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BOOK REVIEWS 
Families of meromorphic functions on compact Riemann surfaces, by Makoto 

Namba, Lecture Notes in Math., vol. 767, Springer-Verlag, Berlin and New 
York, 1979, xii + 284 pp., $16.30. 

The theory of compact Riemann surfaces, or equivalently of nonsingular 
algebraic curves over the complex numbers, has long been a rich and 
rewarding field of study and remains a surprisingly lively area of current 
research interest. Among the problems still actively being investigated are a 
number involving divisors and their associated meromorphic functions, fol­
lowing the trail blazed by Riemann, Abel, Jacobi, and many others. Recall 
that a divisor on an algebraic curve M is an element of the free abelian group 
generated by the points of M, or in other words is a finite sum D = 27- njPj 
where ny E Z and Pj G M; such a divisor is called positive or effective and 
written D > 0 if each w. > 0, and the degree of the divisor is the integer 
deg D = S7 riy To any meromorphic function ƒ not identically zero on M 
there is associated its divisor D(f) = 2 , njPJt where rij is the order off at the 
point Pj\ nj > 0 if ƒ has a zero of order «y at PJ9 nj < 0 if ƒ has a pole of order 
\rij\ at Pj, and points at which ƒ is of order 0 are usually not listed. If 
/>(ƒ) = 2,- rijPj then deg D = 2 y wy = 0 and {1j\nj\ is the order of the func­
tion ƒ; a function ƒ of order n when viewed as a holomorphic mapping ƒ: 
M -» P1 exhibits M as an «-sheeted branched covering of the Riemann sphere 
P1. Conversely it is traditional to associate to any divisor D the complex 
vector space L(D) consisting of the zero function together with all those 
meromorphic functions f on M such that D(f) + D > 0; thus if ƒ =̂ 0 then 
ƒ e L(2y rijPj) if the singularities of ƒ are at most poles of order n} at those 
points Pj for which «y > 0 and ƒ has zeros of order at least \nj\ at those points 
Pj for which nj < 0. The dimension of the projective space associated to L(D) 
is called the dimension of the divisor D and is denoted by dim Z), so that 
dim D — dimc L(D) — 1; considering the associated projective space rather 
than L{D) itself really amounts to emphasizing the divisors of the functions 
rather than the functions themselves, since D(f) = D(cf) whenever c G C 
and c =£ 0. If D is a positive divisor with deg D = n > 2g — 1 where g is the 
genus of the curve M then it follows from the Riemann-Roch theorem that 
dim D = n — g; however if 0 < n < 2g — 1 then dim D is a subtle and quite 
nontrivial function of the divisor D and the curve M. 

For instance if D is a positive divisor on M with deg D = n and dim D > 
1 then there are at least 2 linearly independent meromorphic functions in 
L(Z)), so one of them must be a nonconstant function of some order k < n; 
thus if there exists on M a divisor D > 0 with deg D = n and dim D > 1 
then M can be represented as a /c-sheeted branched covering of P1 for some 
k < n. If M has genus g > 1 then dim D > 1 for any divisor D > 0 with 
deg D > 2g — 1 ; it had long been asserted in the literature that on any curve 
of genus g there exists a divisor D > 0 with deg D < ( g + 3)/2 and dim D 
> 1, but the first complete proof was only given in 1960 by T. Meis, [20]. It 
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follows rather easily from the Riemann-Roch theorem that on any curve of 
genus g there are actually meromorphic functions of every order k > g + 1, 
but it is a non trivial and indeed not fully solved problem to determine just 
which integers k < g can be the orders of meromorphic functions on a given 
curve; some results in this direction are discussed in the book being reviewed 
here, and more can be found in a recent paper by G. Martens, [16]. 

For the more detailed study of divisors and their associated meromorphic 
functions on a curve M it is convenient to introduce the Jacobi variety of M. 
If M has genus g > 1 then to any choice of bases {cox, . . . , œg} for the space 
of holomorphic differential 1-forms on M and (X,, . . . , X2g} for the homol­
ogy group HX{M, Z) there is a corresponding period matrix Ü = {w,-,}, the 
g X 2g matrix with entries coy = U w,; the columns of this matrix generate a 
lattice subgroup £ = S2Z2g c Cg, and the quotient group Cg/t = J(M) is a 
compact complex algebraic torus, the Jacobi variety of M. Fixing a base 
point P0 E M, a holomorphic mapping <j>: M —> J {M) can be defined by 
assigning to any point ? G M the point <j>(P) e J{M) represented by the 
vector {<ƒ>,(/>)} G Cg with components <t>j(P) = f\ coy where X is some path 
from P0 to P; changing the path X changes the vector {<t>j(P)} only by an 
element of £, so the mapping <j> is well defined. This mapping can then be 
extended to a homomorphism from the group of divisors on M to J(M) by 
setting <j>(2j rijPj) = 2 , n^P). The basic property of the resulting homomor­
phism is Abel's theorem <j>(D) = <j>(D'), deg D = deg D', precisely when the 
divisors D and D' are linearly equivalent, meaning that D — D' = D(f) for 
some meromorphic function ƒ on M. Clearly linearly equivalent divisors have 
the same degree and dimension; the homomorphism <f> thus establishes a 
one-to-one correspondence between the set of linear equivalence classes of 
positive divisors of degree n and dimension A* on M and a certain subset 
Gr

n Ç J(M). 
The subsets G^ are holomorphic subvarieties of J(M) called the subvarie-

ties of special positive divisors, and a good deal of effort has been expended 
in the study of them. They are really only of interest for the range of values 
0 < n < 2g — 2, so that restriction will be assumed henceforth without fur­
ther mention. The first question is naturally whether these subsets are empty; 
for the special case r = 1 that is just the question whether there exists on M a 
divisor D > 0 of degree n with dim D > 1, and has already been discussed. 
A consequence of the Riemann-Roch theorem known as Clifford's theorem 
asserts first that Gr

n — 0 whenever 2r > n, and second that Gr
lr =£ 0 if and 

only if the curve M is hyperelliptic, that is, can be represented as a two-
sheeted covering of P1. The conditions that Gr

n ^ 0 for successively lower 
values of r put successively weaker restrictions on the curve Af, although the 
precise restrictions seem not yet to have been sorted out completely. Finally 
there is the traditional assertion in the literature that, on any curve of genus g, 
whenever (r + \){n — r) — rg > 0 then Gr

n =£ 0; complete proofs of that 
assertion for general values of r were finally given in the early 1970's by G. 
Kempf [9] and by S. Kleiman and D. Laksov [11]. The next question is what 
are the dimensions of these subvarieties, a question inspired by Riemann's 
assertion that the set of special linear series of degree n and dimension r on a 
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curve of genus g depends on (r + \){n — r) — rg parameters. That each 
irreducible component of Gr

n has dimension > (r + X)(n — r) — rg if Gr
n =£ 0 

was demonstrated by A. Brill and M. Noether in 1874 [2], while H. H. 
Martens showed in 1967 [17] that dim Gr

n < n — 2r and gave an alternative 
proof of the Brill-Noether result, and related results were obtained by A. 
Mayer and R. S. Hamilton [7]. The conditions that the subvarieties Gr

n have 
components of dimensions d for successively lower values of d in the range 
(r + \)(n — r) — rg < d < n — 2r impose what are in some sense succes­
sively weaker restrictions on the curve M; H. H. Martens also showed in [17] 
that Gw

r has a component of the maximal dimension n — 2r if and only if M is 
hyperelliptic and further results have subsequently been obtained by D. 
Mumford [21] and G. Martens [16], but the complete picture is far from clear. 
Finally the classical assertion in the literature is that on a generic curve of 
genus g the subvariety Gr

n is of pure dimension (r + \)(n — r) — rg; special 
instances of that assertion were proved by H. Farkas [4], R. Lax [13], and S. 
Kleiman and D. Laksov [12], while the general result has recently been 
demonstrated in joint work by P. Griffiths, E. Arbarello, M. Cornalba, and J. 
Harris [5]. The last question to be mentioned here is what are the singularities 
of these subvarieties Gr

n\ that question is inspired by the Riemann vanishing 
theorem, the theorem that for a surface of genus g the subvariety Gg_x 

consists of the points of multiplicity r 4- 1 on Gg_v Several satisfactory 
proofs of this result are now available, [15], [18], [19]. It was demonstrated by 
A. Weil [25] that G* is precisely the singular locus of G® f or 1 < n < g — 1, 
and it is easy to see that G£+l is contained in the singular locus of Gr

n 

whenever the latter is a proper subvariety of / (M), [6]; however H. H. 
Martens showed that for special curves there are singularities of G^ outside 
G„ [17]. The most detailed results now known about the singularities of the 
subvarieties G„ for 1 < n < g — 1, extending the Riemann vanishing theo­
rem to these subvarieties and describing the tangent cones at the singularities, 
are due to G. Kempf, [9], [10]. The singularities of the subvarieties Gr

n for 
r > 0 remain much less well understood. 

The development that the theory of Riemann surfaces has undergone 
suggests another approach to the study of the subvarieties Gn

r, an approach 
which has so far been surprisingly little pursued but which is that of the book 
being reviewed here. Riemann asserted that curves of genus g > 1 depend on 
3g — 3 parameters; making this assertion precise has occupied many 
mathematicians ever since, and has inspired an extensive theory of deforma­
tions and families of complex and other structures. What is by now well 
established is that the set of nonsingular curves of genus g > 1 can be put 
into one-to-one correspondence with the points of a (3g — 3)-dimensional 
complex analytic variety Mg, the space of moduli of curves of genus g; 
moreover there is a (3g — 2)-dimensional complex analytic variety Cg9 the 
universal curve of genus g, with a holomorphic mapping TT: Cg-> Mg such 
that 7T_1(/) is the curve represented by the point / for every t E: Mg. From an 
analytic point of view it is often more convenient to consider not just the 
curves themselves but the curves together with markings, which are either 
(i) canonical generators of their fundamental groups or (ii) bases for their first 
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homology groups. In both cases the set of marked nonsingular curves of 
genus g > 1 can be put into one-to-one correspondence with the points of a 
(3g — 3)-dimensional complex analytic variety, the Teichmüller space Tg in 
case (i) and the Torelli space Tg in case (ii); moreover in both cases there are 
(3g — 2)-dimensional varieties analogous to the universal curve of genus g, 
the universal curves over Teichmüller and Torelli spaces respectively. One 
advantage in considering Teichmüller space is that Tg itself and the universal 
curve over Tg are both actually complex manifolds, and the mapping between 
them is a nonsingular holomorphic mapping; Teichmüller space is a branched 
analytic covering space over Torelli space and over the moduli space. A more 
detailed discussion and historical survey can be found in [22] or [24]. 

In addition to the universal curve over Teichmüller space there is a 
(4g — 3)-dimensional complex manifold Jg, the universal Jacobi variety, with 
a nonsingular holomorphic mapping m\ Jg -» Tg such that 7r_1(0 is the Jacobi 
variety of the curve represented by t for every point / G Mg, and the universal 
curve can be imbedded in Jg compatibly with the imbedding of any marked 
curve in its Jacobi variety, [3]. The union of the subvarieties G£(t) c ^~l(0 as 
/ varies over Tg is an analytic subvariety Gr

n Q Jg, the universal space of 
special positive subvarieties, about which many questions can be asked but 
few have been answered: what is the dimension of Gr

n, how many irreducible 
components does it have, what are its singularities, how are the singularities 
of Gr

n related to the singularities of the fibres Gr
n(t\ and so on? Particular 

cases of these questions involving properties of Weierstrass points on the 
universal curve have been investigated in this context, [23], [1], [14], [8]. Much 
remains to be done though. 

The book under review here is an essay in the application of the recently 
developed theories of deformations and families of complex analytic mani­
folds to the study of divisors and their associated meromorphic functions on 
Riemann surfaces, discussing the currently available machinery most likely to 
be applicable to the problems just mentioned and illustrating its possible 
utility with a variety of interesting results; for instance, G^ Q Jg is a nonsin­
gular subvariety of dimension In + 2g — 5 for 1 < n < g. The principal 
application of the machinery discussed here though is to an investigation of 
the set Rn(M) of all meromorphic functions of order equal to « on a curve M 
of genus g, and of the union Rn = UM<ET Rn{M) of these sets over the 
Teichmüller space Tg. The sets Rn(M) are shown to be analytic varieties, 
some of which actually have singularities, while the sets Rn for n > 2 are 
nonsingular complex varieties of dimensions 2n + 2g — 2. The book pre­
supposes some familiarity with Riemann surfaces, while the theory of defor­
mation of complex manifolds is quickly reviewed so is not really a prere­
quisite; some acquaintance with the latter theory is helpful though, since it is 
easy to get lost in the technicalities necessarily involved. There are many 
fascinating open problems in this area, and I heartily second Professor 
Namba's hope that his work will incite interest in solving them. 
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Operator colligations in Hilbert spaces, by Mikhail S. Livshits [Moshe Livsic] 
and Artem A. Yantsevich, Winston, Washington, D. C. (distributed by 
Wiley, New York), 1979, xii + 212 pp., $19.95. 

The general philosophy behind the idea of operator models as a tool for 
studying a bounded linear operator on a Hilbert space is to associate with 


