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THEOREM . There exists a non trivial fourth-order algebraic differential 
equation 

P(y',y",y'",y"") = o, 

where P is a polynomial in four variables, with integer coefficients, such that for 
any continuous function y on (--00, °°) and for any positive continuous function 
e(t) on (-°°, °°), there exists a C°° solution y of * such that 

1X0 ~ *(0 I < c(0 for all t <E (-00,00). 

One such specific equation (homogeneous of degree seven, with seven terms 
of weight 14) is 

3/yy'"2 - 4 / y "V" + 6 / y y v 

+ 2 4 / y y " - 1 2 / y y " 3 - 2 9 / y y " 2 + ny1 = o. 

REMARK 1. From the proof, it will be clear that we can in addition en­
sure that y(tj) — y(tj) for any sequence (tj) of distinct real numbers such that 
\tj\ —* °° as ƒ —> oo. 

REMARK 2. We may moreover make y monotone if <p is monotone. 
REMARK 3. Without changing the equation *, if y and e are only defined on 

an open interval I, then we can make \y(t) - <p(f)l < e(t) for all t E I, where y is 
a C°° solution of * on I. 

If we regard the uniform limits of solutions of * as "weak solutions" (the 
way y = \t\ is a weak solution of yy - t - 0 as the limit of (t2 4- e2)1/2 as e —* 0), 
then a corollary of our Theorem is that every continuous function </? is a weak 
solution of *. 

This Theorem may be regarded as an analogue, for analog computers, of the 
Universal Turing Machine (see [R, p. 23]), because of a theorem of Shannon (see 
[S, Theorem II] ) that identifies the outputs of analog computers with the solu­
tions of algebraic differential equations. A later paper of Pour-El requires some 
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uniqueness of the solutions of the differential equations, and it is an open prob­
lem whether we can require, in our Theorem, that the solution y of * that ap­
proximates q> be the unique solution for its initial data. In a similar vein, we 
could ask for approximation by analytic solutions of a suitable ADE. Also see 
[J], where certain universal diophantine equations are written down. 

We go briefly into the history of our Theorem. In 1899, Borel [BO] found 
a majorant near °° of all solutions of all first-order algebraic equations. He 
claimed a similar majorant for the «th order equation, but his proof had a gap. In 
[BBV] and [V] in 1932 and 1937, Vijaraghavan and others constructed a second-
order algebraic differential equation that has solutions that have no a priori major-
ant. In 1973, Babakhanian showed that a tower of n exponentials satisfies an 
ADE of order n but not one of smaller order. Hence, for any ADE, P(t, u) = 0, 
there is a solution u of some ADE, Q(t, it) = 0, that is not a solution of P(t, it) 
= 0. We use it as shorthand for u, u', . . . , u{n). In 1975, Bank (see [BA, 
Theorem 4] ) modified the [BBV] example to produce increasing solutions of a 
third-order ADE that have no a priori majorant. It is an open problem whether 
there are a priori bounds for entire solutions of algebraic differential equations in 
the complex domain—see [BA] for a partial discussion of this and related ques­
tions. One is free to speculate whether the order 4 in our Theorem is best-pos­
sible. 

We thank Michael Filaseta and C. Ward Henson for helping with the com­
puter calculations. We express special gratitude to Lawrence G. Brown for point­
ing out that the calculations were feasible because of heavy cancellation of terms. 

PROOF OF THE THEOREM. We shall write down the polynomialP expli­
citly. Let 

with g(t) = 0 for all other t, and let 

f(t)=fg(t)dt. 

We shall call the (graph of) ƒ "a primitive S-module". 
Now g satisfies the first-order ADE 

so that ƒ and every af + b, where a and b are constants, satisfies the second 
order ADE 

f\t)(l - t2)2 + f'(t)2t = 0. 

The idea is to write down a fourth order ADE, by differentiation and elimination, 
that is satisfied by every function y = Af (at + j8) + B, whatever the constants 
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A, a, p, B. Our original method, using resultants, led to a twelfth-order equation. 
Lawrence G. Brown has found the following simple way that leads to a seventh-
order equation. We are grateful to him for his permission to give it here. 

Put y = Af (at + |3) + B so that 
(1) y'=Aaf\ 
(2) y"=Aa2f\ 
(3) y'"=AaY\ 

(4) y""=Aa*f"", 
where (for \s\ < 1) 

o /'(s) = e-i/a-*2) 

( 1 - 5 2 ) 2 

(iii) f'"(s) = fa4~2 e~ » /d -^ 2 ) , 
( 1 - s 2 ) 4 

(iv) ƒ""(*) = ~24*? ~ 125s + 40s3 - 12a g _ , / ( 1 _,2> 

( 1 - s 2 ) 6 

In principle, one could solve for A, a, ft in terms of y', y", y"\ and t and 
substitute into the expression for y"". In practice, we let s = at + ft A = 
A exp(-l/(l - s2)), and solve for A, a, s. A surprising amount of cancellation 
takes place, so that the resulting ADE is simpler than one would expect in ad­
vance. The computations are not without tedium. 

From (l),Aa — y so that (2) becomes 

y" = <*y'[—^-\ (2') 
2 \2 

and (3) becomes 

From (2'), we get 

so that (3') becomes 

, (1-*2) 

, 6s4 - 2 
azy . (3 ) 

o - * 2 ) 4 

2 \2 y" (i - s2) 
y 2s 

Z Ü 3 s 4 - 1 
y' 2s2 
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From this we get 

3y"s4-2y'y'"s2-y"2=09 

so that 

j 2_/y" + vyv"2 + 3/'4 

3 / ' 2 

Substituting into (4), we get 

„„ = -y"3 -6s6 - 3s4 + 10s2 - 3 
y y'2 2s2 

Putting in the expression for s2 and rationalizing the denominator, we get 

/'" = — — [2/V"2 - 12/'4 - 3 / /V" 
3 / V 

+ (6/'2 + 2 / / V / y " 2 + 3 / ' 4 ] . 
Clearing fractions, isolating the square root on one side of the equation, and 

squaring both sides, we obtain an ADE of degree 8, divisible by 3y"'. We get 

3 / y y " 2 - 4 / y ' V " + 6 / y y y " + 2 4 / y y " 

- 1 2 / y y 3 - 2 < y y y "2 + 1 2 / ' 7 = 0, 
which is the announced equation, after dividing out the 3y" term. 

It remains to prove that the C°° solutions y of P = 0 approximate the given 
function y within e(t). Since y can be so approximated by a piecewise affine 
function, there is no harm in taking y itself to be a piecewise affine function. 

Now call an "S-module" any function of the form F — af (at 4- ]3) + b on a 
closed interval /, that is constant in neighborhoods of the endpoints of /. If 
/ = [a, b] then an ^-module o(t) is a C°° function that takes some value A at a, 
some value B dit b, is constant for a < t < a + 8, is constant for Z> - 8 < £ < b 
and is a particular monotone function on a + 8 < t < Z> - ô, for some small 
constant 5. It is clear that every S-module satisfies *. Moreover, any "S-chain" 
is also a solution of *, where by S-chain we mean any C°° function that consists 
of ^-modules pieced together, possibly countably many. 

Let us take any finite interval K on which if is affine. Cut K into a large 
number N of equal pieces (depending on the infimum of e(f) over K and on the 
slope of (/? on K) and sew together N small ^-modules that interpolate ^ at the 
endpoints of the N sub intervals. Since ^ is monotone, and since the ^-modules 
are likewise monotone, they differ by less than e(t) on AT if TV is large enough. 
Now proceed with the next affine piece of y, and join all the S-modules into an 
infinite S-chain. This will be the graph of a C°° solution of *, and the result is 
proved. 
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Note. It has just come to my attention that R. C. Buck has obtained uni­
versal partial algebraic differential equations using Kolmogorov's solution of 
Hilbert's Thirteenth Problem; see R. C. Buck, The solutions to a smooth PDE can 
be dense in C[ï\, J. Differential Equations (to appear). 
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