$S K_{1}$ OF p-ADIC GROUP RINGS

by robert oliver
If A is a Dedekind domain with quotient field K, and π a finite group, define

$$
S K_{1}(A \pi)=\operatorname{Ker}\left[K_{1}(A \pi) \rightarrow K_{1}(K \pi)\right]
$$

We concentrate here on the case when A is a p-ring-the ring of integers in a finite extension of the p-adic rationals $\hat{\mathbf{Q}}_{\boldsymbol{p}}$-and report on results which completely calculate $S K_{1}(A \pi)$ in this case.

The main reason for looking at $S K_{1}(A \pi)$ involves $S K_{1}(\mathrm{Z} \pi)$, shown by Wall [5] to be the torsion subgroup of the Whitehead group $\mathrm{Wh}(\pi)$ (and thus having various topological applications). The inclusions $\mathbf{Z} \pi \subseteq \hat{\mathbf{Z}}_{p}[\pi]$ induce a surjection

$$
S K_{1}(\mathbf{Z} \pi) \longrightarrow \sum_{p} S K_{1}\left(\hat{\mathbf{Z}}_{p}[\pi]\right)
$$

(see $\S 1$ in [3]), whose kernel is denoted $\mathrm{Cl}_{1}(\mathrm{Z} \pi)$. The computation of $S K_{1}(\mathrm{Z} \pi)$ thus splits into two parts. $\mathrm{Cl}_{1}(\mathbf{Z} \pi)$ can be calculated in many cases (see, e.g., [4] and [3], noting that $\mathrm{Cl}_{1}(\mathrm{Z} \pi)=S K_{1}(\mathrm{Z} \pi)$ for abelian $\left.\pi\right)$; but no general formula or algorithm has yet been found. The groups $S K_{1}\left(\hat{\mathbf{Z}}_{p}[\pi]\right)$, on the other hand, are completely described by Theorems 1 and 2 below.

For any finite π, define

$$
H_{2}^{a b}(\pi)=\operatorname{Im}\left[\sum\left\{H_{2}(\rho): \rho \subseteq \pi, \rho \text { abelian }\right\} \longrightarrow H_{2}(\pi)\right]
$$

If π is a p-group, the situation is particularly simple.
Theorem 1. For any p-ring A and p-group π,

$$
S K_{1}(A \pi) \cong H_{2}(\pi) / H_{2}^{a b}(\pi)
$$

Note in particular that $S K_{1}(A \pi)$ is independent of A in this case. If $B \supseteq A$ is a totally ramified extension of p-rings, the inclusion $A \pi \subseteq B \pi$ induces an isomorphism from $S K_{1}(A \pi)$ to $S K_{1}(B \pi)$. If, on the other hand, $B \supseteq A$ is an unramified extension, it is the transfer map

$$
t r f: S K_{1}(B \pi) \longrightarrow S K_{1}(A \pi)
$$

which is an isomorphism.
For arbitrary finite π, the formula is much messier. For any p-ring A and finite group π, set $n=\exp (\pi)$ and regard $\operatorname{Gal}\left(A \zeta_{n} / A\right)\left(\zeta_{n}\right.$ a primitive nth root of

Received by the editors April 7, 1980.

1980 Mathematics Subject Classification. Primary 18F25; Secondary 16A26.
unity) as a subgroup of $\left(\mathbf{Z}_{n}\right)^{*}$. Two elements $g, h \in \pi$ will be called A-conjugate if $g^{a}=x h x^{-1}$ for some $x \in \pi$ and $a \in \operatorname{Gal}\left(A \zeta_{n} / A\right)$.

Theorem 2. Let A be a p-ring, π a finite group, and set $n=\exp (\pi)$. Let g_{1}, \ldots, g_{k} be A-conjugacy class representatives for elements of order prime to p. Define, for $1 \leqslant i \leqslant k$,

$$
Z_{i}=Z_{\pi}\left(g_{i}\right) ; \quad N_{i}=\left\{x \in \pi: x g_{i} x^{-1}=g_{i}^{a} \text { for some } a \in \operatorname{Gal}\left(A \zeta_{n} \mid A\right)\right\}
$$

Then

$$
S K_{1}(A \pi) \cong \sum_{i=1}^{k} H_{0}\left(N_{i} ; H_{2}\left(Z_{i}\right) / H_{2}^{a b}\left(Z_{i}\right)\right)_{(p)}
$$

Assume again that π is a p-group. Just finding a map between $S K_{1}(A \pi)$ and $H_{2}(\pi) / H_{2}^{a b}(\pi)$ takes a fair amount of machinery. For simplicity, assume A is unramified over $\hat{\mathbf{Z}}_{p}$ (ramified p-rings must be dealt with separately). A short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathrm{~Wh}^{\prime}(A \pi) \xrightarrow{\Gamma} \overline{I(A \pi)} \xrightarrow{\omega} \pi^{a b} \rightarrow 0 \tag{1}
\end{equation*}
$$

is first constructed where

$$
\begin{gathered}
\mathrm{Wh}^{\prime}(A \pi)=K_{1}(A \pi) /\left(A^{*} \times \pi^{a b} \times S K_{1}(A \pi)\right) \\
I(A \pi)=\operatorname{Ker}(A \pi \rightarrow A), \quad \overline{I(A \pi)}=I(A \pi) /\left\langle x-g x g^{-1}: x \in I(A \pi), g \in \pi\right\rangle, \\
\omega\left(\sum r_{i} g_{i}\right)=\Pi\left[g_{i}\right]^{\operatorname{Tr}\left(r_{i}\right)} \quad\left(\operatorname{Tr}: A \rightarrow \hat{\mathbf{z}}_{p} \text { the trace map }\right)
\end{gathered}
$$

and Γ is defined using the p-adic logarithm.
The sequence (1) gives no new information about $\mathrm{Wh}^{\prime}(A \pi)$ as an abstract group, but it does allow more control over it. For example, when π is a 2 -group and $\mathrm{Wh}^{\prime}\left(\hat{\mathbf{Z}}_{2}[\pi]\right)$ has the involution induced by $g \rightarrow g^{-1}$, (1) yields the simple formula

$$
H^{1}\left(\mathrm{Z}_{2} ; \mathrm{Wh}^{\prime}\left(\hat{\mathrm{Z}}_{2}[\pi]\right)\right) \cong \frac{\left\{[g] \in \pi^{a b}:\left[g^{2}\right]=e \text { in } \pi^{a b}\right\}}{\left\langle[g] \in \pi^{a b}: g \text { conjugate to } g^{-1}\right\rangle}
$$

(answering a question of Wall).
Given any extension $1 \rightarrow \rho \rightarrow \tilde{\pi} \longrightarrow \pi \rightarrow 1$ of p-groups, (1) is used to get a diagram (with exact rows)

A little diagram chasing yields a homomorphism

$$
\Delta: \operatorname{Ker}\left[\rho^{a b} \rightarrow \tilde{\pi}^{a b}\right] \rightarrow \operatorname{Coker}\left[S K_{1}(A \tilde{\pi}) \rightarrow S K_{1}(A \pi)\right]
$$

whose kernel is easily seen to contain $[\rho, \tilde{\pi}]$. The spectral sequence for the extension induces an exact sequence

$$
H_{2}(\pi) \xrightarrow{\delta} \rho /[\rho, \tilde{\pi}] \longrightarrow \widetilde{\pi}^{a b}
$$

and the composite $\Delta \circ \delta$ is a natural homomorphism

$$
H_{2}(\pi) \rightarrow \operatorname{Coker}\left[S K_{1}(A \tilde{\pi}) \longrightarrow S K_{1}(A \pi)\right]
$$

That this induces an isomorphism $H_{2}(\pi) / H_{2}^{a b}(\pi) \cong S K_{1}(A \pi)$ (for proper choice of $\tilde{\pi}$) now follows upon checking:
(A) Δ induces an isomorphism $\rho_{0} / \rho_{1} \cong \operatorname{Coker}\left[S K_{1}(A \tilde{\pi}) \longrightarrow S K_{1}(A \pi)\right]$, where
$\rho_{0}=\rho \cap[\tilde{\pi}, \tilde{\pi}]$ and $\rho_{1}=\left\langle z \in \rho: z=g h g^{-1} h^{-1}\right.$ for some $\left.g, h \in \tilde{\pi}\right\rangle$.
(B) $\rho_{0}=\delta\left(H_{2}(\pi)\right), \rho_{1}=\delta\left(H_{2}^{a b}(\pi)\right)$, and for $\tilde{\pi}$ large enough, δ induces an isomorphism $H_{2}(\pi) / H_{2}^{a b}(\pi) \cong \rho_{0} / \rho_{1}$.
(C) There exists $\tilde{\pi} \longrightarrow \pi$ such that $S K_{1}(A \tilde{\pi})=0$.

In other words, it is the difference between "actual" commutators and elements in $[\tilde{\pi}, \tilde{\pi}]$ which gives rise to elements in $S K_{1}(A \pi)$. Note that by (A), and the surjectivity of the localization map, surjections $\tilde{\pi} \longrightarrow \pi$ of p-groups can be constructed such that the induced map

$$
S K_{1}(\mathrm{Z} \tilde{\pi}) \rightarrow S K_{1}(\mathrm{Z} \pi)
$$

is not onto.
Once $S K_{1}(A \pi)$ is computed for p-groups π, the result for general π is obtained by first extending to certain twisted group rings, and then applying the induction theory in [1]. In particular, one gets in the process (using also Theorem 1 in [3])

Theorem 3. $S K_{1}(A \pi)$ (A any p-ring) and $S K_{1}(\mathbf{Z} \pi)_{(p)}$ are generated by induction from p-elementary subgroups of π.

As examples of specific computations, we get
Theorem 4. Let A be a p-ring and π a finite group. Then $S K_{1}(A \pi)=0$ if (i) π_{p} (p-Sylow subgroup) has a normal abelian subgroup with cyclic quotient or (ii) π is a symmetric or alternating group.

Specific examples of p-groups π with $H_{2}(\pi) / H_{2}^{a b}(\pi) \neq 0$ are constructed in
[2]. The smallest such π occur when $|\pi|=p^{5}$ (p odd) or $|\pi|=64$.
Combining these results with those on $\mathrm{Cl}_{1}(\mathrm{Z} \pi)$ in [3], we get

Theorem 5. $S K_{1}(\mathrm{Z} \pi)=0$ if π is any symmetric group or generalized quaternionic group, or if $\pi \cong S L(2, p)$ or $\operatorname{PSL}(2, p)$ for p prime. In particular, $\mathrm{Wh}\left(\Sigma_{n}\right)=0$.

REFERENCES

1. A. Dress, Induction and structure theorems for orthogonal representations of finite groups, Ann. of Math. (2) 102 (1975), 291-325.
2. W. Neumann, Manifold cutting and pasting groups, Topology 15 (1975), 237-244.
3. R. Oliver, $S K_{1}$ for finite group rings. I, Invent. Math. 57 (1980), 183-204.
4. M. Stein, Whitehead groups of finite groups, Bull. Amer. Math. Soc. 84 (1978), 201-212.
5. C. T. C. Wall, Norms of units in group rings, Proc. London Math. Soc. 29 (1974), 593-632.

MATEMATISK INSTITUT, AARHUS UNIVERSITET, 8000 AARHUS C, DENMARK

