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nonlinear eigenvalue problems, notions of Fredholm operators, periodic solu­
tions of Hamiltonian systems, saddle points of nonquadratic functional are 
among the important topics not discussed. 

The mathematical community owes a debt of thanks to Fucik and Kufner, 
the two Czech authors of this book. They have produced a readable account 
of important contemporary topics in nonlinear analysis. These days, so much 
important research of our best people is dribbled out of them, piecemeal, in 
the form of imperfectly developed journal articles and conference proceed­
ings. Let us hope that in the near future, other highly talented mathematicians 
of nonlinear science will be afforded the opportunity and leisure to share with 
us their finest conceptions in the form of systematically developed books, 
accessible to a wide mathematically educated audience. 

M. S. BERGER 
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The thesis of this review may be summarized in three propositions. First, 
numerical analysis is a science with mathematical, empirical, and engineering 
components. Second, a conventional mathematical education does not equip 
one to deal with the last two components. Third, the book under review is a 
good place for a mature mathematician to get an appreciation of all three 
aspects of the subject. 

At the outset I would like to correct a possible misapprehension. For most 
of this essay, I am going to focus on the nonmathematical aspects of 
numerical analysis. This does not mean that I wish to minimize the role of 
mathematics in numerical analysis; on the contrary, it is hard to overstate its 
importance. But the pure mathematician coming to the field for the first time 
will find much that is strange, and I hope this review will provide a brief 
guide to this extra-mathematical territory. 

The mathematical component of numerical analysis scarcely needs arguing. 
The subject derives its analytic tools from many branches of mathematics. Its 
journals usually present results in the form of theorems, the coin by which 
mathematical productivity is currently measured. Nor are these theorems 
more trivial or less rigorously established than those of other branches of 
mathematics. Finally, most numerical analysis courses are listed in mathe­
matics departments, perhaps jointly with a computer science department. 

The empirical component of numerical analysis derives from the fact that 
numerical analysis is a branch of applied mathematics, and its results are 
therefore subject to outside verification. In general, an applied mathematician 
must look on a piece of experimental apparatus with a mixture of hope and 
trepidation, since it can confirm or deny his researches with unarguable 
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finality. The numerical analyst's particular bête noir is, paradoxically, the 
machine that is responsible for the present flowering of the subject-the 
modern digital computer. The most involved mathematical investigation of an 
algorithm is subject to instant refutation by a high school student playing 
around with a home computer. However, since numerical analysts are not 
generally in the habit of proving false theorems, the refutation usually takes 
the form of a demonstration that the analysis does not say much that is useful 
about the algorithm. 

The notion of a meaningful theorem is so important in numerical analysis 
that I will discuss it at some length. The point of this excursion is not that 
there are good and bad theorems-something that is true of all branches of 
mathematics-but that the standards by which a theorem is judged come from 
outside mathematics. For purposes of illustration, I shall state a hypothetical 
theorem and then consider how it can fail to be useful.1 

Suppose we are given a function <j>: Rn —> Rn which is defined in terms of 
some numerical data and wish to determine a fixed point of <j> by an iteration 
of the form xk+l = <j>(xk). Consider the following theorem. 

THEOREM. For any value of the input data the following is true. 
1. There is a unique x* such that <j>(x*) = x*. 
2. For any x0 the sequence defined by xk+l = </>(**) (^ = 0, 1, 2, . . . ) 

converges to x*. 
3. There is a constant K > 0 such that 

lim »**•" -** ' ' = K. (1) 

In many respects this would appear to be an ideal theorem. The first 
statement insures the existence of the object we wish to compute. The second 
guarantees that the iteration is global; i.e., it converges to x* from any 
starting point. The third statement asserts the g-quadratic convergence of the 
algorithm. Informally, it may be taken as saying that the components of xk+l 

will ultimately have twice as many correct digits as those of xk. 
Let us now see what this theorem fails to say. In the first place, it says 

nothing about the dependence of x* on the input data. If x* varies wildly 
with small variations of the input data, then the computed solution need have 
no discernable relation to the true one, except in those rare cases where the 
data are known exactly. Note that we are not talking about ill-posed prob­
lems, which are essentially discontinuous; rather we are concerned with 
nominally continuous problems whose behavior is so bad that they are 
practically intractible. The need to detect such ill-conditioned problems is the 
reason why perturbation theory plays a large role in modern numerical 
analysis. 

The global convergence vouched for by the second statement will be of 
little use if the iteration takes too long to get near x*. In fact, many of the 

1 The theorem is hypothetical in name only; similar theorems suffering from many of the 
defects listed below have actually been published. 
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simplest iteration schemes for solving numerical problems are, with unim­
portant exceptions, globally convergent (e.g. Bernoulli's method for finding a 
zero of a polynomial); but many of these are infrequently used because the 
convergence can be too slow. 

A major difficulty with the third statement is that it does not give a bound 
on K. If K is large, then the region within which the iteration exhibits the 
behavior characteristic of quadratic convergence will be small, perhaps 
smaller than the accuracy required of the computed solution. 

Another problem is that the wrong choice of norm in (1) can make the 
quadratic convergence meaningless. Typically, one wants an equable norm 
that does not weight individual components unduly, say one of the Holder 
norms (p = 1, 2, oo are favorites here, as everywhere else). However, it 
frequently happens that the natural norm in which to establish a theorem 
about a numerical process is unbalanced. In finite-dimensional spaces the 
temptation is to appeal to the equivalence of all norms, which, for example, 
would assure us that Q-quadratic convergence is invariant under change of 
norm. Unfortunately, the constant K is not, and the passage from an 
unreasonable norm to a reasonable one is likely to make K unreasonably 
large. 

Finally, the theorem says nothing about how the iteration behaves in the 
presence of rounding error. The limitations of finite precision computation 
have been the undoing of many promising algorithms. An example, which is 
treated in the book under review, is the Lanczos algorithm. This extraordin­
arily powerful method for approximating eigenvalues of a symmetric matrix 
waited in limbo for thirty years until a way was found to control the effects of 
rounding errors on it. 

Up to now we have been concerned with how a theorem can fail to reveal 
how bad an algorithm is. There is a converse problem; many algorithms are 
better than existing analyses prove them to be. This may be because the 
complexities of the algorithm render a complete, rigorous analysis impossible, 
in which case one must be content with suggestive theorems, often about 
special cases. There are also some well-known algorithms, such as Gaussian 
elimination with partial pivoting, which cannot be shown to work in all cases 
because there are explicit counterexamples. Nonetheless, the algorithms are 
widely used because the examples that make them fail do not seem to occur 
in practice. Exactly what constitutes "in practice" is again an empirical 
matter. 

By the engineering component of numerical analysis I mean the design and 
implementation of numerical algorithms. These activities comprise at least 
half of the subject and perhaps more, as evidenced by the fact that in 
numerical analysis names tend to be associated with algorithms rather than 
theorems. Where topology gives us the Jordan curve theorem, Poincaré's 
conjecture, and Urysohn's lemma, numerical linear algebra gives us Jacobi's 
method, the Lanczos algorithm, and Householder transformations. 

Algorithmic design is a skill quite different from discovering and proving 
theorems; it is more akin to inventing a gadget. What is required is a 
thorough knowledge of the parts from which algorithms may be assembled 
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and an intuitive appreciation of how they will behave on a computer. It is not 
surprising, then, that it is not necessary to be educated as a mathematician to 
build a good algorithm. For example, algorithms are at the heart of computer 
science, most of whose departments require deplorably little mathematical 
background from their students. Again, some of the best numerical algo­
rithms come from scientists and engineers; for example, the finite element 
method was used by engineers long before numerical analysts took it up. 

In establishing the first of the propositions stated at the beginning of this 
review we have gone far toward establishing the second: that a traditional 
mathematical education will not produce a numerical analyst. The empirical 
and engineering aspects are, quite properly, outside the province of the usual 
mathematics curriculum. Moreover, some of the most powerful theorems in 
pure mathematics become surprisingly weak when they are applied to numeri­
cal problems-the equivalence of norms in R n is just one example. 

One very important problem for the mathematically oriented is to ap­
preciate the role of mathematical rigor in numerical analysis. As in all 
sciences, results in numerical analysis are frequently obtained by nonrigorous, 
intuitive modes of reasoning, with the justification that they can be tested 
empirically. Moreover, a premature attempt to be rigorous can be stultifying. 
Now in fact, this situation obtains in mathematics as well; a lot of nonrigor­
ous reasoning goes into mathematical creation, reasoning which is then 
cleaned up in the final presentation. But many mathematicians have trouble 
transferring this creative process outside their specialties. They become mis­
trustful, and in their attempts to get things right they may earn reputations as 
pettifoggers or even obstructionists. The cure for this is to adopt the modes of 
reasoning appropriate to the discipline, while at the same time distinguishing 
what has and has not been rigorously established-a difficult, but not impossi­
ble balancing act. Unfortunately, the rather lax requirements of most univer­
sities make it easy for mathematics students to avoid any deep contact with 
other disciplines where this act could be learned. 

Turning now to the third proposition, let us first note that there are a 
number of reasons why a pure mathematician might want to take up 
numerical analysis. It is an interesting and useful field with very tangible 
intellectual rewards, as anyone who has solved a difficult numerical problem 
knows. It is interdisciplinary, combining mathematics and computer science, 
usually with some area of applications. It abounds with unsolved research 
problems. On a more mundane level, anyone bailing out of a graduate 
seminar that has not attracted enough students will find that numerical 
analysis beats precalculus as a landing place. Finally, numerical analysts are 
in short supply and are eminently employable. 

However, it is not easy for a mathematician to educate himself in numeri­
cal analysis. Perhaps the best way is to get a job solving numerical problems, 
and in the long run something like this is required to leaven theoretical 
knowledge acquired elsewhere. But for a variety of obvious reasons this 
approach is not open to many academic mathematicians. An alternative is to 
associate with numerical analysts, attending their seminars and discussing 
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problems. This option, however, requires that a generous number of numeri­
cal analysts be available locally. 

Thus many mathematicians desiring an introduction to numerical analysis 
will have to get it by studying texts and monographs, supplemented by 
research papers. Regarding texts, the tyro is encouraged to seek expert 
advice; of the multitude of introductory books, a significant proportion are 
bad and all are deficient in one way or another. On the other hand there are a 
number of excellent monographs on a variety of topics in numerical analysis. 
Again, the help of an expert is advisable to avoid the outmoded and the 
eccentric. 

The current definitive monograph on numerical linear algebra is J. H. 
Wilkinson's The Algebraic Eigenvalue Problem. Although it is by no means 
out of date, this fifteen-year-old book is beginning to show its age. It is 
therefore fortunate that Beresford Parlett has written this book on the 
symmetric eigenvalue problem. His aim is to produce a sequel to Chapter 5 of 
Wilkinson's book. He succeeds admirably. 

There are at least three reasons why the symmetric eigenvalue problem is a 
good starting place for a mathematician to learn about numerical analysis. In 
the first place the underlying mathematical theory is nontrivial and elegant, 
so that the mathematician has a secure home base. Moreover, an unusually 
large proportion of the theorems are directly useful in computations. Second, 
the basic algorithms admit of clean analyses which are also sharp. Finally, the 
effects of rounding errors are more easily discerned than in the general case. 

The book divides rather naturally into two parts. The first, consisting of 
chapters one through nine, is primarily concerned with small dense matrices. 
Much of this material is contained in Wilkinson's book; however, the pace is 
slower and more systematic. The first chapter treats the elementary theory. 
The very important second chapter introduces the practicalities that dominate 
matrix computations, especially the analysis of rounding error. The remaining 
six chapters are devoted to the basic algorithmic tools, concluding with a nice 
treatment of the ubiquitous QR algorithm. Chapter 9 scotches the notion that 
Jacobi's method is intrinsically simpler than the QR algorithm. 

The last half of the book is directed toward large sparse matrices, and 
contains much recent, even new material. Chapter 10 treats perturbation 
theory for eigenvalues, and Chapter 11 the same for invariant subspaces, with 
particular attention being paid to Rayleigh-Ritz approximations. Chapter 12 
lays the theoretical groundwork for the Lanczos algorithm, which is discussed 
in Chapter 13. These two chapters constitute the high point of the book, after 
which the chapters on subspace iteration and the generalized eigenvalue 
problem are somewhat anticHmactic. The latter chapter, incidently, is not up 
to the rest of the book, perhaps because theory and computational practice 
for definite generalized eigenvalue problems are less well developed. 

The book is carefully written, and the author's intent is clearly to com­
municate all aspects of the subject. The exercises are well chosen and each 
chapter concludes with a useful notes and references section. There is a nice 
annotated bibliography at the end. One of the most important contributions 
of the book is to bring to the printed page some results of W. Kahan, which 
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would have otherwise languished unpublished in his notebooks. 
The book is not without defects. The style, which is generally lively, 

sometimes degenerates into preciosity. The initial discussion of rounding 
error could be more leisurely. The author fails to warn the reader not to use 
the two-is-enough orthogonalization to compute a QR factorization unless he 
will be happy with "orthogonal" matrices having zero columns. What every­
one else calls the generalized eigenvalue problem, the author calls the general 
linear eigenvalue problem. There are many minor technical points with which 
it would be easy to quibble. 

But none of this alters the fact that Parlett has written a fine book. Because 
eigenvalue problems arise naturally in the analysis of vibrating systems, the 
author has collected some apt quotations about vibrations at the beginning of 
his preface. However, he missed the Beach Boys' "I'm pickin' up a good 
vibration", which sums up my feelings about this book. 

G. W. STEWART 


