The next 
subsection proves the other side of Theorem 3.1 and Theorem 3.3 and uses a 
sophisticated (but easy) argument. These two approaches are radically different 
and from them the reader should get a good perspective. To my tastes the 
approach in the next section is the most informative and some readers might 
just as well skip this one. 

PROOF OF THEOREM 3.1 (CONVERSE SIDE). This will only be a sketch; a 
detailed proof is in [HI]. One importance of this proof is that it gives an 
explicit recipe for constructing G, $, and / from a given g in <3l£/(l, 1) and this 
is essential to the computational (but not conceptual) part of the paper. To 
keep matters simple we treat only the n = 1 case and refer one to [HI] for the 
matrix case. Suppose that g is Slt/(1,1). We shall construct an interpolation set 
%j{G) so that g^&^i / 0 0 ) is equivalent to %j(G) D &$L°°. We begin the 
proof by expressing @g as @g(S) — (aS + P)(KS + y)"1; then use some algebra 
(see §3(d)) to rewrite it as 

§g(S) =A + BS(\ - DS)~lC 

where A, B, C, D are easily expressed via (3.6) and (3.7) in terms of a, /?, K, y. 

The key is to analyze 91t0 = {S(\ - DS)~l: S G ^%H°°} and obtain 

LEMMA 3.5. Factor D = RV~l where R and Vare in ^H°°, coprime, and Vis 
inner. Define Df to be a function in QIH00 with the property that (Df - D~l)/V2 

is analytic near the zeroes of Vin A (that is, near the poles of D in the disk). Let I 
denote the number of poles ofD in A; then 

9R,0= {-D,+ V2(31H^} H {S(l -DSy^.SG^^L00}. 
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PROOF OF LEMMA. Suppose M = 5(1 - DS)~l for S in <M,i/°°. Let # poles 
F denote the number of poles of F inside the disk. Since | DS \ < 1, the winding 
number of 1 — DS is 0. Thus 

# poles(l - DS)'1 < # poles(l - DS) ^ # poles D = I 

and we have that M GHf°. 
Moreover, simple algebra gives 

IT1 + M = K ^ - ^ K - /W)"1 = V2G. 

Here G is a function which is analytic on the zero set T of F (poles of D) 
provided S does not vanish on T. For such S the definition of Df gives 
M = — Dj + F2G, where Gj is analytic on T. Thus the poles in A of 

Gx = V~2(M + Df) 

are the same as those of M. So Gx G 91 Hf° and we have proved 

^ o o = (SO - J W r ' i S e & f t f l 0 0 and S(z0) ^ Oif z0 G T} 

is contained in the set given in the conclusion of the lemma. Arbitrary rational 
functions in 9l®/f°° can be approximated uniformly by ones which never 
vanish on T from which one can obtain that 91L0 is contained in the set required 
by the lemma. D 

Now we apply the lemma and actually obtain a recipe for G and $. 
The recipe is: Define Px to be the modulus one (on the circle) function which 

makes fixBCV2 an H°° function with an H°° reciprocal and use the lemma to 
write 

j S ^ a f t t f 0 0 ) = PXA + p^BC^Q = {PXA - PxBCDj + <&HÏ°} n %^L°°. 

Let $ be the smallest Blaschke product so that $PXA is in H°°. Then 

(3.8) $/Sx§g(qi($)H00) = (G + O&ij;0} n a ^ L 0 0 

where G = Q0x(A - J9CZ>7) is in ^H°°. 
This proves Theorem 3.1 when n — 1. D 
One should note two things from this proof. First it is completely construc­

tive. Secondly, the range of @g can be determined exactly (not just up to 
equivalence). 

f. A U(m9 n) Beurling-Lax-Halmos theory. We now present some rudiments 
of H2(V) theory on a vector space V with a signed bilinear form. We do this 
with the explicit goal of proving Theorem 3.2 which connects the Pick matrix 
with existence of solutions to an interpolation problem and Theorem 3.1 which 
parameterizes all solutions to the interpolation problem. We shall see that all 
of this fits snugly together within the structure of ^lU{m, n). 

I think of the earliest related work as Potapov [P] factorization of functions 
in tflU+(m, n) even though no Beurling-Lax-Halmos theorem is directly 
involved. Later Davis and Foia§ [D-F] gave a geometric operator model theory 
based on a signed bilinear form; this too is related. McEnnis pursued [D-F] 
and set up several preliminaries to a symplectic Beurling-Lax-Halmos theorem. 
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On the other hand there is an interpolation component to the subject to which 
[An, S, N-F, D-M-P, A-C-F] made the heaviest contributions. Amongst theoret­
ical engineers P. DeWilde has expressed a need for a symplectic Beurling-Lax-
Halmos theory and several papers have dealt with engineering applications of 
related matrix factorization [D-K, D-V]. This subsection follows [B-H4]. 

In the previous subsections we took the linear fractional approach to 
9^U{m,n). In this subsection we work directly with matrices on Cm+n. The 
study of ̂ lU(m9 n) (on Cm+n) is essentially no more difficult than the one for 
m = «, so we take arbitrary m and n throughout. 

We begin by fixing a decomposition Cm+n = Kx + K2 of Cm+n into disjoint 
spaces of dimension m and n respectively. Write vectors x in Cm+n as pairs 
(xl9 x2) where Xj is in Ky9 that is x — xx + x2. Then any linear map M: K2 -» 
AT, can be identified with its graph 

r ( M ) = {(Mx9x):x GK2} 

and conversely most «-dimensional subspaces T are the graph of some operator 
M called the angle operator for T (frequently, M, I are called affine coordinates 
for T). In this section we will be using the standard decomposition Cm © Cn of 
Cm+n; so Kx = Cm and # 2 = C". Then observe g maps a graph T(M) to 
another subspace 

>*»)={((: î le?))-".} 
(3.9) = {((«M + j8)x,(icM + Y)X>:X e A:2} 

= {<S,(M)j, y):y^ K2) = T{êg(M)). 

Thus it is the action of g on «-dimensional subspaces which corresponds to the 
linear fractional map § (M). 

Next we impose on Cm + Cn the signed bilinear form 

[x, y]c>»+" = (x}, yx)Cm - (x2, y2)c„ 

and recall that U(m, n) is just the set of all matrices which preserve it. The 
statement that T(M) is negative, that is [x, x]Cm+n < 0 for all x E T(M), says 

( x 2 , x 2 ) c * > ( M x 2 , M x 2 ) c « 

for all x2 G PCnT(M). That is II M II < 1. In fact every maximal negative space 
T has angle operator M defined on all of C" which is a contraction. Naturally a 
g in U(m, n) maps (maximal) negative subspaces to (maximal) negative 
subspaces. 

Everything we do in this section will be set in the space L2(Cm+n) or its 
subspace H2(Cm+n). The bilinear forms [,]Cm+« and (,)cw+M induce bilinear 
forms [, ] and (, ) on these via 
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and 

for/, g in L2(Cm+n). A common operator on L2 is a multiplication operator 
91tF: L2(CW) -> L2(Cr) defined for a given L°°(Mr w) function F by 

[^Ff\(ea) = F(ei9)f(ea) 
for any ƒ G L2(CH;). Here Mr>w denotes all r X w matrices. We denote the [, ] 
orthogonal complement of a space 9H by 9H', that is 

911'= {x:[;c, >>] = 0 for ally G 911}. 

A subspace 9H is called nondegenerate if 9ÏL Pi 911' = 0. 
A full range subspace 9H of H2{CW) is one with the property that at some 

| z01< 1 we get {f(z0): ƒ G 911} = Cw. It is easy to check that if this happens 
at one z0 it happens at all but an isolated set of z0, see [Hs]. Our main theorem 
in this subsection is 

THEOREM 3.6 [B-H4]. If 9tl is a closed nondegenerate full range subspace of 
H2(Cm+n) which is invariant under the operator 91te«« and if 911' is finite 
dimensional, then there is g in9^U{m, n) Pi H°°(Mm n) so that 

91t=c losg# 2 (C* + w ) . 

Conversely, any g in $LU(m9 n) f! H°°(Mm n) gives rise to such a space 911. 

The moral is simple. If 9H is an 911^* invariant subspace of H2(CW), it is no 
shock that there is a function <j> in H°°(MW) so that 911= clos^tf^C"). The 
content of the Beurling-Lax-Halmos theorem is that one can choose <j> to 
satisfy the additional algebraic constraint that <j>(eie) G U(w) a.e. (provided 9H 
is full range). What Theorem 3.6 says is that there are other ways to use the 
enormous freedom in the functions <f> satisfying 9H = clos <j> H2. For example, 
if m + n — w and 9H satisfies the very mild algebraic consistency condition of 
nondegeneracy, then we may take <t>(e'e) to be in U(m, n). 

To help orient the reader we mention that the converse of Theorem 3.6 turns 
out to correspond to the forward side of the 'Simplest Theorem' of §3(a) and 
vice versa. Now we sketch the idea behind Theorem 3.6. 

PROOF OF THEOREM 3.6. The proof follows Halmos' proof of the Beurling-
Lax-Halmos theorem closely. Set Ê = 9H D (911^ 911 y. Then the spaces tn = 
911̂ ,1* £ are mutually [, ] orthogonal. Furthermore, any vector x in 9H which is 
[, ] orthogonal to all 911^6 is in 

n guigne n 9v*i/2(cw+") = {o}. 
£>0 Â:>0 

Thus 

(3.io) e E e, œ e2œ ••• 
is dense in 9ït. Here the D around the + emphasizes that the tn are [, ] 
orthogonal. 
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A good example of this decomposition is obtained from taking 911 = 
H2(Cm+"). Then £ = all constant functions » Cm+n and 

çm + n g çm + neid fg Qm + n^lB fg . . . 

is just the standard Fourier decomposition of H2(Cm+n). 
It is easy to check that £ is finite dimensional and so [, ] restricted to £ has 

signature mx,nv Thus £, [,] and Cmi+W', [,]C»M+«I are isometric via an 
isometry V: Cw,+Wl ->• £ and this can be used to identify the decomposition 
(3.10) of 911 with the Fourier decomposition of i/2(CWl+n ')- The map 
O: //2(Cm , + w ' ) -» 911 accomplishing the identification is 

\ /=o / /=o 

Clearly it commutes with 91te/* and so it must have the form 9Hg where g is a 
matrix valued function which continues analytically onto the disk. The full 
range hypothesis on 911 guarantees that mx— m and nx— n. Since O is a [, ] 
isometry we get g(e10) G U(m, n) a.e. We have not used that 911' is finite 
dimensional yet. As far as the basic structure goes it is unimportant (see [B-H4] 
for the general theorem). The role it plays here is to force g to be rational and 
to be in L°° (because 9H' is not just nondegenerate, but topologically nonde-
generate). We omit the proof here. D 

PROOF OF THEOREM 3.1. Now we show how this amounts to the side of 
Theorem 3.1 which is as of yet unproved. Suppose we are given G and $ in 
ft//°°(Mffl(J with $ inner and that ¥ = 1. It was already mentioned that we 
may take 4r = 1 without loss of generality. We must find a g and / which 
satisfy 

S^fl,®»00) = %j(G) H « /ffiL00(MmfJ= {G + $H:H<= ftS^f^,)}. 

To build g set 

9H = clos{<(G + 9H)h9 h)\ H G H°°(Mmn), h G H2(Cn)}. 

Since G, $ are rational, the space 91L' is finite dimensional. So Theorem 3.6 
applies to give a g in &£ƒ(«, n) with 

Gyi = gH2(cm+n). 

Now we must show that this is indeed the g which we want. It is slightly more 
convenient to prove (3.10) with the closed ball $ replacing the open ball ® 
throughout. So we shall henceforth work with %. 

The notion of angle operator extends directly from Cm+n to L2(Cm+n) with 
respect to the decomposition of L2(Cm+n) into positive and negative spaces 
L2(Cm) © L2(C"); let P+ and P_ denote the orthogonal projections of 
L2(Cm+n) onto L2(Cm) and L2(CW). Any negative subspace 91 has an angle 
operator M: P_ 91 -> P + 91 and if 911^91 C 91 this implies 9He^M = M9Itew. 
This implies that M is a multiplication operator 91tF; we take the natural 
convention that if 91 is a subsgace which is maximal negative within H2(Cm+n), 
the corresponding F is in %H™(Mmn). By this convention any invariant 
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negative 91 for which P_9l is a full range space of codimension / in H2(Cn) 
has angle operator 911F with 

F=F0V 

where F0 is in %H°°(Mmn) and ^ is the unitary valued function which (by the 
traditional Beurling-Lax-Halmos theorem)_represents P_% as P _ 9 l = 
^H\Cn). This is equivalent to saying Fis in 9)H^(Mmn). 
_ T o analyze §g{9)Hcc{Mn)) look at its geometric interpretation: The set 
®//°°(Mw) corresponds to the set of all angle operators of invariant maximal 
negative subspaces 91 of H2(Cm+n). The [, ] isometry 9lt maps each such 91 
to g 91, an invariant subspace which is maximal negative in 9H. The map 
91 ̂  g9l written in terms of angle operators as in (3.9) tells us that 
§g(^H°°(Mn)) corresponds to the set of all angle operators for invariant 
subspaces which are maximal negative in 911. The special structure of 911 forces 
these angle operators to have a special form. For simplicity suppose for the 
moment that each invariant subspace 9t, which is maximal negative in 911 is 
also maximal negative in H2(Cm+n). Then the angle operator for 91, is 91tF for 
a function F with the property: Given h in P _ 9 l , = H2(Cn) there is a k in 
//2(Cw)sothat 

Fh = Gh + <&k. 

This says that H defined to be $\F - G) satisfies Hh = k. Thus 
91t„: H2(C") -* H2(Cn) or equivalent^ H lies in H°°(Mm n)An other words, 
F = G + $H for H G H°°(Mmn\ that is F is in %i0(G) h <SL°°(Mm J . The 
argument reverses to give an 91, from such an F. This is exactly the conclusion 
of Theorem 3.1 when / = 0, except we need to show that when 91 is cofinite 
dimensional in H2(Cm+n) the function F is rational. Now F is rational if and 
only if 91, = g91 is cofinite dimensional, but G, $ rational forces g to be 
rational and this implies that 91, is cofinite dimensional. 

To finish our proof for / = 0 we must see when the key assumption we made 
above is valid. That proves to be surprisingly easy and calls for a few 
definitions. The negative co-signature of a negative subspace 9t of H2(Cm+n) 
equals the dimension of H2(Cn)QPHi(Cn)?fiy or alternatively equals the codi­
mension of 91 in any maximal negative subspace containing it. The negative 
signature of a subspace X is the dimension of a maximal negative subspace of 
X. 

LEMMA 3.7. Suppose 9H is a closed nondegenerate subspace of H2(Cm+n). 
Each subspace 91 of '911 which is maximal negative in 911 has negative cosignature 
I in H2(Cm+n), where I is the negative signature of 9H'. 

PROOF. This is a consequence of very elementary linear algebra. The point is 
that nondegenerate subspaces have a decomposition, for example, 911' = 
(9H')+ E (91t')_ into [,] orthogonal strictly positive and negative subspaces. 
The negative signature of 911' equals dim(91t')_. If 91 is maximal negative in 
911, then (9H')_ EB 91 is maximal negative in H2(Cm+n). D 

The lemma allows us to complete the proof of Theorem 3.1 and what is even 
better to actually compute explicitly the integer / which occurs in the theorem. 
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To complete the theorem take / = the negative signature of 9It'. The key 
assumption in the previous argument amounted to the statement that this 
equals zero (because of the lemma). However, in general the lemma implies 
that the angle operator for each % invariant and maximal negative in 9H has 
the form 91tF where FGHf°. Again it^can be shown that $_ 1(F - G) G Hf 
and consequently that F G 9$ ,((/) n %L°°(Mn). In other words, the argument 
given for / = 0 carries straight through to the case of general /. 

To compute / explicitly from G and $ is surprisingly simple. We simply 
compute a basis for 91L' and then look at the Grammian for this basis with 
respect to the bilinear form [, ]. The number of negative eigenvalues for this 
Grammian clearly equals /. Let us do this explicitly for the scalar case and $ a 
Blaschke product with zeroes of multiplicity one only (say at z,, z2,...9zN). 
Let Wj = G(zj) and let kz(e

ie) be the kernel kz(e
id) = (1 /2TT)(1 / (1 - zeid)) 

which reproduces an H2 function from its boundary values, i.e., 

f{z) = {f,kz). 

Then <91t' is the span x of the functions kz (1, Wj). To see this note that 

[(f,h),k2.(l,wj)}=f(zJ)-h(zj)wJ. 

Consequently, ( ƒ, h) is [, ] orthogonal to x if and only if ( ƒ — Gh)(zj) = 0 if 
and only if ƒ = Gh + <Pk for some k G H2; that is, < ƒ, h) G 9ït. 

The computation of / amounts to finding the negative signature of 9H'. A 
typical vector in 9H' is 2yL i <*jkz. and it is negative if and only if 

v ^ _ r — — ~\ ^ - ^ ~ ™uwv 
0>Zauav[kZu(\,wu),kZv(\,wv)\ = Z<*u<*v i _ =• . > 

] 1 l LULV 

0 > ( A a , a)CN, 

where A is the Pick matrix for (z, w} and a = (a,, a2 , . . . ,aN). Consequently 
the biggest [, ] negative subspace of (31t' has the same dimension as the biggest 
( A, ) c* negative space of C^. So / is the number of negative eigenvalues of A; 
also 9H is nondegenerate if and only if 9H' is nondegenerate if and only if A 
has no null space. D 

PROOF OF THEOREM 3.3. The last part of the outline for Theorem 3.1 when 
expanded to the proper generality proves Theorem 3.3 except for the case when 
the Pick matrix has a null space. A null space forces 9H H 9IL' ^ {0} and the 
behavior is radically different from the nondegenerate case. For example, when 
n — 1 it is very easy to find an interpolating function: The space 
ffl A ^ O ^ K V ' C ^

 n 9TC/) i s t > 1 n u l 1 a n d l t s a n 8 l e operator is 9IL9 where <p is an 
inner function which solves the interpolation problem (uniquely). When n > 1 
the procedure is more complicated; one must factor out this null space and 
apply the theory in the first part of our proof to the quotient. D 

g. More is needed. So far we have had the pleasure of describing known 
results. In §6 we shall reduce six different circuit problems labeled (a), (b), (c), 
(d), (e), and (f) to interpolation problems. The theory and construction listed 
so far completely handle (a)-(c), but unfortunately fall short of settling (d)-(f). 
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Thus we are presented with more refined interpolation problems to solve. The 
nature of these problems is to determine if there is a function ƒ in 

where 2Ï is some class of functions. Various classes come up. However, we shall 
describe only the one produced by the stability constraint in §6(d). 

The set 2T0 which arises in the stability problem (see §6(d)) is 

%0= {FeH™(Mn):âet(F(z) - K(z)) ¥* 0 for any z in | z \< 1}. 

The problem of finding an F in %^/G) D %U°(Mn) n a 0 is open. The 
simplest case (n = 1 and / = 0) is reasonably well understood (see [B-H2]). 
The idea there is simple; an analytic function F with no zeroes has an analytic 
logarithm G = In F and F G <$>H°° if and only if Re G(z) ^ 0 for all | z |< 1. 
Moreover F(Zj) = Wj if and only if G(Zj) — lnwy + 2minj for some integer rij. 
Now interpolation with functions having negative real part is just a transform 
of a problem settled by Theorem 3.2 and 3.3 (cf. Chapter XI in [D]) and there 
is a Pick matrix appropriate for such problems. This argument gives 

THEOREM 3.8 (SEE [B-H2]). There is a function F in 

?T(z,w) H %H°° n %0 

if and only if there exists integers m~ (mx,...,mN) so that the matrix 

is positive definite. Here 

WTÎ̂ W this holds one can construct an F of the form F(z) — eR(<z) where R is 
rational, imaginary on IT, and has all poles ei9\.. ,,ei0N on II. This F satisfies 
| F(e'e) | = 1 but has a discontinuity at each ei6J. 

The type of interpolation problem produced by our analysis of the common 
amplifier in §6(e) is also a very natural generalization of the ones solved in 
§3(d)(e) but it is unsolved. The nature of it is roughly this. Find a function M 
in 

9>H^(M2) n?T(z,x,y) 

which minimizes 

Hs.e.v. M(eie)M(ei$)*\\L«. 

Here s.e.v. M means the smallest eigenvalue of the matrix M. 

4. The Poincaré distance to $ i f °°. The classical Poincaré metric on the disk 
is invariant under biholomorphic mappings of the disk onto itself. On higher 
dimensional domains there are many biholomorphically invariant metrics and 
this is certainly true of %Mn. However, one of the better behaved metrics 
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called the Carathéodory metric (cf. [K, HI]) can be written explicitly as 

p(h9 s) = arctanh||(/i - s)(s*h - l)~l(s* - h*)(\ - sh*yl\\Mn 

for s, h E %Mn. It is indeed invariant under a map § with g in U(n, n). As we 
eventually see in §6 this metric involving a sup of eigenvalues is the one best 
suited to our engineering problems because they involve a worst case analysis 
rather than averages. Recall that p induces a metric 

p(F,H) = SapP(F{e")tH(e")). 
e 

The metric was called P00 in the introduction but henceforth we abbreviate this 
to p. 

The main issue in this section is the computation of 

8F= inf p(F,H) 

for F in «Sl^L0^ M„). We shall present several solutions and begin by stating 
the most polished type of result. 

(a) A solution to the distance problem. The following results give a clear idea 
of the answer which is ultimately available. Complete details and proofs are 
found in [HI, Theorem 5.2 and Corollary 1.1]; see also [H3]. 

THEOREM 4.1. If F is in ^L%L°°(Mn) with I poles outside the unit disk (that is, 
F* E %H?°(Mn)) has poles and zeroes at different places,8 then the Poincaré 
distance 8F of F to%H°°(Mn) equals its Poincaré distance to (3l9)Hco(Mn) and 
this equals arctanhvX where X is the Ith largest solution of the generalized 
Ax — XBx where A and B are self adjoint operators which can (and soon will be) 
written down explicitly. 

THEOREM 4.1'. There is an algorithm which uses the solution A, and correspond­
ing eigenvectors x from Theorem 4.1 in a straightforward way to compute a 
p-closest point H0 in %Hcc(Mn) to F. One such closest point H0 satisfies 

p(H0(e'»),F(e">))^ôF 

for all 0. When n—\the closest point is unique. 

These two theorems indicate in general terms the nature of solutions one can 
get. There are explicit formulas for A and B several of which we list at the end 
of this section (see §4(c)). To give the flavor of these formulas we state the one 
which has been most heavily polished. It is for the (physically basic) case where 
F on II has a bounded analytic continuation to the exterior of the disk. 

THEOREM 4.1" (COROLLARY 1.1 AND THEOREM 5.5 [HI]). Suppose F* E 
^l%Hco(Mn). Then a choice of operators A and B for which Theorem 4.1 and 
Theorem 4.1' hold is 

8 To be precise we say that F satisfies condition N if and only if there is no z in the disk at which 
both F and F"1 have a pole. That F satisfies condition Nis a. precise statement of the hypothesis of 
Theorem 4.1. 
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where 

8 = (\-F*F)~l and Ô^^(\-FF*)~\ 

Here %F and XF denote the Hankel and Toeplitz matrices9 with generating 
function F and H designates the function defined by H(e10) = H{e~10). 

This theorem is precisely Corollary 1.1 [HI]. Its proof when n = 1 will be 
given in §4(c). Instead of giving more detailed formulas we turn now to 
explaining the idea behind Theorem 4.1 and behind a large class of solutions to 
the Poincaré distance problem of which Theorem 4.1 is but an example. 

(b) A general class of solutions. There are many solutions to the Poincaré 
distance problem and results of the type in Theorem 4.1 and 4.1' are special 
cases of a more general theory. This more general theory settles the question: 

Given Fe^%L°°(Mn) and 0 < r < 1 is there an H E 
(4.1) ^^H°°(M„) such that p(F, H) < arctanh r? Build such an 

H. 

Since Theorem 4.1 automatically produces the smallest r it actually solves a 
harder problem than (4.1). So one might hope that there are easier (to prove) 
solutions to (4.1) than Theorem 4.1. This is indeed the case because as we shall 
soon see that Theorem 3.4 alone with only a little manipulation settles question 
(4.1). Also we may take r to be a function, not just a scalar, without 
complicating any of our procedures. 

The key notion needed is that of a disk in function space. Such a disk A^* is 
defined in terms of functions C, P9 R in L°°(Mn) where P(ei0)2, R(eie)2 are 
uniformly strictly positive; we define AP^R to be the set of all H E L°°(Mn) 
which satisfy 

(H- C)P2(H- C)* <R2. 

It is easy to check that the set 

(4.2) {H E 9)L°°(Mn): p(H, F) < arctanhr) 

which plays the key role in question (4.1) is a disk and to compute10 its center 
CFr and partial radii PFr and R2

Fr. Consequently question (4.1) amounts to 

9 Hankel operators were defined in footnote 7. A Toeplitz operator looks like 
rn F, F, 

%F = 

F0 Fx 

F-x Fo 

\ 
10The computation can be found in §5, footnote 6 of [H3E]. It gives 

C = [ 9 t - r]F[F*$ÏF- iy\ 

R2 = m(\ - FF*)[dlFF* - ƒ ] " ' , P2 = [ f * » F - / ] ( l - F*F)~ 

where we have suppressed the subscripts F, r and have taken 

ft = (1 - FF*yl/2r(\ - FF*) + l / 2 . 
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determining if a particular disk A£* contains a function in ^H°°(Mn). There 
is a nice test for determining if such an H exists which even settles the more 
advanced question of when there is an H in Hf°(Mn) n A£*. 

THEOREM 4.2. The disk A£* contains a function in Hx\Mn) if and only if 

More generally this disk contains a function in Hf°(Mn) if and only if the 
eigenvalue problem 

%c[ZP-2]-x%*x = XZ^2X 

has at most I solutions greater than one. If P, R,C are rational, then a rational 
solution exists whenever any solution exists. 

THEOREM 4.2'. If P2, R2, and C are rational, there are in principle several 
algorithms which use X( and the corresponding eigenvector x from Theorem 4.2 to 
construct a rational H in âp^R (1 H^(Mn) satisfying 

\\(H(e") - C(eie))*P(eiS)\\2 = \\R(eie)\\2 

for all 0. One such algorithm is given for n — 1 and I — 0 in [H3, Lemma 1.2]. 

To prove the theorem we need Wiener-Hopf (or in engineering parlance, 
spectral) factorization: every uniformly positive matrix function W onli can 
be factored as W{eie) = M(ei$)*M(ei9) where M G H°°(Mn). Moreover, M 
can be taken to be an outer function,11 that is a function M in H°°(Mn) with 
M~l in H°°(M„). 

PROOF. We assume P2, R2, C are rational. Theorem 4.2 follows quickly from 
Theorem 3.4. One takes a and ft to be outer factors of 

aa* = i>2, ftp* = R2. 

Then H lies in A™ if and only if K = fi'xHa lies in A^-iCa. Since ft and a are 

invertible outer functions, there exists an H in A '̂* n Hf°(Mn) if and only if 
A^-iCa n Hf° is nonempty. In other words, we must determine if 

{KeL»(Mn):\\K-p-lCa\\L~<l} 

contains a function in Hf°(Mn). Theorem 3.4 says it does if and only if 
II3C„-,CJ|<1. 

To convert this to the answer which appears in the theorem one uses some 
Toeplitz and Hankel trickery. The argument f or / = 0 is this: ll%0-icJI < 1 if 
and only if 

(4.3) Xr>c«X2->ca<l 

if and only if 

%jh%c%a%*a%èX}-l<I, 

^ c ( £ « - ' . 3 ; « - | ) 3 t c < £ £ * # , %cX-pl-2%£ < Zfr. 

"Actually an outer function M is one in H°°(M„) with the property that MH2(C") is dense in 
H2(C"). For A/"' uniformly bounded on II, the condition M outer implies M'] is in H°°(M„). 
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For / > 0 similar reasoning prevails. Theorem 4.2' follows from constructions 
referred to in Theorem 3.4'. 

There are many other recipes besides this basic one for determining if 
A£* n (^lHcc(Mn) is empty. They are based on combining Theorem 4.2 with a 
'coordinate change' in function space. A linear fractional map §g with g in 
<31GL(2«) will transform one disk in function space to another. One could 
work on either disk and by doing this properly get different forms of solutions 
to the problem. Here we shall describe the linear fractional maps appropriate 
for the Poincaré distance problem. 

Suppose we want to write down a condition for there to exist an H in the 
disk (4.2) and in H°°(Mn). Let § be a (rational) Poincaré isometry, that is, 
% = 6g for some g in 9^U(n, n). Then H is in (4.2) if and only if 

(4.4) p(@(H), @(F)) < arctanh r. 

Consequently, an H in H°°(Mn) lies in (4.2) if and only if there is a K in 
§(%Hco(Mn)) which lies in the disk 

(4.5) {K G ®L°°(MJ: p(K, 6(F)) < arctanh r } . 

Thus we have a variation on question (4.1). Instead of determining if H0C(Mn) 
intersects a certain disk we must determine if §(%Hcc(Mn)) intersects a certain 
disk (given by (4.5)). Fortunately (for the rational case), the machinery 
necessary for doing this was developed in §3(a)(e)(f)-

Theorem 3.1 tells us that the range of § is 

(4.6) S(«H®#°°) = (G + O&Z/;0) n %U° 

for a G and O in tflH00 which are explicitly computed in the course of proving 
the theorem, and / given by Theorem 3.3. In a moment we write out the recipe 
for obtaining /, G and O from F, but now we proceed with our computation of 
the distance from F to <$i/°°. A function in the set (4.6) is in the disk (4.5) if 
and only if there is an L in H™ satisfying 

p(G + OL, 6(F)) < arctanh r. 

That is, by footnote 10, we must find an L in Hf° and in the disk 

(4.7) (*-'Q(f).r - *-'G - L)Pi{F)X^C§{F),r ~ *-'G - L)* < *S(F).r. 

Theorem 4.2 tells precisely for which F (and subsequently derived G, O, and /) 
such an L exists. This gives many tests (one for each S) to determine if F is 
within distance r of %Hco(Mn). This class of tests will be stated formally as a 
theorem (Theorem 4.4) but first let us look at some examples. 

Our first example is the proof of Theorem 4.1. This is a rather vague 
example in that Theorem 4.1 involved operators A and B which weren't 
explicitly computed. Subsequent examples will compute several choices for A 
and B. 

PROOF OF THEOREMS 4.1 AND 4.1'. The function F has Poincaré distance 
AF ^ arctanh \/X if and only if there is an H in 9)Hco(Mn) satisfying 

(4.8) p(F,H) < arctanh/\ . 
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Suppose § is a map from &£/(«, n) satisfying §(F) = 0. For example, 

(4.9) §0
F(S) = - F + (1 - FF*y/2S(\ - F*S)-\\ - F*F)V2 

is one such map and all others are 'equivalent' to it through multiplication by 
functions with unitary boundary values. With this choice of § formula (4.7) is 
simple, because as one instantly checks 

Q,y/\ = °> P0,y/X = 7> a i l d R0,y/\ = fil-

One computes $, G, / for § and obtains from Theorem 4.2 that F satisfies (4.8) 
if and only if \ > Xh the /th from largest eigenvalue for Ax = Xifcc, where 

(4.10) ^ = ^ - 1 ^ 1 - ^ and B = I. 

Thus Theorems 4.1 and 4.1' hold with this choice of A, B and an / which is 
computed from G and $. D 

The geometric interpretation of the coordinate change § is very informative. 
As X increases the H's satisfying (4.8) form a family of increasing disks 
containing F; while F is at the ' Poincaré center' of these disks it is not at the 
Euclidean center unless F — 0. The map % sends F to 0 and since it is a 
p-isometry § takes the family (4.8) of circles to a family of circles with (both 
Poincaré and Euclidean) center at 0 and radius arctanh\/Â. As a result the 
radius of the circles appears linearly in the matrix test of Theorem 4.2 and 
determination of the disk of minimum radius which intersects H°° becomes an 
eigenvalue problem (namely, the one in Theorem 4.1). 

Further examples and details and the coordinate changes appear in the next 
subsection. 

(c) Explicit formulas. In this subsection we want to demonstrate that the 
operators A and B which appear in the solution to the Poincaré distance 
problem can be computed explicitly and we want to give a sample computa­
tion. We make no attempt to be encyclopedic since very general formulas have 
been listed and proved elsewhere [Hl, H3]. 

Our main achievement here will be to derive a whole class of formulas for 
determining if the Poincaré distance 8F of an F in 61®L°° is < r. These 
formulas will be stated as Theorem 4.4. Each of these formulas results from a 
particular 'coordinate change' S and all basic ideas behind what we shall do 
appear in 4(b). Missing in §4(b) were explicit formulas. Our first step is to hst a 
few definitions; then we state one corollary of Theorem 4.4; then we state 
Theorem 4.4; then we show how one specialization of it gives the corollary and 
Theorem 4.1" for n — 1. After that we prove Theorem 4.4; then we change to 
the topic of interpolation and formulas based on interpolation. 

Our explicit formulas require that we recall some definitions from Lemma 
3.5. Given a function K in ^L 0 0 , let K = RV^1 be the coprime factorization of 
K with VK inner. Recall that Kr is a function in tflH00 with the property that 
[Kj — K~l]/V£ is analytic near the zeroes of VK in A. Define (A') to be 

fK,_ - ^ - P - I * I 2 ) * / 
< A > ( I - I * I 2 ) ^ • 
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One consequence of the main theorem of this section is 

COROLLARY 4.3. If F is in ^®L°°, then Theorems 4.1 and 4.1' hold with 

A — j^/p\JWp\ cind B = St(i—iw2\-2. 

This corollary is one instance (D = F) of the following general result. 

THEOREM 4.4. To determine if the 'Poincaré distance9 8F of a rational function 
F to ®//°° is less than or equal to r, select any function D in 9t®L°°. Let 
D — RV~l be the coprime factorization of D, form the operator 

M = r%{\-\t\*)/{\-\D\*)\\-r\t\*)-Xc%l 

where 

( l - r ) r ( l - r | r | 2 ) - ' + g + ( l - | D | 2 ) [ 5 ] , 
(\-\Df)V> 

and 

r = - D + ( I - \D\2)F(\ -DF)~\ 

Then 8F < r if and only if M has at most I negative eigenvalues where I = # poles 
of D inside A. 

An excellent illustration of how one uses the rather complicated looking 
Theorem 4.4 is to derive Corollary 4.3 and Theorem 4.1" when n— 1. All that 
one does is take D = Fin Theorem 4.4. We get T = §£(F) = 0 and 

F + ( l - l f f ) [ F ] 7 

(\-\F\2)V2 { } 

where F — RV'X is the coprime factorization of F. This gives Theorem 4.3 
immediately. 

An elegant special case of this is Theorem 4.1" for n = 1. The hypothesis of 
Theorem 4.1" is that F* e ®ZP°, so D e %_H°° and / = # poles of D = 0; 
consequently K = 1 and we may take [D]r = 0. So in this case M — 
f^(i-|fl2)-2 — 3CF53C£8. The number of negative eigenvalues of M is < / = 0 if 
and only if M > 0. Thus we have proved that 8F < r if and only if 

(4.11) DCra3Cà-cr5E(I_ |Jfr». 

This actually is a nicer result than Theorems 4.1' + 4.1" since (4.11) is simpler 
than the form of A and B given there. The reason is that now we are treating 
only scalar valued F and for matrix valued F the answer is a little more 
complicated. To obtain the A and 2?_of Theorem 4.1" from (4.11) just take the 
outer Wiener-Hopf factorization QQ of 1 — | F\2, substitute it into the right 
side of (4.11), and use the Toeplitz and Hankel tricks of the type which follow 
(4.3) to convert inequality (4.11) to the inequality A < B where A and B are 
given by Theorem 4.1". 

We remark that the flexibility of Theorem 4.4 appears to be very helpful for 
engineering problems. In practical situations one is not given the function F 
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completely; one only has (imperfect) measurements of its values on some 
interval. The article [H3] is devoted to such problems and how different 
choices of D in Theorem 4.4 have different numerics and advantages. 

PROOF OF THEOREM 4.4. This theorem formalizes the tests we were deriving 
in §4(b) based on a "change of coordinates" §. The derivation in §4(b) 
concluded with equation (4.7) and the application of Theorem 4.2 to it. This 
actually constituted a proof of Theorem 4.4 except for the fact that various 
components of (4.7), namely the functions G, 0 and /, had not been explicitly 
computed. Thus the only remaining work for our proof is explicit computation 
of these functions. 

Go back now to §4(b) where we are in the process of analyzing the effect of 
changing coordinates via a map §. The first thing we claim is that if we 
multiply § by a function \p of modulus one on II to obtain a new map 
§\S) — ^S(S), then the new coordinate change S1 gives the same answer as 
the old one §. To be precise the disk consisting of L's satisfying inequality (4.7) 
based on % and on S1 is the same. There are several ways to verify this; one is 
to go to footnote 6 which contains the definitions of Q ( F ) r, etc., go to the 
recipe in §3(e) which contains the definition of 4> and G and see (easily) that 
0 _ 1 Q ( F ) r for % and &\lCgi(F)tr for §l are equal, that $~lG and $ilGl9 etc. are 
equal, etc. In other words, \p effectively cancels out of (4.7). 

The preceding paragraph allows us to take the % we are studying and to 
convert it to another §' of simpler form. We do this by first denoting by D the 
function which § maps to 0; that is §(0) = 0. It is easy to check that § = \px§£ 
where §£ was defined in (4.9) for a unimodular i//,. Thus it suffices to analyze 
§o . Actually an even easier map to study is S1 defined by 

§\S) = 
( 1 - | / > | 2 ) ^ 

%D(s) = ef -D 

(l-\D\2)vi Vt 
+ —s(i -Dsy 

where Qx is the outer Wiener-Hopf factor of 1 - | D |2. Since Q2/(\ - \ D \2)V£ 
is unimodular §] comes from 31 £7(1,1). Henceforth abbreviate Vp to V. The 
recipe in §3(e) or even more simply Lemma 3.5 tells us that range S1 equals 

g 1 ^ ® / / 0 0 ) =[GX + if,00] n <ft<SL°° 

where / = # poles of Z>, and 

-D [D], 
G\ = fi? ( 1 - | 2 ) | 2 ) F 2 = Q2x{D). 

Now all that we must do is substitute G = Q\(D), $ = 1, and §\F) into 
(4.7). Abbreviate S0

D(F) by I\ note that §\F) = QfT/(l -\D\2)V2, note 
that | §\F) I = | T | and use foonote 10 to evaluate the coefficients of (4.7): 

$ C r r = (1 - r ) 7
 g ' r „ , (1 - r | r | 2 ) " \ 

r ' (l - \D\2)V2K ' ' ' 

K\,r=r{\ - | r p ) ( l - r\T\2)-\ P2,r = (l - r\ T\2)(l -\T\2y\ 
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With these values (4.7) becomes 
(4.12) 

<, ( i - | rp ) 2 ( i - , | r | 2 ) -
\ - l 

* l V ' ( l - | / > | 2 ) F 2 * 1 N ' 

after dividing by (the scalar function) P^ r. Next divide by the outer function 
Q2 to get 

(4,3) IC-LJU- - ' ( , - ! r J ' ) 

( l - |Dp) 2 ( l -r |rp) 

where L, is an arbitrary function in H°°. Theorem 4.4 follows directly by 
applying Theorem 4.2 to the disk determined by (4.13). D 

Throughout this entire section we have never mentioned interpolation. 
Instead we have used the equivalent sup norm approximation view toward the 
subject. Some readers are probably puzzled by this because §3 was done almost 
entirely from the interpolation viewpoint. The reason is that if one works on 
problems like these but with added constraints, the constraints fit better into 
the interpolation framework. In §6 we shall present a variety of problems; the 
easier ones lead to the problems we just treated, the harder ones absolutely 
require interpolation. Thus the only unified way to cover a large territory is 
through interpolation. We conclude this section by pursuing the interpolation 
approach to Theorem 4.1 and writing down the explicit matrices A, B which it 
gives. As usual we stick to a special case. 

THEOREM 4.5. Suppose F is in 9t®L°°. Let_ O be an inner function in tflH00 

minimal with respect to the property that $(F) lies in 'SI//00, and let zl9...,zN 

denote the zeroes of $ which we assume to have multiplicity one. Let Q be the 
outer Wiener-Hopf factor of I — \F\2. Let w- be the function $Q2(F) evaluated 
at Zj. Then Theorem 4.1 holds with 

The proof is straightforward and dull so we do not inflict it upon the reader. 

5. Orbits and Poincaré contractions. So far we have presented two disjoint 
topics. First there was an exposition of old fashion filtering theory, then came 
a solution to a mathematical problem on Poincaré distance. At the moment 
these appear to be disjoint topics, but they aren't and we now begin a 
compaign to derive the connection. This is done in two sections, §§5 and 6. §5 
presents two purely mathematical results; one classifies the orbits of the group 
of linear fractional maps § with g in 9U7(/i, «), the other asserts that many 
U(n, n) invariant metrics on %Mn are contracted by a §g with g in C(n, n). §6 
lists a half dozen electronic power transfer problems from §2 and uses 
everything developed in the paper to either solve or simplify them. 



48 J. W. HELTON 

a. Orbit structure. As one would expect in studying the transformation group 
tflU(n,n) acting on $LMn, its orbits play an important role. For our purposes 
it suffices to classify the orbits of the constant functions. To describe them 
define M(j\ k, I) to be those matrices in MJ+k+l withy' singular values less than 
1, k singular values equal to 1, and / singular values greater than 1. Recall the 
singular values of a matrix m are the eigenvalues of | m \ = (mm*)l/2. As usual 
9lM(y, k, I) denotes matrices with rational entries whose values (on the circle) 
lie in M(j, k, /). 

THEOREM 5.1 (THEOREM 1.1 IN [B-Hl]). Each set QLMU, K 0 is an orbit of 
9^U{n,n) with n =j -f k + / which intersects the constants. In fact that is all of 
them. 

Theorem 5.1 has an old engineering result called Darlington's theorem as an 
immediate consequence. 

COROLLARY 5.2. The orbit ofO under $IU+ (w, n) is <&M(n, 0,0) D H°°(Mn), 
that is, it equals a & t f ^ M J . 

This corollary follows immediately from the fact (in Theorem 5.1) that the 
orbit of 0 under 9K/(«, n) equals <3lM(«, 0,0) and a trivial computation which 
associates to any g in <3l£/(«, n) for which §g(0) is in $/P°(Mw) a Blaschke 
product <J> so that 

, A / <pl 0 \ 
g = g ( o /) 

is in <31U+ (*, n). Now §g,(s) = Sg(<ps), so 8 ,̂(0) = 8,(0). 
For n = 1 this is due to S. Darlington; for arbitrary n it is attributed to 

Ono-Yasuro, Belevitch, or in Russia to Potopov. It says that any passive «-port 
can be made by terminating n ports of a certain 2«-port lossless circuit in n 
unit resistors. 

There is a further useful property of linear fractional maps. It describes how 
they behave with respect to 'Schwartz reflection' s = s*~l of matrices. 

LEMMA 5.3. If g G GL(2n) then 0 ) = %o(s) where g0 = (£_?)&$_?). 
Consequently if g G U(n,n)9 then g0 = g. 

The proof is straightforward algebra and can be found (in greater generality) 
in [B-Hl, Lemma 1.2]. 

Hopefully, Theorem 5.1 is sufficiently intuitive that we can omit its proof 
without disorienting the reader. The cleanest proof [B-H5] uses the symplectic 
Beurling-Lax-Halmos theorem of §3(f). Straightforward algebra would prove 
the theorem except for the fact that the square root of a rational function may 
not be rational. This causes considerable difficulties with the brute force 
approach. 

c. Invariants. It was demonstrated by C. L. Siegel that the 'cross ratio' of 
two matrices is preserved (up to similarity) under maps Sg with g in U(n, n). A 
more general cross ratio of four matrices zx, z2, z3, z4 was introduced by 
Youla; it is 

e (z , , z2, z3, z4) = (z, - z2)(z2 - z3)_1(z3 - z4)(z4 - Zj)"1 
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whenever the necessary inverses exist. It is invariant under a linear fractional 
mapping up to similarity. That is, if z' = ^(z •) then 3m invertible so that 

G(z(, z2, z'3, z'4) = mG(zl9 z2, z3, z4)m~\ 

J. H. C. van Heuven and T. Z. Rozzi [H-R] described a very general 
procedure for using G to generate invariants. Suppose rx and r2 are transforma­
tions on Mn and that 5" is a linear fractional map on Mn (that is, ^ —%g for a 
g E GL(2«)) which intertwines TX and T2; that is T^ — ^r2. Define 

&j(z},z2) = e ( z „ z2, T / Z , ) , TJ(Z2)). 

Then clearly 

S , ^ , ) , ^ ) ) and S2(z1 ,z2) 

are similar. In particular if T, = T2, then Sj is a similarity invariant for §. 
This invariance applies readily to linear fractional §g with g in U(n, n). This 

is because^the operation defined by m — m*"1 commutes with § ; that is 
§g(m) — §g(m) (see Lemma 5.3). Thus 

A 

&(zx,z2) = e(zuz2,zuz2) 

is invariant under § . In fact & is essentially the C. L. Siegel cross ratio. All 
eigenvalues of it are positive and 

p(s, h) — arctanhfb.e.v. &(s, h)]l/2 

is the Carathéodory metric defined at the beginning of §4. Thus the mappings 
% with gin U(n, n) are isometries in the metric p. 

There is a generalization of these invariance properties of physical impor­
tance. If ^ i s any analytic map of 9>Mn into %Mn then ?Fis a contraction in the 
metric/?, that is, 

for all s, h in %Mn. The generalizations of it to domains other than %Mn are 
treated by Earle and Hamilton [E-H] and Kobayashi [K]. This result on the 
Carathéodory metric concerns only the biggest eigenvalue of &(s, h\ but there 
are circumstances when we need to deal with all of the eigenvalues of &(s, h). 
In particular let \f[m] denote the /th from largest eigenvalue of the self adjoint 
matrix m and call an analytic mapping (S: %Mn -> %Mn totally contractive 
provided 

for all /. The paper [B-H3] describes exactly which ?F are totally contractive. A 
consequence is 

THEOREM 5.5 (COROLLARY 3.1 IN [B-H3]). If g is in G(n, n), then the linear 
fractional map § is totally contractive. 

6. Physical problems and how our machinery applies to them. In this section 
we shall state a variety of mathematics problems which we wish to solve. Each 
one arises from a power gain problem in §2 and requires the optimization of a 
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particular functional on an orbit of <31£/+(H, n) or <3lC+(«, n) possibly with 
some constraints. Most can be reduced to a more appealing form, namely, that 
of finding the Poincaré distance of a given function F in 6&L°°%Mn to a certain 
subset E C %Hco{Mn). Some of the Poincaré distance problems have been 
solved explicitly and all of them can be analyzed to produce qualitative results. 
This section is broken into six parts, a, b, c, d, e, and f. Each part presents a 
problem about orbits and then reduces it to a Poincaré distance problem. Also, 
since each problem comes directly from circuit theory, we indicate physical 
motivation in each case so an interested reader can refer to §2 and see how the 
problem fits in. We begin with the simplest and most basic problem. 

a. The broadband impedance matching problem for n-ports (see Introduction 
(ii) and §2(d), problem (a) with Q = 0) gives rise directly to the mathematics 
problem: 

Given S in a«//°°(Mw) , find 

/ i= inf | |g (S) | | 
g<E<&U+{n,n) s 

and the optimizing g. 
A few principles from §5 easily reduce this to computing a Poincaré distance 

as we now see. Observe 

arctanh/*= inf p ( o , g f S ) ) = inf p(g .,(0), S). 
g<E$iu+ s ge<&u+ s 

By Corollary 5.2 and the easily checked fact that g"1 sweeps $IU~ as g sweeps 
<31U+ we get 

arctanh/A= inf p(H,S*). 

Also from the optimizing H one can construct the optimizing g in the original 
problem (using the construction behind Theorem 5.2). Thus the problem is 

Find the p-closest point in (3l(S)Hco(Mn) to the function S* and the p-distance. 
This is solved by Theorems 4.1, 4.1', 4.1" and 4.4 and settles the broadband 

matching problem in several different ways. 
b. Optimizing the gain of a reflection type amplifier using lossless circuitry 

(§2(d) Figure 2.13 with g lossless) hands one the mathematical problem: 
Given S in <&H°°(Mn) with 

inf inf \\S(ei9)x\\c»> 1, 
e iixii = i 

f i n d 

Ye= max inf inf \\SJS)(ei$)x\\c*. 

That is find the amplifier whose minimum gain (over all modes of operation is 
the largest). 

The reduction starts with the observation that for an invertible matrix m 

inf WmxY 
= i Uw1 II A, \m 
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Use this trick and then Lemma 5.3 to get 
1 

ys = max , , = max I8„(S)W„) * I IW»L-<". ) 

SO 

(6.1) J - = M + \\Sg(S)\\L^m). 

This is exactly the same problem as in part (a) except that S need not belong 
to H°°. Instead S is in %Hf°(Mn) where / is the number of zeroes of S outside 
the unit disk. The reduction from here on is the same as in part (a) only we 
obtain not §s* but 6s which corresponds to a g in <3i£/(«, n) but not in 
$IU+ (n, n). Again we get that the crux of the matter is a Poincaré distance 
problem. Namely, 

Given S~l rational, find 

arctanh — = inf p(H, S~l) 

and find the optimizing H. 
This is solved by Theorems 4.1, 4.1', 4.3 and 4.4 when n — 1; for the general 

case see Theorem 5.1 in [HI]. 
c. Passive equalization. A common variation on (a) and (b) is to let g sweep 

through tflC* (n, n) rather than $IU+ (n, n) as we did before (actually this is 
the problem presented in §2(d)). Problem (a) with this variation proves to be 
vacuous so we concentrate on problem (b). The precise problem now is to find 

y i = max inf inf UiS)(ei9)x\\c*. 
g<E<&C+(n,n) 6 \\x\\ = \ * 

The physical circumstance is the same as before but now in the basic config­
uration shown in Figure 2.13 we allow g to be any passive (rather than energy 
conserving) circuit. 

The reduction goes just as before to give 

—7 = inf &/ (K~rz ox(5) 
7s geac+(«, «) H (o-/)g(o-/n J\\L°°(M„) 

Now g0 = [(o-/)g(o-/)]_1 is pointwise in C(«, n) so Theorem 5.5 says that §go 

is a Poincaré contraction; thus 

(6.2) arctanh— ^ inf p(@(f ow•,/ <K(0), S). 

For g in <3lC+ («, n) one can readily check that 

is in %Hcc{Mny So by Corollary 3.2 we have 

(6.4) arctanh-^- > inf p(H,S~l). 
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However, the right side equals arctanh(l/y5) from part (b). Therefore we 
conclude ys — y's-

Thus we have proved the intuitively plausible fact that one cannot get more 
gain by using passive equalizing circuits than by using only lossless equalizing 
circuits. This phenomenon persists through many types of amplifier design and 
the reason always is that the % from C(«, n) are totally Poincaré contractive as 
in Theorem 5.5 or in a stronger sense [B-H3]. For more on this see [B-Hl, §8]. 

d. Stability: There are very important restrictions which one can add in 
problems (b) and (c). Ultimately problems (b) and (c) amounted to computing 
the Poincaré distance from a given function F in <3l®L°°(MW) to «Mi/0 0 . The 
problem we shall now discuss ultimately reduces to computing the distance 
from F to the subset 

EF= {H G %H°°(Mn): H and Fnever agree) 

of %H°°(Mn). Here the term H and F never agree means that H(z) — F(z) is 
an invertible matrix for each z in \z\< 1. This turns out to be quite a nice 
mathematical problem which is entirely open when n > 1. There is strong 
motivation for studying it as we now see. 

In problems (a)-(c) we were given a function S G 77°°(Mn); then we acted 
on it by §g(S) where g was in <3l£/+ (n9 n) or <3lC+ (/i, n). When S G ®^°°(MW) 
then Qg(S) is automatically in H°°(Mn) (even in <&H°°(Mn)). When \\S\\ Lœ <£ 1, 
the function §g(S) may have poles inside the disk. This is anathema in 
amplifier design because such a pole corresponds to an instability in the circuit 
as described in §2(d). 

Thus the all important stability constraint on the amplifier in Figure 2.13 with 
coupler g0 and amplifying element S0 is that §g(S) have no poles in | z \ < 1 for 
any g and S which are near to g0 and S0. Consequently the variant of problem 
(c) of true practical interest is 

Given S, find 

y i = max inf inf \\St(S)(ei9)x\\c. 
S g<E<&C+(n,n) 6 | |x| | = l 8 

g, S stable 

and a g which (approximately) produces the maximum. 
Now we sketch how one again uses the principles of §5 to convert this 

problem to the i^Poincaré distance problem just cited. 
The first step is to analyze the stability constraint and phrase it in conveni­

ent terms. To do this write §g(S) = A+ BS(\ - DS)~lC as in §3(d). If g is in 
<3lC+ (n, n), then one can take,4, B, C, D to be in H°°(Mn). Thus if (1 - DSy1 

is in H°°, the function @g(S) will be too. The converse is not true because B, S 
or C could cancel singularities of (1 — DS)~l. However, this cancellation is 
destroyed by perturbation of A, B, C, D and S, so in practice the pair g, S is 
stable if and only if (1 — DS)~] lies in Hcc(Mn). It is straightforward to verify 
that (1 - DS)'1 is in H°°(Mn) if and only if D and S~x do not agree (see 
[B-H2]). 

The function D has a neat characterization in terms of § , namely, 

(6-5) §(, 0^,^(0) = D*. 
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To check this note that the left side of (6.5) is 

The conversion rule (3.5) from §g to % simply says that -K*y*~l = D*. 
Now we convert the stable amplifier problem (d) to the Poincaré distance 

problem. One simply tracks through the reduction in (c) and observes the 
effect of the stability constraint. The crucial place is in passing from inequality 
(6.1) to inequality (6.4). The statement (6.5) quite miraculously is the same as 
the statement (6.3) and says that H in (6.3) equals D. Thus (6.4) for the stable 
g, S which we are considering is 

arctanh— > inf p ( # , S'1). 
ys H<E<&ES-X 

Likewise, problem (b) with the stability condition reduces to the same Poincaré 
function space approximation problem; namely, the optimum for (b) with 
stability equals y's rather than ys. 

The crucial problem is 
Find 

arctanh — = inf p(H,S~l) 
ys w e t £ r , 

and the optimizing H. 
Now we have finally come to a problem which is not solved in §4 and which 

is in fact not fully solved. The attack on Poincaré distance problems presented 
in §4 still applies here but the interpolation view is now more appropriate than 
the sup norm approximation view emphasized in §4. To convert the crucial 
problem to a constrained interpolation problem we again track through the 
basic reduction described in §4(b). We now review a special case of that 
reduction quickly. 

Set F — S~x and consider the issue of computing the p-distance 8F of F to 
%H°°. The mapping §£ given by (4.9) takes F to 0, consequently 

p(H, F) = p(§cf(#),0) - arctanh||g0
F(7f)||LOo(A/n). 

Theorem 3.1 tells us that §Q(H) sweeps through a set of interpolating functions 

%,*AG) n &«£°°(*0 
as H sweeps through (^l9)H0O{Mn)\ abbreviate this set by H. Thus computing 
8F becomes the problem of finding the sup norm smallest element of H and this 
is just (a very general version of) the classical Nevanlinna-Pick interpolation 
problem settled in §3. 

The same argument together with the fact12 that 

§£(<&EF) contains * , { * G g0
F(*®7/°°(Mrt)): Knever agrees with 0}$2 

12This seems plausible because §£(F) = 0, so we would expect QQ(H) not to agree with 0 for 
any H which does not agree with F. This is basically true up to some fluky cancellations: that's 
why the statement reads 'contains' rather than 'equals'. A complete proof is in [B-H2]. 
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densely for some functions $• with $j(el$) unitary says that computing the 
p-distance of F to EF is equivalent to computing the sup norm of the smallest 
function in <3lfàF where ÙF is the set 

ÙF= H H {Ke^9>Hf°(M„):K(z) ^Ofo rz G A}. 

Thus the issue is not just H as before but the set of functions in H which do not 
vanish. This is exactly the problem addressed in §3(g) and Theorem 3.8 applies 
directly. 

It implies that no smallest K in <31ŒF exists. However, there is a minimizing 
sequence Kj and a normal families argument applies to give Kj -» Kœ E ÙF in 
a weak sense. One can show that K actually is the smallest function in ÙF. The 
reduction we gave reverses to show that K^ yields a solution H^ to the 
problem of finding the p-closest point in EF to F. So for practical analytical 
purposes EF (rather than ^EF) seems to be the best set to use. The limit 
function K^ is always discontinuous which leads to some physically bizarre 
consequences which will be discussed in §7. 

e. The common amplifier. Finding an equalizing circuit to give the amplifier 
having the configuration in Figure 2.12 with optimal gain immediately gives 
the following mathematics problem: 

G i v e n S i n t f ^ M ^ f i n d 

Gs= max in f | [S(S) (*" )"L | . 

Here mn means the (1,2) entry of the matrix m. The function S typically 
satisfies b.e.v. | S(eid) | » 1 and s.e.v. | S(ei0) |< 1 where b.e.v. and s.e.v. denote 
biggest and smallest eigenvalues. 

Our reduction begins by rewriting Gs as 

Gs = max max inf (u(e")Sg(S)(e")V{e")(l),(0
l))t 

g(E<&U+(2,2) U, V(E<&U(2) 6 

It is intuitively plausible that the U, V sweep a large enough set to give 

Gs= max inf ||g (5)11^. 

This indeed is the case (see §6 [HI]). So 

Gc1 = inf sup (s.e.v. IS (S)! - 1)-

We therefore obtain the exact analog of (6.1) 

Gsl= inf lls.e.v.|Sg(5)|||Loo(CW) 
geat/+(2,2) s v ' 

which is a more canonical statement of the problem. Further reduction of the 
problem proceeds exactly as it did in §6(a), (b) and yields 

Gjl=M\\s.esr.S(8;\0)*9S-l)\\L«iCiy 
g 

Thus the 'Poincaré approximation9 analog here is to find 

Gs1 = inf | |s.e.v.S(#, S"1)!!, 
HG<$l%Hco(M2) 
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Again one can reduce this to minimizing something over a set of interpolat­
ing functions. To convert this to an interpolation problem requires more 
machinery than we have developed. The reason is that one must generalize 
most results presented to a signed bilinear form. So now we give only the 
beginnings of the reduction. 

Theorem 5.1 gives a S f which maps S"1 to (jj fi) and one can use 
Corollary 5.2 and the invariance of & to obtain 

Gâl = inf s,,.&\§rm\°Q | 
L-CC1) 

In the earlier Poincaré distance problem we had §Q~1 instead of Qf_1 and 
consequently the matrix (QQ) instead of (Q ^ ) ; so the expression involving & 
simplified immediately. To simplify the expression here we apply the constant 
coefficient L.F.T. denoted % which maps (Q y§") to ($£) and obtain 
%(@Ï~\%H°°(M2))) as the crucial set of functions. The map % is not in 
911/(2,2) and the machinery needed to analyze its range space, its relationship 
to S, etc. is developed in [B-Hl]. That machinery reduces this problem to a 
rather advanced interpolation problem. 

f. The stable amplifier. It is no surprise that the stability constraint should 
also be applied to the common amplifier in §6(d). Analyzing its effect is a 
straightforward combination of procedures in §§6(d) and 6(e). So we don't 
drag the reader through the boring details, but simply state that optimization 
problems corresponding to the design of a stable (common) amplifier with 
maximum gain is 

Given S G <3ti/°°M(l,0, \\find 

(6.6) Gsl = inf lls.e.v. S ( # , S"1)!!^. 

Most linearized amplifiers must be stable and have the form in Figure 2.12 
which we are studying but with some passive rather than lossless g. Combina­
tion of the procedures in §6(c)-(e) apply easily to prove that the maximum 
gain obtainable from an amplifier of this type again equals (6.6). As in parts 
(c) and (d) the machine in [B-Hl] gives us the same interpolation problem in 
part (c) but with the added constraint that the interpolating matrix functions 
have invertible values everywhere on the disk. 

7. Physical conclusions. We begin this section with two details of physical 
importance which mathematically are not enlightening. After discussing them 
we indicate physical results. It should be clear from §6 that theoretical 
problems in designing circuits with maximum gain are mathematics problems 
of a surprisingly canonical type. §4 gave explicit (and numerically efficient) 
solutions to several of these problems. These methods also give some simple 
qualitative principles of gain equalization (even for problems too complicated 
to be explicitly solvable). In this section we sketch the physical consequences of 
our mathematical studies. We shall not list detailed formulas and tedious 
recipes, since the solutions of the physical problems are much in the spirit of 
§4, and they can be found in [H3]. Instead we indicate which problems have 

file:////find
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complete explicit solutions, we give references, and then we devote most of our 
attention to qualitative principles. 

(a) Added realism. The first item is that all frequency response functions for 
circuits are real on the real axis. After transforming to the unit disk this gives 
functions in ^H^M») which are real on the real axis, that is, have real 
Fourier coefficients. The constraint this produces changes the structure we 
have successfully analyzed very little; if you can solve the problem without the 
constraint, then you can solve it with the constraint. Thus we have given this 
issue little attention. Quite possibly as the more complicated situations are 
fully analyzed insuring that the solutions are real on the real axis will become a 
more serious problem. 

The second item is that instead of computing distances in the p-metric which 
is a supremum type metric one could use a weighted supremum Poincaré 
metric. Theorem 4.2 actually settles this question and all of the theorems in §4 
(to include Theorems 4.1, 4.1', 4.1" and 4.4) with slight modification deal with 
weighted Poincaré metrics as effectively as we dealt with the unweighted ones. 
This allows us to treat the physical problem of building a circuit with 
prescribed gain function rather than just maximum gain function; this is 
problem (b), §2. It is a bit surprising at first, but it turns out that one can get 
results for this problem exactly as strong as the ones we have obtained for the 
gain maximization problem. 

The mathematics in §§3- 6 modified in the ways just described produces 
the following physical results. 

(b) Power transfer in passive circuits. The problem of transferring a pre­
scribed amount of power T((o) to a strictly passive load S from a source with 
Q = 0 (see Figure 2.11, problem (b), §2) is completely solved. It corresponds to 
the / = 0 case of results in §4 for a weighted Poincaré metric. 

There is a matrix test as in Theorems 4.1, 4.2, 4.3, 4.4, to determine if a given 
power transfer ratio G can be delivered to S. If it can, then several algorithms 
are in principle capable of finding the specifications (frequency response 
function) for the optimal 'equalizing' circuit g in Figure 2.11. For explicit 
formulas, see §5, [HI] and [H3]. 

These quantitative results produce quickly several general properties: Fix a 
load circuit with rational S. 

MONOTONICITY PRINCIPLE [H2]. Suppose G is a rational function, 0 < G < 1. 
If there is an energy conserving coupling circuit g with power transfer ratio to S 
greater than (or equal to) G for all frequencies, then there is an energy conserving 
g, which gives power transfer ratio to S identically equal to G. 

EXTREME MODULUS PRINCIPLE (FOR ONE PORTS). Fix rational G>0. Let K0 

be the largest number K for which KG is a physically realizable gain (with energy 
conserving g). Then there is NO physically realizable gain Gx strictly bigger than 
K0G. For example, if one chooses g0 to maximize maxginfwGg(co), then the 
resulting gain GgQ is constant. 

To prove the Monotonicity Principle simply consult Theorems 4.1 and 4.1"; 
the gain G is physically realizable if and only if A < £ ( 1_G ) . An elementary 
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property of positive Toeplitz operators—%G > %G if G^u) > G(o)) for all œ 
—implies the principle. The Extreme Modulus Principle follows from the fact 
that the IIII Loo smallest interpolating function has constant modulus. 

The engineering theory of impedance matching is mostly due to Fano (1950) 
[Fn] and Youla (1964) [Yl]. It effectively reduces the 1-port matching problem 
to interpolation. This is what appears in the textbook accounts [K-R, C, W]. 
The texts attack the interpolation problem by converting it to a highly 
nonlinear system of inqualities in many variables which they do not attempt to 
solve. In fact, a beginning step in the standard recipe is simply to make a guess 
at the maximum gain possible in Figure 2.11. If one were to apply 
Nevanlinna-Pick theory to the interpolation problem obtained in [F, Yl] one 
would ultimately obtain the n = 1 case of Theorem 4.5 which would compute 
the gain. Theorems 4.2, 4.2' and 4.4 which also compute the gain are a radical 
departure from the classical approach. 

Nevanlinna-Pick theory entered the engineering literature in a 1967 article 
by Saito and Youla [S-Y]. They showed how interpolation theoretic construc­
tions correspond to circuit theoretic ones. They also mention that Pick's theory 
applies to broadband matching, but unfortunately this and Pick's theory were 
ignored in the electronics community. Chen's 1976 text [C] on impedance 
matching uses Pick's theorem to prove the Extreme Modulus Principle for 
constant gains provided n = 1 and all poles of s(\ — \ s | 2 ) - 1 are order one, a 
fact essentially due to Youla [Yl]; but to compute the optimum gains or an 
optimizing complex g one is directed to the nonlinear inequalities. Computa­
tion of optimum gains from eigenvalues first appeared in [H4, H5]. 

(c) Amplifiers. The situation we analyze is always this. You are given a linear 
amplifying device and you want to add on lossless circuitry so that the result is 
a good amplifier for use with a simple source (unit internal resistance) and a 
simple load (a resistor); see Figures 2.12 and 2.13. The aspect we analyze is 
that of designing lossless circuitry, called equalizing circuitry, to maximize the 
gain of the amplifier over all frequencies. What is the best gain possible and 
what are the specifications (frequency response functions) for the equalizing 
circuit? 

(i) Reflection type amplifiers. The reflection type amplifier (see Figure 2.13 
and §6(b)) without the stability constraint is well understood and the Mono-
tonicity Principle as well as the Extreme Modulus Principle hold for the gain of 
such amplifiers. Since the stability constraint has overriding importance we 
don't belabor these results, but move quickly to a discussion of stable ampli­
fiers. 

(ii) Stable reflection-type amplifiers. Now we turn to the most rudimentary 
considerations in the design of a stable amplifier. We showed in §6(d) that the 
key issue is computation of the Poincaré distance from a function F to the set 
EF of functions in 9)H1°{Mn) which don't agree with F. This was reduced to 
the interpolation problem addressed in §3(e). 

This problem is completely open when n > 1. When n — 1 and / = 0 one 
can obviously use Theorem 3.8 to obtain a solution; when n — 1 there is a 
partial solution. There is little reason to faithfully list this solution here; the 
reader can deduce it immediately from Theorem 3.8 or actually look it up in 



58 J. W. HELTON 

[B-H2]. However, there is an interesting point to be made: while one cannot 
actually compute the distance from F to EF or find the closest H0 in EF one can 
make qualitative statements about the closest point. In particular, the error 
function F — H0 has constant modulus on II and is continuous except at a 
finite number of points e'e\ ei$2,... ,eW" on II. 

This is very peculiar in light of the underlying physical motivation. After all 
we started with the problem of designing a very simple type of stable amplifier. 
We found that the gain function for the 'optimum' amplifier is constant as 
hoped, but it is not actually achievable, because the existence of discontinuities 
forces the optimal equalizing circuit g in Figure 2.13 to have a discontinuous 
frequency response function g. Since a physically realizable g must be a 
rational function we see that in practice we are forced to approximate g by 
rational functions gm. All of this sounds very plausible so far, but the strange 
thing is that it is impossible to approximate g well. In fact, one can prove (by 
studying the approximation of a singular inner function with rational outer 
functions) the 

SPIKED GAIN PRINCIPLE. If the gain function G(cc) for a particular (linear one 
port strictly active reflection type) amplifier cannot be significantly increased 
(G'(co) > G(o))) by some judicious modification of the passive circuitry in that 
amplifier, then there are frequencies col9 co2,..., o>n at which G is very, very large. 
The only optimal amplifiers for which no spikes coj exist in the gain are those 
based on amplifying devices whose behavior is completely independent of frequency. 
For example a (reflection type) amplifier for which infwG(co) is near maximal 
has nearly constant gain except for a finite number of spikes at points w,, co2,..., con 

which are determined by the amplifying devices within the amplifier. 

This is actually a stable amplifier version of the Extreme Modulus Principle. 
In fact for a fixed S the gains and 'ideal' gains obtainable taken together will 
satisfy something very close to the Monotonicity and Extreme Modulus 
Principles. The rub is that when one eliminates 'ideal' gains from consideration 
the principles change because near optimal actual gains have spikes. 

Whether this phenomenon has serious practical implications I do not know. 
In part it derives from the fact that we were maximizing gain over all 
frequencies. The true physical problem is to maximize gain over an interval 
[a, b] of frequencies. While we have not discussed such problems in this article 
such a generalization of the theory here is straightforward. Upon studying 
optimization of gain over [a, b] one finds that for a particular problem 
singularities might or might not occur. Since most design problems call for an 
amplifier with flat gain, one would usually be forced to add the constraint that 
no singularity Sj occurs in [a, b]9 the operating band. Fortunately, one can 
reduce this constraint to one on the interpolation problem by tracking through 
the procedure in §6. Miraculously, one obtains a classical interpolation con­
traint which has been digested in the literature. This permits one to analyze the 
new problem to the extent that the original one was analyzed. For example, 
one can prove that nearly maximum gains with no singularities are nearly 
constant. 
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The main theoretical engineering work on stable reflection amplifiers is [Y3] 
and [C-K]. It converts the problem to that of finding a function which meets a 
set of constraints several typed pages long. 

(iii) The common amplifier. The study of the common amplifier led us to the 
problem: Find 

inf | |s.e.v.g(#, S~x)\\L~ 
H(E<&(&H0O(M2) 

where S~l G 91 M( 1,0,1). This actually can be reduced to an interpolation 
problem using a method which is an exact generalization of the one used in 
§4(a)-(d) to spaces with a signed bilinear form. That is the subject of much of 
[B-Hl]. It is best accomplished by working in the Grassmannian setting with 
subspace valued analytic functions and while we could go through the proce­
dure here we haven't since it is too specialized. The interpolation problem 
which one gets is a natural generalization of the ones solved in §3, but it is well 
beyond the present state of the art. Thus explicit solution of the common 
amplifier problem awaits a considerable advance in interpolation theory. 
However, existing interpolation theory gives qualitative information. 

PRINCIPLE. The gain of a nearly optimal (common linear amplifier) is 
constant. Also the Monotonicity Principle holds: namely, if it is possible to 
build an amplifier whose gain is > G(o>) for all w, then one can build an 
amplifier whose gain nearly equals G. Also front and back end reflection of 
this amplifier are nearly 0. 

Sadly, lacking from the principle is the constraint that the amplifier is stable. 
That makes it useless. The author expects that a variant of the spiked gain 
conjecture holds for the common amplifier. While the spikes may not be in the 
gain they should show up somewhere. Hopefully, much of the work for 
understanding this is already done [B-Hl]. What is needed are some qualitative 
results on matrix interpolation and it is too early to see how difficult these will 
be to obtain. 

(iv) Passive equalization. Everything stated so far holds whether one is 
optimizing over all passive equalizing circuits g or only optimizing over lossless 
ones. Either optimization problem results in the same answer. This was derived 
in §6(c) for reflection type amplifiers. It is true also for common amplifiers and 
stable amplifiers and we summarize all this as 

DISSIPATION PRINCIPLE. If any (stable) amplifier which is built with passive 
equalizing circuitry has a certain gain function G, then there is a (stable) 
amplifier built with the same amplifying device S and of the same type, but built 
with lossless circuitry g which has gain greater than or equal to G. In other words, 
you can 9t get better gain with passive circuitry than with lossless circuitry. 

It is amusing to note that for 1-port reflection amplifiers, this is just a 
physical interpretation of the old connundrum that every analytic map ƒ of the unit 
disk onto itself decreases the Poincaré distance between points. Actually the 
physical principle only requires the mathematical one for the special case of 
linear fractional ƒ. This is fortunate because the mathematical principle breaks 
down in higher dimensions for many analytic ƒ but holds for linear fractional 
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maps in a very strong form: Theorem 5.5 is just one example of this and a 
stronger theorem is needed to obtain the Dissipation Principle; see [B-H3]. 

8. Epilogue. Each of the sciences has its own character and this influences 
the type of mathematical support it requires. Electrical engineering (and 
mathematics for that matter) have the distinctive feature that they are far less 
determined by nature than, say, physics or biology. The works of nature which 
are the subject of modern physics are more orderly and in a way more limited 
than those works of man which constitute engineering. Whereas physics is 
broken into a few large parts each trying to find the fundamental principles 
which underlie (and always will underlie) a basic phenomenon of nature, 
engineering is by comparison chaotic. 

For the sake of discussion let us distinguish between two types of engineer­
ing. We will call one applied physics; the other black box engineering. Applied 
physics brings to mind hull design, wing design, various types of electromag­
netic theory and things of that sort. By black box engineering I have in mind 
electronics and communications equipment—the sort of high technology that 
most of us buy in the store. It is this second field which is something of a 
circus. The reason for its wild nature is that every few years the technology 
changes radically. Just imagine what the field of aerodynamics and wing design 
would be like if the Navier-Stokes equations completely changed every five 
years. In the electronics field there are13 distinguished people who feel that 
journals over 10 years old are useless and might as well be burned. 

With everything changing all the time can there be any theory of enduring 
importance? Probably most people think so and are prepared to argue violently 
about what and how much there is of it. Much of the leadership in academic 
electronics theory is engaged in a valiant struggle to keep theoretical efforts 
pointed at modern electronics. One might argue that electronics is going 
through one of those golden periods as physics did in the 1920's when 
producing quantum mechanics. Several powerful devices with radically new 
behavior have been developed within the last few years and quantitative 
improvements have been so profound as to produce qualitative revolutions in 
practice. In my singular view the implication for theoreticians is simple—there 
aren't enough of them. Most electronics theoreticians are rushing to the front 
to figure out how one takes advantage of the marvelous new charge coupled 
devices, the new digital filter technology, how to sensibly put a million 
transistors on a chip, and how to cope with the nonlinear behavior of many 
modern circuits. The gap this leaves in the study of basics presents a good 
opportunity for mathematicians. 

This exaggerated description of the backdrop in front of which black box 
engineering plays was designed to highlight distinctions with subjects more 
familiar to mathematicians. In fact the electronics community consists of 
various camps, some with a reverence for basics, a few with a fondness for 
great abstraction, many who think that only the newest work will apply to new 
circuits and many who don't like theory much at all. I have a vested interest in 

according to a survey performed by R. Brockett during coffee breaks at MIT. 
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basics, so as you might guess I believe they are worth doing. Historically, they 
have fared well. 

The evolution of the power transfer theory treated in this paper may contain 
a lesson. Interest developed in the late 1940's after the advent of radar. There 
was more good work in the early 1960's prompted by the discovery of the 
tunnel diode. Hopes for the tunnel diode faded and the basic problems 
frequently were said to be solved by influential theoreticians even though no 
recipe existed and the proposed solutions required guessing. So work stopped. 
Then in the middle 1970's came a revolution in broadband microwave devices 
which produced transistors badly in need of gain equalization and produced a 
serious need for some theory. Unfortunately the theory from the 1960's hadn't 
been developed or polished to the point of being widely useful beyond 
compromised versions of the defunct tunnel diode. Consequently the theory of 
broadband gain equalization had little industrial impact. One might speculate 
that if work in the 1960's had been encouraged beyond the problem at hand 
procedures might have been available when needed in the 1970's. Who knows. 
Anyway one could argue that there is practical value in supplementing the goal 
oriented impatience of down to earth engineering with a study of structure for 
its own sake. 

Another point is that while technologies come and go some of the mathe­
matics underlying them has an eerie permanence. For example, while modern 
digital filters and classical analog filters have completely different components 
much of the theory of digital design is a transform of classical analog theory 
(this business is in the spirit of problem (iv) in the Introduction). 

We conclude this discourse by observing a peculiarity in the relationship 
between mathematics and black boxes. While nature does not imitate mathe­
matics, black boxes frequently do. While a physicist spends his days finding 
the mathematics which best describes nature, much of engineering is devoted 
to making devices behave in simple manageable ways so that they fit easily 
into a mathematical design procedure. For example, engineers like devices 
which correspond to a simple function into which more complicated functions 
can be easily decomposed. Thus the mathematics of the decomposition theory 
to some extent dictates the type of devices which are built. While this seems to 
be a distinction between electronics and most other branches of science, I'm 
not sure what implications it has. An optimist like myself thinks it means that 
mathematics has a significant practical role to play. Another possible implica­
tion is that mathematicians should be a little more open minded about some of 
the rather formal and seemingly contrived applications of mathematics. I can 
recall dismissing out of hand some engineering talks on "hemidemi groupoids 
of rings over..." and later discovering that the fellow had some pretty decent 
physical examples in mind. On the other hand, most things along that line are 
indeed as they appear—flakey. It's best to always press for a naive example 
and a little history of the topic. These ups and downs remind us of the first 
point in this diatribe—the black box business compared to a gently flowing 
subject like mathematics is a bit wild. While parts of it are of little mathemati­
cal interest other parts are fascinating and shimmer with the allure of high 
rewards. 
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