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ON A CONJECTURE OF PAPAKYRIAKOPOULOS
BY SIEGFRIED MORAN

ABSTRACT. We disprove a conjecture of Swarup which in turn disproves a
well-known conjecture of Papakyriakopoulos that a certain cover is planar.

Let

n
K, =<l,bl, cevsay by [T @ b))
i=1

n
J, =é1, bl’ cees @y by H (ai» bg)’ (al, by,
=1

where 7 is a fixed integer > 2 and 7 is an element of the commutator subgroup
of the free group F({a,, by, . . ., a,, b,}). Further let S, be the orientable
closed surface of genus n. The fundamental group of S,, is K,,. Papakyriakopoulos
[3] put forward the following

P.1. CoNJECTURE. (a) J, is torsion free and

(b) the cover of S, corresponding to the kernel of the natural group homo-
morphism K,, —> J,, is planar.

Papakyriakopoulos [3] showed that if P.1. is true, then so is the Poincaré
Conjecture.

G. A. Swarup [5] has posed the following

P.2. CoNJECTURE. The group J,, is a nontrivial free product.

G. A. Swarup [5] showed that

P.1. = P.2. = Poincaré Conjecture.

THEOREM. The conjecture P.2. is not in general true. Hence the conjec-
ture P.1. is not in general true.

ProoF. Let Gy =(ay, by; (ay, byc)), where c is any fixed element of the
commutator subgroup F({a,, b, })" of the free group F{( {a;, b, 1) so that
(ay, byc) is not conjugate to (a,, b,)*" in F({a,, b, }). For example one could
take

c=(a,, b)).
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Tak
° G, ={ay, by, ... ayb,;=)
and G = G, *y G,, where H = (h; —) and the amalgamating isomorphisms are
given by

¢ ()= (a;,b;) and ¢, (W) =(@,, b,)""' - (a, by)"".

Now G is an example of a group of the type denoted by J,, above. This is so
since G, is torsion free by Magnus, Karrass and Solitar [2, §4.4, Theorem 4.12].
Also (¢4, b,) # e in G, because of the assumption on ¢ and Magnus, Karrass
and Solitar [2, §4.4, Theorem 4.11]. We show below that G cannot be decom-
posed into a proper free product.

Suppose that contrary to the above assertion we have that G = X % Y,
where X and Y are nontrivial groups. The rank of G is 2n, since G/G’ is a free
abelian group of rank 2n. The rank of G, is 2 and the group G, is torsion free
by Magnus, Karrass and Solitar [2, §4.4, Theorem 4.12]. Hence if G, is a proper
free product, then G, is a free group of rank 2, by Theorem of B. H. Neumann on
the rank of a free product (see for instance Magnus, Karrass and Solitar [2, §4.1,
p. 192]. However the group G, is (by definition) clearly not a free group. So G,
cannot be decomposed into a proper free product. Hence, by the Kuro$ Subgroup
Theorem for a free product, it follows that

* G, Cg~'Xg for some element g of G.

Hence
=G X
G/GT = (X/gG g ) * Y.
Also
— Gy
G/GS = G, [, (h) is a surface group,
since G has generators a4, b,, a,, b,, . . ., a,, b, and defining relations

n
Hl @,b)=e and (a,bc)=e
i=

Now a result of A. Shenitzer (see Proposition 5.14 of Lyndon and Schupp [1,
ChapterII])tells us that G/(_}IG cannot be both a surface group and a proper free
product. Hence

———X —G»
X=gGg" and Y = G, [p,(h)) .

Thus the rank of Yis 2n—2 > 2.
All conjugates of Y intersect the subgroup H (of G) trivially. For

XNY®=¢ and X=3Gg ¥ DgHg !
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Hence, by the Subgroup Theorem of H. Neumann for free products with amalga-
mation (see for instance Lyndon and Schupp [1, Chapter IV, Theorem 6.6]),
the group Y is either a proper free product or is contained in some conjugate of
one of the groups G, and G,. None of these possibilities can in fact occur.

(i) Y cannot be a proper free product, by the above-mentioned result of
A. Shenitzer, since it is a surface group.

(i) Y cannot be contained in a conjugate of G, since this would imply by
(+) that Y is conjugate to a subgroup of X.

(iii) Y cannot be contained in a conjugate of G,, since if it were ¥ would
be a free group (as G, is a free group) which is false (a surface group is not a
free group).

REMARK. Asis wellknown E. S. Rapaport [4] established Conjecture P.1.
(2). Hence we have shown that Conjecture P.1. (b) does not in general hold.
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