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mann? Weierstrass? Cantor? Borel? Lebesgue? Hubert? L. Schwartz?'') and 
some are simply impossible ("There are two major types of nuclear explosive 
devices. Describe the mathematical formulation of the action in each case.") 

At the close of his provocative essay on the gap between disciplines, 
Freeman Dyson writes of ways to bring mathematics and physics back 
together. It is at present not realistic, he says, to expect members of one group 
to make original contributions to work of current interest in the other. The 
fields have drifted too far apart and their union is too large for a single 
intelligence to span. What can be done, at least for the time being, is to 
establish contact through papers of a special kind: when a new result in one 
field shows promise of attracting interest in the other, a review article gathers 
up points of contact and proposes areas of collaboration. It will, of course, 
take a change of attitude, the invention of new kinds of reward, and a few 
reforms in graduate education to make this happen. It is perhaps just barely 
possible. And what about a more intimate reconciliation of the sciences in the 
long future? Here our imaginations must range more freely. The solution-a 
dangerous one, says Dyson-lies in the hands of the biologists who will 
ultimately discover ways of extending human memory and intelligence to the 
point where the whole of science is once again comprehensible to one human 
being. Meanwhile we must do what we can with the natural mind as it is 
given to us. 

An excellent book on the present status and possible future of useful 
mathematics would be a step in the direction that Dyson envisions. Professor 
Murray's first attempt falls short of the requirement. Perhaps he, or another 
mathematician of equal distinction and equal dedication to the task, will give 
it another try. 

EVERETT HAFNER 
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Relativistic theories of materials, by Aldo Bressan, Springer Tracts in Natural 
Philosophy, vol. 29, Springer-Verlag, Berlin-Heidelberg-New York, 1978, 
xiv + 290 pp. 

Einstein's general relativity is primarily a unification of gravity with space-
time geometry: the curvature of a four-dimensional Lorentzian manifold 
signals the presence of gravity. But the theory can be regarded as a complete 
description of at least macrophysics; it necessarily deals with electromag­
netism and matter in addition to gravity. In fact its most important specific 
postulate, the Einstein field equation G = T, describes, roughly speaking, 
how matter and electromagnetism generate gravity. The equation relates a 
purely geometric object with a physical, almost anti-geometric one: G, the 
Einstein curvature, is determined at a spacetime point by certain averages of 
the sectional curvatures there; T, the stress-energy tensor field, is determined 
by electromagnetism and matter. Einstein's own attitude toward this contrast 
is given, for example, by his comments on the equation in his autobiographi­
cal contribution to Albert Einstein, Philosopher-Scientist (Paul A. Schlipp 
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editor, Library of Living Philosophers Inc., 1949). At that time he felt current 
theories of electromagnetism and matter required replacement by a more 
geometric theory like his "unified field theory" so that the equation would 
ultimately be replaced by a wholly geometric one. Today, Einstein's attempts 
along these lines are regarded as obsolete. But the problem of how to 
combine matter models with his theory of gravity remains pressing. 

Our most nearly fundamental and most nearly satisfactory models of 
matter and electromagnetism are furnished by special relativistic quantum 
theory-say quantum field theory to be specific. How to combine these 
models systematically with general relativity is simply not yet known. One 
would clearly have to deal with a quantum modification of general relativity, 
for example, the usual scalar curvature might somehow be replaced by an 
operator field. Many quantum theorists have argued that in a fully quantized 
theory gravity might even lose its special role as a carrier of spacetime 
geometry, becoming in effect little more than another form of "matter". This 
seems very unlikely to the reviewer, but time will tell. 

More modest, and less fundamental, are current attempts to combine 
quantum matter theories with nonquantum general relativity, that is, to 
construct an approximation appropriate whenever quantum gravitational 
effects are negligible. One can take over the partial differential equations of 
special relativistic quantum field theory with comparative ease and compara­
tively little ambiguity. However, as is typical, the less local parts of the 
pre-general-relativistic theory are much harder to handle. For example, to 
decide whether gravity can create lots of quantum particles in a certain 
situation one must (presumably) be able to decide whether or not a given 
quantum matter field on a given spacetime corresponds to zero incoming 
particles. At the moment, the answers to this and a number of other similarly 
"global" questions are at best known only in a few special cases. 

In any case, to describe stars and the other macroscopic objects of primary 
interest in the present, almost exclusively astophysical applications of general 
relativity, one normally uses drastically simplified matter models much less 
fundamental than those mentioned above. An example is one-particle kinetic 
theory. Roughly speaking, one there describes a gas as a collection of 
nonquantum, point particles, undergoing instantaneous collisions every once 
in a while; the influence of the gas on other matter, electromagnetism and 
gravity is approximated by smoothed out, average effects. This model is easy 
to take over into general relativity and is very useful there. 

Many intentionally oversimplified matter models useful in nonrelativistic 
physics are even less microscopic. It is primarily with these that Bressan's 
book deals. He shows how one takes over into relativity various standard 
idealizations: the concept of a rigid body; the thermodynamic laws for fluids 
in which heat conduction can occur; the basic concepts of elasticity theory; 
and many others, including some rather detailed and specialized models (for 
example §78 of the book has the title Magneto-elastic acceleration waves in 
Piezo-elastic ideal conductors). 

The treatment is very systematic and thorough. Some knowledge of classi­
cal tensor analysis and of nonrelativisitic material models is assumed. The 
author works with local coordinates throughout, usually making no attempt 
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to consider situations where spacetime has a topology different from that of 
R4. This classical approach is in fact rather appropriate for the subject 
matter. 

The book's biggest drawback is its excessively formal character. Whether 
and how to take over a particular nonrelativistic, macroscopic idealization 
into relativity is only partially a question of whether the appropriate differen­
tial geometric formalism can be set up. To get a real sense of the uses and 
limitations of some model one also needs to analyze some specific physical 
situations to which the model is relevant and needs to investigate the model's 
relation to less phenomenological, more microscopic models. Such discussions 
are regrettably rare in the book. But within its own framework the book is 
highly competent. It will remain a useful reference for quite some time. 
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Rational quadratic forms, by J. W. S. Cassels, London Mathematical Society 
Monographs No. 13, Academic Press, London-New York-San Francisco, 
1978, xvi + 413 pp., $36.50. 

The focal point of the book under review, the classification of quadratic 
forms over Z, can be formulated very simply. If 

ƒ =2-4*,*,- and *-2*fcW> 
are nondegenerate quadratic forms in n variables xv . . . , xn andylf... ,yn 

respectively, with coefficients fy « fjt and gtj = gJt in Z, is it possible to 
determine whether or not ƒ and g are equivalent over Z, i.e. whether or not 
there is a linear change of variables 

yj - 2 h]** 

with (Jij) an invertible matrix over Z which will transform g into ƒ? This is 
closely related to the question of describing those integers that are repre­
sented by g, and to the more general question of which quadratic forms are 
represented by g over Z. All these problems can, of course, be formulated 
over any integral domain and not just over Z. In particular, they can be 
formulated over an arbitrary field where it can be shown, rather simply, that 
every quadratic form is equivalent to a diagonal form provided the character­
istic of the field is not 2. If the field in question is R, then g is equivalent to a 
diagonal form 

r n 

1 r+1 

and r and n provide a complete set of invariants for equivalence over R. This 
is Sylvester's Theorem. It is the classification theorem over R. Forms over R 
with r > 0 and n > r are called indefinite, with r = n positive definite, and so 
on. Forms over Z are called indefinite if they are indefinite when viewed over 
R, and so on. It is important to make the distinction between definite and 


